Matrix Representation of Non-Nested Real Algebraic Number

التعبير المصفوفي عن العدد الجبري الحقيقي الغير متداخل

أ. د قحطان حمزة الزبيدي. أستاذ بقسم الرياضيات. كلية العلوم. جامعة بنغازي أ.حسن سليمان على . محاضر بقسم الرياضيات . كلية التربية قمينس. جامعة بنغازي.

Prof. Kahtan H. Alzubaidy. Professor in Department of Mathematics. Faculty of Science. University of Benghazi

Email: kahtanalzubaidy@yahoo.com.

MA: Hassan .S. Ali. Department of Mathematics, Faculty of Education, University of Benghazi, Ghemines

Email: Hassansamor1972@gmail.com.

 $Q(\sqrt[n]{s}), Q(\sqrt[n]{s}, \sqrt[m]{t})$ و $Q(\sqrt[n]{s}, \sqrt[m]{t}, \sqrt[m]{u})$ و $Q(\sqrt[n]{s}, \sqrt[m]{t}, \sqrt[m]{u})$ بو اسطة كتل مصفو فية . و بالتالي يمكن حساب هذا العدد الجبري بعكس المصفو فة المناظرة .

الكلمات المفتاحية: العدد الجبري، المجال العددي، الجبر التنسيقي

Abstract: We represent an algebraic number in $(\sqrt[n]{s})$, $Q(\sqrt[n]{s}, \sqrt[m]{t})$ and $Q(\sqrt[n]{s}, \sqrt[m]{t}, \sqrt[n]{u})$ by a block matrix. The inverse of such an algebraic number can thus be computed by the inverse of the corresponding matrix.

<u>Keywords</u>: algebraic number, number field, associative algebra.

INTRODUCTION

The number fields of the $Q(\sqrt[n]{s})$, $Q(\sqrt[n]{s}, \sqrt[m]{t})$ and $Q(\sqrt[n]{s}, \sqrt[m]{t}, \sqrt[n]{u})$ associative algebras over Q, where s, t, u are respectively n^{th} , m^{th} , r^{th} power free relatively prime positive integers. Monomorphisms from these number fields into the matrix algebras $M_i(Q)$ where i=n,nm,nmr respectively are constructed. This enables us to represent the algebraic number in $Q(\sqrt[n]{s})$, $Q(\sqrt[n]{s})$, $Q(\sqrt[n]{s})$, $\sqrt[m]{t}$, and $Q(\sqrt[n]{s})$, $\sqrt[m]{t}$, $\sqrt[n]{t}$, by matrices of related blocks.

PRELIMINARIES

A complex number α is called an algebraic number[3] if it satisfies some monic polynomial equation $f(x) = b_0 x^n + b_1 x^{n-1} + \dots + b_n$ where $f(x) \in Q[x]$. If α satisfies some polynomial equation of degree n, but none of lower degree we say that α is an algebraic number of degree n. Non-algebraic number are called transcendental numbers.

Examples:

- 1) Every rational number is an algebraic.
- 2) $\sqrt{1+2\sqrt{3}}$ is an algebraic number of degree 4.
- 3) π is transcendental number [1].

The minimal polynomial f of an algebraic number α is the monic polynomial in Q[x] of smallest degree such that $(\alpha) = 0$.

Note that the minimal polynomial is irreducible over .

Theorem 1[3]: The set of all algebraic number is a field.

The number field is any subfield of this field.

Let F be a field. We say A is an associative algebra over F [2] if A is a ring with identity which is an F -vector space, such that the F -action is compatible with multiplication in A in the sense that (x.a)b = x.(ab) = a(x.b) for all $a,b \in A$, $x \in F$.

The ring $M_n(F)$ of all nxn-matrices over the field F is an F-associative algebra of dimension n^2 .

The number field induced by α is given by :

$$Q(\alpha) = \{a_1 + a_2\alpha^2 + \dots + a_n\alpha^{n-1} : a_i \in Q\} \ modulo \ f(\alpha).$$

- $Q(\alpha)$ is n-dimensional vector space over Q with basis $\{1, \alpha, ..., \alpha^{n-1}\}$.
- $Q(\alpha)$ is also associative algebra over Q.

If α and β are two algebraic number of degree m and n respectively, we defined $Q(\alpha, \beta) = Q(\alpha)Q(\beta)$.

 $Q(\alpha, \beta)$ is an associative algebra over Q of dimension mn.

The basis of $Q(\alpha, \beta)$ is :

$$\{1, \alpha, ..., \alpha^{n-1}, \beta, \alpha\beta, ..., \alpha^{n-1}\beta, ..., \beta^{m-1}, \alpha\beta^{m-1}, ..., \alpha^{n-1}\beta^{m-1}\}$$
.

Examples:

Let s and t be n^{th} power free and m^{th} power free relatively prime positive integer. Let $= \sqrt[n]{s}$ and $\beta = \sqrt[m]{t}$. We form the following two number fields:

1)
$$Q(\alpha) = \{a_1 + a_2\alpha + a_3\alpha^2 + \dots + a_n\alpha^{n-1} : a_1, \dots, a_n \in Q\}$$

It is basis is $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$

11 Is basis is
$$\{1, \alpha, \alpha', ..., \alpha''\}$$

2) $(\alpha, \beta) = \{a_1 + a_2\alpha + \dots + a_n\alpha^{n-1} + \dots + a_{n+m}\alpha^{n-1}\beta^{m-1} : a_i \in Q\}$. It is basis is $\{1, \alpha, ..., \alpha^{n-1}, \beta, \alpha\beta, ..., \alpha^{n-1}\beta^{m-1}\}$.

$$\{1,\alpha,\ldots,\alpha^{n-1},\beta,\alpha\beta,\ldots,\alpha^{n-1}\beta^{m-1}\}$$
.

The general elements are:

$$(a_1, ..., a_n; s) = a_1 + a_2\alpha + \cdots + a_n\alpha^{n-1} in Q(\alpha) (a_{11}, ..., a_{n1}; a_{12}, ..., a_{n2}; ...; a_{1m}, ..., a_{nm}; s, t) = a_{11} + a_{21}\alpha + \cdots + a_{n1}\alpha^{n-1} + a_{12}\beta + a_{22}\alpha\beta + \cdots + a_{n2}\alpha^{n-1}\beta + \cdots + a_{1m}\beta^{m-1} + a_{2m}\alpha^{m-1}\beta + \cdots + a_{nm}\alpha^{n-1}\beta^{m-1} in Q(\alpha, \beta).$$

If R is an algebra over a field F, subrings and ideal of the ring R that are also F-subspaces of R are called subalgebras and algebra ideals respectively.

If S is another F-algebra, a ring homomorphism then $\theta: R \to S$ is called an algebra homomorphism if it also is Flinear, that is, if $\theta(ar) = a \cdot \theta(r)$ for all $a \in F$ and $r \in R$.

Theorem 2 [2]: let R be an n-dimensional algebra over a field F. Then there exists a one-to-one algebra homomorphism $R \to M_n(F)$.

Proof.

Let $\{u_1, u_2, ..., u_n\}$ be a basis of R . Given $\in R$, write $u_i r = \sum_{j=1}^n r_{ij} u_j$, $r_{ij} \in F$.

Then define $\theta: R \to M_n(F)$ by $\theta(r) = [r_{ij}]^T$

$$\theta(ar) = [ar_{ij}]^T = a[r_{ij}]^T \ \forall \ a \in F \ and \ r \in R$$

Then θ is an F-linear homomorphism of additive groups .

Let
$$\theta(r) = [r_{ij}]^T = [r_{ji}]$$
 so that $u_i s = \sum_{j=1}^n s_{ij} u_j$. Then:

$$u_i r s = \left(\sum_k r_{ik} u_k\right) s = \sum_k r_{ik} \left(\sum_j s_{kj} u_j\right) = \sum_j \left(\sum_k r_{ik} s_{kj}\right) u_j .$$

Thus
$$\theta(rs) = [\sum_{k} r_{ik} s_{kj}]^T = [\sum_{k} r_{ki} s_{jk}] = [r_{ji}][s_{ji}] = \theta(r) \cdot \theta(s)$$
.

Then θ is homomorphism.

Suppose that $\theta(r) = 0$ that is $u_i r = 0 \forall i$

If
$$1 = \sum_i a_i u_i$$
, then $r = 1$. $r = \sum_i a_i u_i r = 0$.

So $ker\theta = 0$ and θ is one to one.

RESULTS

If $(a_1, ..., a_n; s)$ is the algebraic number in $(\sqrt[n]{s})$, where s is n^{th} power free positive integer, then the basis is given as follows: $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$ where $\alpha = \sqrt[n]{s}$.

$$(a_1, ..., a_n; s)1 = a_1 + a_2\alpha + a_3\alpha^2 + ... + a_n\alpha^{n-1}$$

$$(a_1, ..., a_n; s)\alpha = a_n s + a_1 \alpha + a_2 \alpha^2 + ... + a_{n-1} \alpha^{n-1}$$

$$(a_1, ..., a_n; s)\alpha^2 = a_{n-1}s + a_ns\alpha + a_1\alpha^2 + ... + a_{n-2}\alpha^{n-1}$$

$$(a_1, ..., a_n; s)\alpha^{n-1} = a_2s + a_3s\alpha + a_ns\alpha^2 + \dots + a_1\alpha^{n-1}$$

Thus we have:

Corollary 1.

The matrix $M(a_1, ..., a_n; s)$ corresponds to the algebraic number $(a_1, ..., a_n; s)$, where s is n^{th} power free positive integer.

If $\alpha = \sqrt[n]{s}$ and $\beta = \sqrt[m]{t}$ are two algebraic numbers of degree n and m respectively where s and t is n^{th} power free and m^{th} power free relatively prime positive integer. $Q(\alpha, \beta) = Q(\alpha)Q(\beta)$, then the basis is:

 $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\} \times \{1, \beta, \beta^2, ..., \beta^{m-1}\} =$

 $1, \alpha, \alpha^2, \dots, \alpha^{n-1}, \beta, \alpha\beta, \dots, \alpha^{n-1}\beta, \dots, \beta^{m-1}, \dots, \alpha^{n-1}\beta^{m-1}$.

The general element is:

 $(a_{11},\ldots,a_{n1};a_{12},\ldots,a_{n2};\ldots;a_{1m},\ldots,a_{nm};s,t)$

The algebraic number:

 $(a_{11},\ldots,a_{n1};s);(a_{12},\ldots,a_{n2};s);\ldots;(a_{1m},\ldots,a_{nm};s)$ correspond to

 $M(a_{11},...,a_{n1};s); M(a_{12},...,a_{n2};s);...; M(a_{1m},...,a_{nm};s).$

By using Corollary 1 we can represent the algebraic number by the blocks as follows:

$$B_1 = \begin{bmatrix} a_{11} & sa_{n1} & sa_{(n-1)1} & \dots & sa_{21} \\ a_{21} & a_{11} & sa_{n1} & \dots & sa_{31} \\ a_{31} & a_{21} & a_{11} & \dots & sa_{41} \\ \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \ddots \\ a_{n1} & a_{(n-1)1} & a_{(n-2)1} & \dots & a_{11} \end{bmatrix},$$

	a_{1m}	Sa_{nm}	$sa_{(n-1)m}$		sa_{2m}	
	$\begin{bmatrix} a_{1m} \\ a_{2m} \end{bmatrix}$	a_{1m}	sa_{nm}		sa_{3m}	
	a_{3m}	a_{2m}	a_{1m}		sa_{4m}	
$B_m =$		•				
		•	•			
	a_{nm}	$a_{\scriptscriptstyle (n-1)m}$	$a_{(n-2)m}$		a_{1m}	

نوفمبر

2020

Now we get a monomorphism from $Q(\alpha, \beta)$ into $M_n(Q)$ where:

الجزء الأول

العدد الأول

Thus we get:

Corollary 2.

The matrix corresponds to algebraic number $(a_{11}, ..., a_{n1}; a_{12}, ..., a_{n2}; ...; a_{1m}, ..., a_{nm}; s, t)$ is computed by the block matrix $M(B_1, B_2, ..., B_n; t)$.

مجلة المنارة العلمية

Application 1.

a)In $Q(\sqrt[3]{s})$: where s is - 3^{th} power free

by corollary 1
$$M(a, b, c; s) = \begin{bmatrix} a & sc & sb \\ b & a & sc \\ c & b & a \end{bmatrix}$$

b) In $(\sqrt[3]{s}, \sqrt{t})$: where s is 3^{th} -power free, t is 2^{th} - power free and s, t are relatively prime positive integers

by corollary 2
$$M(a,b,c,d,e,f;s,t) = \begin{bmatrix} a & sc & sb & | & td & tsf & tse \\ b & a & sc & | & te & td & tsf \\ c & b & a & | & tf & te & td \\ - & - & - & | & - & - & - \\ d & sf & se & | & a & sc & sb \\ e & d & sf & | & b & a & sc \\ f & e & d & | & c & b & a \end{bmatrix}$$

c) In $(\sqrt[4]{s}, \sqrt{t})$: where s is 4^{th} -power free, t is 2^{th} - power free and s, t are relatively prime positive integers by corollary 2

$$M(a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8;s,t) = \begin{bmatrix} a_1 & sa_4 & sa_3 & sa_2 & | & ta_5 & tsa_8 & tsa_7 & tsa_6 \\ a_2 & a_1 & sa_4 & sa_3 & | & ta_6 & ta_5 & tsa_8 & tsa_7 \\ a_3 & a_2 & a_1 & sa_4 & | & ta_7 & ta_6 & ta_5 & tsa_8 \\ a_4 & a_3 & a_2 & a_1 & | & ta_8 & ta_7 & ta_6 & ta_5 \\ - & - & - & - & | & - & - & - & - \\ a_5 & sa_8 & sa_7 & sa_6 & | & a_1 & sa_4 & sa_3 & sa_2 \\ a_6 & a_5 & sa_8 & sa_7 & | & a_2 & a_1 & sa_4 & sa_3 \\ a_7 & a_6 & a_5 & sa_8 & | & a_3 & a_2 & a_1 & sa_4 \\ a_8 & a_7 & a_6 & a_5 & | & a_4 & a_3 & a_2 & a_1 \end{bmatrix}$$

Now, if $\alpha = \sqrt[n]{s}$, $\beta = \sqrt[m]{t}$ and $\gamma = \sqrt[r]{u}$ are there algebraic number of degrees n,m and r respectively and s, t, u are n^{th} power free, m^{th} power free and r^{th} power free respectively and they are relatively prime positive integer and $Q(\alpha, \beta, \gamma) = Q(\alpha, \beta)(\gamma)$, then the basis is:

$$\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\} \times \{1, \beta, \beta^{2}, \dots, \beta^{m-1}\} \times \{1, \gamma, \gamma^{2}, \dots, \gamma^{r-1}\} = \{1, \alpha, \dots, \alpha^{n-1}, \beta, \alpha\beta, \dots, \alpha^{n-1}\beta, \dots, \beta^{m-1}, \dots, \alpha^{n-1}\beta^{m-1}\} \times \{1, \gamma, \dots, \gamma^{r-1}\} = \{1, \alpha, \dots, \alpha^{n-1}, \beta, \alpha\beta, \dots, \alpha^{n-1}\beta, \dots, \beta^{m-1}, \dots, \alpha^{n-1}\beta^{m-1}\} \times \{1, \gamma, \dots, \gamma^{r-1}\} = \{1, \alpha, \dots, \alpha^{n-1}, \beta, \alpha\beta, \dots, \alpha^{n-1}\beta, \dots, \beta^{m-1}, \alpha\beta^{m-1}, \dots, \alpha^{n-1}\beta^{m-1}\} \times \{1, \gamma, \dots, \gamma^{r-1}\} = \{1, \alpha, \dots, \alpha^{n-1}, \beta, \alpha\beta, \dots, \alpha^{n-1}\beta, \dots, \beta^{m-1}, \alpha\beta^{m-1}, \dots, \alpha^{n-1}\beta^{m-1}\} \times \{1, \gamma, \gamma^{2}, \dots, \gamma^{r-1}\} \times \{1, \gamma, \gamma^{2}, \dots, \gamma^{$$

Briefly.

$$1)M_1=M(a_1,\dots,a_n;s)$$

For algebraic numbers in (α) .

2)
$$M_2 = M((M(a_{11}, ..., a_{n1}; s), ..., M(a_{1m}, ..., a_{nm}; s)); t)$$

= $M(M_1, ..., M_1; t)$

For algebraic numbers in (α, β) .

Then we have:

Corollary3.

The matrix representation of an algebraic number in $Q(\alpha, \beta, \gamma)$ is given by: $M_3 = M(M_2, ..., M_2; u)$.

Application 2.

Consider $Q(\sqrt{s}, \sqrt{t}, \sqrt{u})$ where s, t, u are 2^{th} -power free and they are relatively prime positive integers By corollary 3

	a_{11}	sa_{21}	Τ	ta_{12}	tsa_{22}	Τ	ub_{11}	usb_{21}	Τ	utb_{12}	$utsb_{22}$
	a_{21}	a_{11}		ta_{22}	ta_{12}		ub_{21}	ub_{11}		utb_{22}	utb_{12}
	_	_		_	_		_	_		_	-
	a_{12}	sa_{22}		a_{11}	sa_{21}		ub_{12}	usb_{22}		ub_{11}	usb_{21}
	a_{22}	a_{12}		a_{21}	a_{11}		ub_{22}	ub_{12}		ub_{21}	ub_{11}
$M_3 =$	_	_		_	_		_	_		_	-
	b_{11}	sb_{21}		tb_{12}	tsb_{22}		a_{11}	sa_{21}		ta_{12}	tsa_{22}
	b_{21}	b_{11}		tb_{22}	tb_{12}		a_{21}	a_{11}		ta_{22}	ta_{12}
	_	_		_	_		_	_		_	-
	b_{12}	sb_{22}		b_{11}	sb_{21}		a_{12}	sa_{22}		a_{11}	sa_{21}
	b_{22}	b_{12}		b_{21}	b_{11}		a_{22}	a_{12}		a_{21}	a_{11}

نوفمبر

الجزء الأول

العدد الأول

مجلة المنارة العلمية

Application 3.

2020

To find the inverse of
$$a + b\sqrt[3]{s} + c\sqrt[3]{s^2}$$
 by matrix representation.
$$M_1 = M(a, b, c; s) = \begin{bmatrix} a & sc & sb \\ b & a & sc \\ c & b & a \end{bmatrix}$$

$$M_1^{-1} = \frac{1}{a^3 + b^3 s + c^3 s - 3abcs} \begin{bmatrix} a^2 - sbc & s(b^2 - ac) & s(sc^2 - ab) \\ sc^2 - ab & a^2 - sbc & s(b^2 - ac) \\ b^2 - ac & sc^2 - ab & a^2 - sbc \end{bmatrix}$$

Then
$$(a + b\sqrt[3]{s} + c\sqrt[3]{s^2})^{-1} =$$

$$\frac{1}{a^3+b^3s+c^3s-3abcs} (a^2-sbc+(sc^2-ab)\sqrt[3]{s}+(b^2-ac)\sqrt[3]{s^2}) .$$

REFERENCES

- [1] G. H. Hardy, E.M. Wright, An Introduction To The Theory of Numbers, 5th Edition, Clarendon Press, Oxford, (2000).
- [2] Nathan Jacobson, Basic Algebra 1 (2nd edition), Freeman, New York, 1996.
- [3] F. Oggier ,Introduction to Algebraic Number Theory, Prentice-Hall Newjersey, (2010).