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 ABSTRACT 

 This paper presents a study of 

hyperreal numbers and their relations to real 

numbers. The hyperreals are a number 

system extension of the real number system. 

With this system, simpler and more 

intuitively natural definition (topological 

notions of special points and compactness), 

proofs (Heine-Borel theorem), and new 

concepts (limited, unlimited numbers, 

enlargement sets, and halos) of mathematical 

interest are offered.  
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1- Introduction 

In 1960, Abraham Robinson (1918–

1974) successfully addressed the 

longstanding issue of providing a rigorous 

foundation for calculus based on the concept 

of infinitesimals.  

This breakthrough by Robinson 

stands as one of the most significant 

mathematical advancements of the twentieth 

century.  

The construction of the hyperreal 

number system relied on algebraic 

techniques, which involved selecting an 

arbitrary parameter like an ultrafilter.  

The process of constructing these 

hyperreal numbers shares similarities with 

Cantor's construction of real numbers using 

Cauchy sequences of rational numbers. 

A bigger set ℝℕ (the set of all 

infinite sequences of real numbers) is needed 

to be created. A typical member of ℝℕ has 

the form  A = 〈a1 ,  a2 ,  a3 ,  … , an , …   〉, 

where  a1 ,  a2 ,  a3 ,  … ∈ ℝ. 

The operations addition and 

multiplication were defined on it, as 

A + B = 〈… , ai, … 〉 + 〈… , bi, … 〉 
= 〈… , ai + bi, … 〉 

A. B = 〈… , ai. bi, … 〉 
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1.1.Theorem 

This structure (ℝ 
 ℕ, +,  ∙  ) forms a 

commutative ring.  

Theorem. the relation ≅ on ℝℕ 

defined by  

if and only if  {n ∈ ℕ: an = bn} ∈ ℱ A ≅

B  is an equivalence relation. Where  ℱ is a 

non-principal ultrafilter on ℕ . Which means 

that the two sequences: agree at almost all n.  

Definition. The set of hyperreal numbers ℝ 
∗  

will be the quotient set  ℝℕ ∕≅ . 

ℝ 
∗  = {[A]: A ∈ ℝℕ}

 

 
=  {𝒜: A ∈ ℝℕ}

= ℝℕ  ≅⁄  

Theorem. This structure 

〈 ℝ, +,∙, ≤ 
∗ 〉 is an ordered field. Where 

𝒜 + ℬ = [A + B] = [〈… , an + bn, … 〉] 

𝒜. ℬ = [A. B] = [〈… , an. bn, … 〉]. 

if and only if ⟦an ≤ bn⟧ ∈ ℱ if and only if  

𝒜 ≤ ℬ 
{n ∈ ℕ: an ≤ bn} ∈ ℱ  

 Remark  

Any constant sequence r =

[⟨r, r, r, … ⟩]  identify a real number.  

The number  ε = [⟨1,
1

2
,

1

3
, … ⟩] ,  ε ≠ 0 =

〈0,0,0, … 〉 is called an infinitesimal since  

ε < x, ∀x ∈ ℝ . Hence ε ∉ ℝ. 

The number  𝒩 = [⟨1,2,3, … ⟩], is 

called an unlimited since  𝒩 > x, ∀x ∈ ℝ. 

Hence 𝒩 ∉ ℝ. 

The properties observed of ε and 𝒩 shows 

that ℝ 
∗  is a proper extension of ℝ, and 

hence a new structure. 

Our discussion of ε and 𝒩 shows 

in fact that if  A is any real-valued sequence 

converging to zero, then A is an infinitesimal 

in ℝ ,    
∗  while if A  diverges to ±∞ then 

A is unlimited in ℝ  
∗ . The elements of 

ℝ − ℝ 
 

 
∗  are called nonstandard elements.    

The relation between ℝ and ℝ   
∗ is 

demonstrated by transfer principle.  

1.2.Theorem (Łoś's theorem)  

If φ(x1,  x2, … ) is a first-order 

formula in the language of the ordered field 

ℝ and r1, … rn ∈ ℝ, then  

ℝ ⊨ φ[r1, … , rn]   ⇔   ℝ 
 ∗ ⊨

φ[r1, … , rn]  
2- Enlarging Sets 

2.1.Definition  

For each A ∈ ℝℕ, the 

enlargement set X 
∗  is 

              [A] ∈  X 
∗    if and only if   {n ∈

ℕ :  an ∈ X} ∈ ℱ . 
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Thus declaring, by the almost-all 

criterion, that [A] is in X 
∗  if and only if an is 

in X for almost all n. 

2.1.Examples  

1- If A = ℕ, then 𝒩 ∈ ℕ 
∗  since 

𝒩 =  〈1,2,3,  .  .  . 〉 and the elements of 

this sequence are all natural numbers 

belongs to ℕ. Hence  𝒩 ∈ ℕ 
∗ − ℕ.  

Then ℕ 
∗  consists of ℕ together with all 

positive unlimited elements. 

2- If A = ℚ, then ε and 𝒩 belongs to 

ℚ 
∗ − ℚ , since the elements of these 

sequences are all rational. But we note that 

ℚ 
∗ ≠ ℝ 

∗  since π 
 = 〈π,  π,  π,  … 〉 ∉

ℚ 
∗ . 

3- If A = ℚ՝, then ε + π and 𝒩 − 2e 

belongs to ℚ՝
 

∗ − ℚ՝, since the elements of 

these sequences are all irrational. Also we 

note that ℚ՝
 

∗ ≠ ℝ 
∗   since 2 

 =

〈2,2,2, … 〉 ∉ ℚ՝
 

∗ .  

4- If A = ℝ, then for example  ε, r +  ε 

and 𝒩 belongs to ℝ 
∗ − ℝ. Then these 

elements are "nonstandard real numbers". 

Then ℝ 
∗  consists of ℝ together with all non-

standard elements.  And ℝ 
∗  is the 

enlargement of ℝ. By transfer principle 

ℝ = ℚ 
∗ ∪  ℚ՝

 
∗

 
∗ . 

5- If A = (0, 2], then ε ∈ A 
∗ , since ε =

〈1,
1

2
,

1

3
, … 〉 and every element of this 

sequence belongs to A. Also 1 + ε ∈ A 
∗  

since 1 + ε = 〈2,
3

2
,

4

3
, … 〉 and every 

element in this sequence belongs to A. Then 

A 
∗  consists of A together with all  

non-standard elements {x ∈ ℝ 
∗ : 0 <

x ≤ 2}.  For example ε, 1 + ε ∈ 

A − A 
∗ , and  A 

∗ = (0, 2] 
∗ . 

6- If A = {1, 2, 3,4} , then any sequence 

of a non-standard element intersect with A is 

a finite set, Hence there are no nonstandard 

elements inside it, and  A 
∗ = A. 

2.1.Theorem (Gordon, Kusraer, & 

Kutatelodzo) 

 The enlargement X 
∗  of any infinite 

subset X of ℝ has nonstandard elements. 

2.2.Theorem  

 If A is finite, then A 
∗ = A and hence A 

has no nonstandard members.  

2.1.Proposition  

.  X ⊆ Y if and only if X 
∗ ⊆ Y 

∗  

Corollary 2.1   

 if and only if X 
∗ = Y 

∗   X = Y 
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2.2.Proposition  

1- (X ∪ Y) = 
∗ X ∪ Y 

∗
 

∗  
2- (X ∩ Y) = 

∗ X ∩ Y 
∗

 
∗  

3- ∅ = 
∗ ∅ 

2.3.Proposition  

If A ⊆ ℝ, then A ∩ ℝ = A 
∗ . 

3.Halos  

3.1.Definition  

 A hyperreal a is infinitely close to b, dented 

by a ≃ b, if a − b is infinitesimal.  

This defines an equivalence relation on ℝ 
∗  , 

(Rayo, 2015). 

3.2.Definition  

 The halo of a is the ≃-equivalence class  

hal(a) = {b ∈ ℝ 
∗ : a ≃ b} 

So, a is infinitesimal if and only if a ≃ 0. 

Thus hal(0) = 𝕀, the set of infinitesimal. 

3.1.Proposition  

hal(a) = {a + ε: ε ∈ hal(0)}   
4.Topological Spaces   

In the hyperreal context of usual topology on 

ℝ we can make the idea of nearness quite 

explicit by taking near to mean infinitely 

close . As we shall see, this leads to a very 

natural formulation and treatment of many 

topological ideas. 

4.1.Definition 

 If A ⊆ ℝ, then 

1. A is open if and only if for all r ∈ A, if x 

is infinitely close to r, then x ∈ A  
∗ ; 

2. A is closed if and only if for all real r, if r 

is infinitely close to some x ∈ A 
∗ , then r ∈

A. 

4.1.Theorem (Goldblat, 1998) 

If A ⊆ ℝ and r ∈  ℝ, 

(1) r is interior to A if and only if r ≃ x 

implies x ∈ A 
∗ , if and only if hal(r) ⊆

A 
∗ . 

(2)  r is a limit point of A if and only if there 

is an  x ≠ r such that r ≃ x ∈ A 
∗ , if and 

only if hal(r) ∩ A 
∗  contains a point other 

than r. 

(3)  r is a closure point of A if and only if r is 

infinitely close to some x ∈ A 
∗ , if and only 

if hal(r) ∩ A 
∗  is nonempty.    

Compactness 

4.2.Definition 

A set B ⊆ ℝ is compact if every open cover 

of B has a finite subcover, if whenever B ⊆

⋃i∈IAi and each Ai is open in ℝ, then 

there is a finite J ⊆ I such that B ⊆

⋃i∈IAi.  
This concept did not simply arise out of thin 

air. It originated from research conducted in 

the nineteenth century on bounded and 
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closed intervals in the real line, which 

eventually led to the proof that such intervals 

are compact according to the definition 

provided by the Heine-Borel theorem. As this 

definition solely pertains to open sets, it 

becomes the suitable one to employ in an 

abstract topological space where there is no 

concept of numerical distance to determine 

boundedness. 

4.2.Theorem (Robinson's compactness 

criterion). 

B is compact subset of ℝ if and only if  

1- Every x ∈ B 
∗ , x ≃ r, for some r ∈

B. 

2- B 
∗ ⊆ ⋃ hal(r)r∈B . 

3-If x ∈ B 
∗  then sh(x) ∈ B. 

4.1.Proposition  

The three definitions are equivalent. 

Proof  

From 1 to 2  

let  x ∈ B 
∗  ∃ r ∈ B such that x ≃ r, 

then x ∈ hal(r), hence  ⇒ 

 x ∈ ⋃ hal(r)r∈B .  

 ⇐let x ∈ B 
∗ , then x ∈ ⋃ hal(r)r∈B , 

hence x ∈ hal(s) for some s ∈ B. 

From 1 to 3 

 ⇒let  x ∈ B 
∗  and  let  x is not limited, then 

∃ no y ∈ B 
  such that x ≃ y 

contradiction, then x is limited and 

sh(x) = y ∈ B. 

let x ∈ B 
∗ , then sh(x) ∈ B, hence x ≃ y 

and y ∈ B. ⇐ 

This criterion gives an intuitively appealing 

and useful characterisation of the notion of 

compactness. Constructions involving open 

covers are replaced by elementary reasoning 

about hyperreal points. For instance:   

1- The open interval (1,3) ⊆  ℝ is not 

compact, because 1 + ε ∈ (1,3) 
∗  as 1<

1 + ε < 3, but 1 + ε is not infinitely 

close to any member of (1,3) because its 

shadow is 1 ∉ (1,3).  

2- Any closed interval [a, b] ⊆  ℝ is 

compact, because if x ∈ [a, b] 
∗ , then a ≤

x ≤ b, so x is limited and its shadow r 

must also satisfy a ≤ r ≤ b. Thus x ≃

r ∈ [a, b]. 

3- Any finite set is compact, because if B is 

finite, then B = B, 
∗  so each member of B 

∗  

is infinitely close to itself in B. 

4- If B ⊆ ℝ is unbounded above, in the 

sense that  

(∀x ∈ ℝ)(∃y ∈ B)(x < y), 
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Then B cannot, be compact: taking any 

unlimited x ∈ ℝ 
∗ , by transfer there exists 

y > x with y ∈ B 
∗ . Then y is unlimited, 

so cannot be infinitely close to any member 

of B. Similarly, B cannot be compact if it is 

unbounded below.  

Altogether then, a compact set must be 

bounded above and below.  

5- If B is not closed, then B cannot be 

compact: it must have a closure point r that 

does not belong to B. As a closure point, r is 

infinitely close to some x ∈ B 
∗ . But then x 

is not infinitely close to any member of B, 

since sh(x) = r ∉ B. Hence a compact 

set must be closed. 

The Proof of Robinson's Criterion can be 

found in (Goldblat, R.,1998). 

4.3.Theorem  (Heine-Borel) (Habil, & 

Ghneim, 2015) 

A set B ⊆ ℝ is compact if and only if it is 

closed and bounded. 

Proof 

It has already been seen that if B satisfies 

Robinson's criterion, then it is closed and 

bounded (above and below). 

   Conversely, if B is closed and bounded, 

then there is some real b such that  

(∀x ∈ B )(|x| ≤ b). 
Now, to proof Robinson's criterion, suppose 

x ∈ B 
∗ . Then by transfer, |x| ≤ b ∈ ℝ.  

Hence x is limited, and so has a shadow r ∈

ℝ.  Then r ≃ x ∈ B 
∗ , and so r ∈ B 

because B is closed.  Thus it has been shown 

that x is infinitely close to the member r of 

B, proving that B is compact.            

Robinson's criterion can be formulated for an 

abstract compact topological space, and it 

provides an elegantly simple proof of 

Tychonoff's theorem, which states that the 

product of compact spaces is also compact. 

Conclusion 

This paper presents the relation between the 

hyperreal numbers and the real numbers, the 

enlargement sets which are the extension of 

the sets in the real number system and the 

halos ware used to gave a more intuitively 

natural definitions of special points of 

topological spaces and compactness and 

provide a simpler proofs.  
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