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The Hyperreals enlargement sets and its application on compact topology
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ABSTRACT

This paper presents a study of
hyperreal numbers and their relations to real
numbers. The hyperreals are a number
system extension of the real number system.
With this system, simpler and more
intuitively natural definition (topological
notions of special points and compactness),
proofs (Heine-Borel theorem), and new
concepts (limited, unlimited numbers,
enlargement sets, and halos) of mathematical
interest are offered.
Keywords: Hyperreal numbers, infinitesimal,
ultrafilter, enlargement set, nonstandard
elements, halo, compact topology.
1- Introduction

In 1960, Abraham Robinson (1918—
1974) successfully addressed the

Mr. Haleemah 1. Ali?

longstanding issue of providing a rigorous
foundation for calculus based on the concept
of infinitesimals.

This breakthrough by Robinson
stands as one of the most significant
mathematical advancements of the twentieth
century.

The construction of the hyperreal
number system relied on algebraic
techniques, which involved selecting an
arbitrary parameter like an ultrafilter.

The process of constructing these
hyperreal numbers shares similarities with
Cantor's construction of real numbers using
Cauchy sequences of rational numbers.

Abigger set RN (the set of all
infinite sequences of real numbers) is needed
to be created. A typical member of RN has
theform A =(a;, a,, ag, ...,ap,.. ),
where a;, a5, az, ...€R.

The operations addition and

multiplication were defined on it, as
A+B= (...,ai, ) + (...,bi, )
= (...,ai + bi' )
A.B = (, ai.bi, )
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1.1.Theorem

This structure (RN, +, + ) formsa
commutative ring.

Theorem. the relation = on RN
defined by
ifandonlyif {n € N:a, =b,} e FA =
B is an equivalence relation. where Fisa
non-principal ultrafilter on N . Which means
that the two sequences: agree at almost all 1.
Definition. The set of hyperreal numbers R
will be the quotient set RN /=

‘R = {[A]:A € RN} = {A:A € RN}
=RN /=

Theorem. This structure

("R, +,*, <) is an ordered field. Where

A+B=[A+B]=[{ a,+by )]
A.B = [AB] = [{...,an. by, -.)].

ifand only if [a, < b,] € F ifand only if

A<LB
fneN:a, <b,}eF

Remark
Any constant sequence I' =

[{r, 1,1, ...)] identify a real number.

>}£¢0=

(0,0,0, ... ) is called an infinitesimal since

11

The number € = [<1’E’§’ .

€ <X VX € R.Hence € € R.

The number NV = [(1,2,3, ...}],is
called an unlimited since V' > x, VX € R.
Hence V' € R.

The properties observed of € and V" shows
that "Ris a proper extension of R, and
hence a new structure.

Our discussion of € and V" shows
in fact that if A is any real-valued sequence
converging to zero, then A is an infinitesimal
in "R , whileif A diverges to 400 then
A'is unlimited in IR . The elements of
R — IR are called nonstandard elements.

The relation between R and *R is
demonstrated by transfer principle.
1.2.Theorem (Lo$é's theorem)

If @(X4, Xy, ... ) isafirst-order
formula in the language of the ordered field
Randry,...r; ER, then
R E @[ry,..,ry] © "RE

(p[rlr R rn]
2- Enlarging Sets

2.1.Definition
ForeachA € ]RN,the
enlargement set *Xis
[A] € "X ifand only if {n €
N:a,eX} €F.
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Thus declaring, by the almost-all
criterion, that [A] isin “Xifand onlyifay is
in X for almost all .
2.1.Examples
1-1fA = N, then ' € *N since
N = (1,2,3, - .)and the elements of
this sequence are all natural numbers
belongs to N. Hence V' € *N — N.
Then “N consists of N together with all
positive unlimited elements.
2-1fA = Q, then €and belongs to
*Q — @, since the elements of these
sequences are all rational. But we note that
Q # "Rsince m=(m, M, T, ...) &
3-fA = Q‘,then €4+ mTand NV — 2e
belongs to *@ - Q since the elements of
these sequences are all irrational. Also we
note that *Q # "R since 2 =
(2,2,2,..) ¢ Q.
4-1fA = R, then for example €T + €
and N belongs to R — R Then these
elements are "nonstandard real numbers".
Then R consists of R together with all non-

standard elements. And *R is the
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enlargement of R. By transfer principle
‘R="QU *Q.

5-1fA = (0, 2], then € € *A, since € =
(1, ; , g, ) and every element of this
sequence belongsto A. Also 1 + € € *A
sincel + &= (2,%,2, ... Yand every
element in this sequence belongs to A. Then
*A consists of A together with all
non-standard elements {X € *R: 0 <

X < 2} Forexampleg, 1 + ¢ €
*A—Aand A = *(0, 2]

6-1fA = {1, 2, 3,4} , then any sequence
of a non-standard element intersect with A is
a finite set, Hence there are no nonstandard
elements inside it,and A = A.
2.1.Theorem (Gordon, Kusraer, &
Kutatelodzo)

The enlargement “X of any infinite
subset X of R has nonstandard elements.
2.2.Theorem

If A'is finite, then A = A and hence A
has no nonstandard members.
2.1.Proposition
. X € Yifandonlyif "X € *Y
Corollary 2.1

ifandonlyif '’ X =Y X =Y
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2.2.Proposition

1- *(XUY) ="XU*Y
- "XNY)="XNn"Y
3-'0=0

2.3.Proposition
IfACS Rthen” ANR=A
3.Halos
3.1.Definition

Ahyperreal @ is infinitely close to b, dented
bya = b,ifa — bisinfinitesimal.
This defines an equivalence relation on R,
(Rayo, 2015).
3.2.Definition
The halo of @ is the =-equivalence class
hal(a) = {b € *R:a = b}
So, @ is infinitesimal if and only ifa == 0.
Thus haI(O) =1, the set of infinitesimal.

3.1.Proposition

hal(a) = {a + €: € € hal(0)}
4.Topological Spaces

In the hyperreal context of usual topology on
R we can make the idea of nearness quite
explicit by taking near to mean infinitely
close . As we shall see, this leads to a very
natural formulation and treatment of many
topological ideas.

4.1.Definition

IfA € R, then
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1. Ais openifandonlyifforallT € A ifx

is infinitely close to I', then X € *A;

2. Aisclosedifand only ifforall real I, if I

is infinitely close to some X € "A, thenT €

A

4.1.Theorem (Goldblat, 1998)

IfA € Randr € R,

(1) risinteriorto Aifand only if I = X

impliesX € *A, ifand only if hal(r) c

*A.

(2) Trisalimitpointof Aif and only if there

isan X # I'suchthatl’ = X € *A, ifand

only if hal(r) N *A contains a point other

thanT.

(3) Trisaclosure pointof Aifand only if I'is

infinitely close to some X € *A, if and only

ifhal(r) N *Ais nonempty.

Compactness

4.2.Definition

AsetB C© Ris compact if every open cover

of B has a finite subcover, if whenever B ©

UiEIAi and each Ai isopenin R, then

there is a finite ] © I'suchthat B ©

UierA.

This concept did not simply arise out of thin

air. It originated from research conducted in

the nineteenth century on bounded and
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closed intervals in the real line, which
eventually led to the proof that such intervals
are compact according to the definition
provided by the Heine-Borel theorem. As this
definition solely pertains to open sets, it
becomes the suitable one to employ in an
abstract topological space where there is no
concept of numerical distance to determine
boundedness.

4.2.Theorem (Robinson's compactness
criterion).

B is compact subset of R if and only if
1-EveryX € *B,x = r,for somer €
B.

2-"B € Ueg hal(r).

3-fX € "B then sh(X) € B.
4.1.Proposition

The three definitions are equivalent.

Proof

From 1to 2

lee x € ‘B3 r € Bsuchthatx =,
thenX € hal(r), hence =

X € Uyep hal(r).

&letX € "B, thenx € U,¢p hal(r),
hence X € hal(s) forsome s € B.

From1to 3
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Slet X € *Band let Xis not limited, then
dnoy € Bsuchthatx =y
contradiction, then X is limited and

sh(x) =y € B.

letX € B, thensh(X) € B, hencex =y
andy € B. &<

This criterion gives an intuitively appealing
and useful characterisation of the notion of
compactness. Constructions involving open
covers are replaced by elementary reasoning
about hyperreal points. For instance:

1- The open interval (1,3) € Risnot
compact, because 1+¢c€ *(1,3) as 1<
1+ & < 3,butl + €isnotinfinitely
close to any member of (1,3) because its
shadowis 1 € (1,3).

2- Any closed interval [a, b] © Ris
compact, because if X € *[a, b], thena <
X < b, soXis limited and its shadow I
mustalsosatisfyd < T < b. Thus X =

r € [a,b].

3- Any finite set is compact, because if Bis
finite, then "B = B, so each member of “B
is infinitely close to itself in B.

4- B € Risunbounded above, in the

sense that

(vx € R)(3y € B)(x <),
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Then B cannot, be compact: taking any
unlimited X € "R, by transfer there exists
y > Xwithy € *B.Thenyis unlimited,
so cannot be infinitely close to any member
of B. Similarly, B cannot be compactifitis
unbounded below.
Altogether then, a compact set must be
bounded above and below.
5- 1f Bis not closed, then B cannot be
compact: it must have a closure point I' that
does not belong to B. Asaclosure point, I is
infinitely close to some X € “B. Butthen X
is not infinitely close to any member of B,
since sh(X) =1 & B.Hence a compact
set must be closed.
The Proof of Robinson's Criterion can be
found in (Goldblat, R.,1998).
4.3.Theorem (Heine-Borel) (Habil, &
Ghneim, 2015)
Aset B € Ris compactif and only if itis
closed and bounded.
Proof
It has already been seen that if B satisfies
Robinson's criterion, then itis closed and
bounded (above and below).

Conversely, if B is closed and bounded,

then there is some real b such that
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(vx € B)(|x| < b).

Now, to proof Robinson's criterion, suppose
X € *B.Then by transfer, x| <b€eR
Hence X is limited, and so has a shadow I €
R. Thenr =~ X € *B,andsor € B
because B is closed. Thus it has been shown
that X is infinitely close to the member I' of
B, proving that Bis compact.

Robinson's criterion can be formulated for an
abstract compact topological space, and it
provides an elegantly simple proof of
Tychonoff's theorem, which states that the
product of compact spaces is also compact.
Conclusion

This paper presents the relation between the
hyperreal numbers and the real numbers, the
enlargement sets which are the extension of
the sets in the real number system and the
halos ware used to gave a more intuitively
natural definitions of special points of
topological spaces and compactness and
provide a simpler proofs.
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