Digraphs Associated with Cartisian Product of Finite Commutative Rings
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Abstract: For a finite commutative ring R, we define a mapping ¢:R X R = R X R, by (a,b) = (a + b, ab) for
any (a, b) € R X R. This mapping can be interpreted as a finite digraph G = G(R) with vertices R X R and arrows
defined by ¢. Some new results are noticed and proved using the rings R = Z, X Z,. Furthermore, Mathematica
Software® is used to calculate and drow the directed graph G = G(R).
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1. Introduction

Studing the relationship between the algebraic structure of rings Z,, using properties of graphs associated to
them has become an interesting topic in the last years. There are many papers on assigning a graph to a ring, see
([11, [2], [4], 5], [6]). We focus on an association between digraphs and finite rings has been studied and proposed
by Lipkovski [e.g [1], [2]]. However, further properties and results are presented here using only the finite
commutative ring R = Z,, X Z,,. Some results are quoted from [4] for the sake of completeness.

Let n < oo be a natural number. Define the mapping ¢:R X R = R X R by ¢(a,b) = (a + b,a.b). Since R
is finite, so this mapping forms a finite digraph G,, = G (R) with vertices R x R and arrows defined by ¢.

The outgoing (incoming) degree of a vertex (a, b) is the number of arrows going out (coming in) this
vertex. Since ¢ is a function, so it is clear that the outgoing degree of each vertex is one. The incoming degree of
the vertex (a, b) is the number of different roots of x* — ax + b.

2. Basic Properties

In this section we present some fundamental concepts in graph theory and some properties of the graph
defined by Lipkovski [1].
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Definition 2.1. A walk is a sequence of vertices and edges of a graph i.e. if we traverse a graph then we get a walk.
Definition 2.2. A directed path (dipath) in a directed graph is a finite or infinite sequence of edges which joins a
sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction.

Definition 2.3. A directed cycle in a directed graph is a non-empty directed trail in which the only repeated vertices
are the first and last vertices.

It is known in graph theory that a closed walk might be a cycle, so according to the mapping ¢, we have the
following:

Corollary 2.1.[4] A mapping f: V(Ek) - V(@) is a homomorphism of 5k to G ifand only if £ (1), f(2),...,f (k) Is
acycleingG.

Definition 2.4. A directed graph isweakly connected (or justconnected) if the undirected underlying
graph obtained by replacing all directed edges of the graph with undirected edges is a connected graph.

Definition 2.5. A directed graph that has a path from each vertex to every other vertex is called strongly connected
graph

Let p(x) be a monic quadratic polynomial (a monic quadratic means a quadratic expression with the
coefficient of x? is 1) with integer coefficients modulo n. We shall confirm that p(x) = 0 (mod m) is solvable for
every m > 1 by showing that for each prime p and positive integer j, the congruence p(x) =0 (mod p’) is
solvable. General solvability follows from the Chinese Remainder Theorem.

Theorem 2.1.[3] If p is an odd prime, then the solutions to the quadratic congruence x> —ax+ b =0 mod p
with a non-congruent to 0 mod p are given by

In particular, if b2 — 4ac is a quadratic non-residue mod p then x? — ax + b = 0 has no solutions mod p.

We let N(m) denote the number of solutions of x2 —ax +b =0 modm. If m = p”lp”Z...p,’("‘ is the
prime decomposition of m, then N(m) = N(p"l)N(p”Z)...N(p,fk).

Theorem 2.2.[4] Consider that n = 1 (mod m). The function f:Z,, = Z,, given by f([x]) = [nX]mn 1S @n
injective homomorphism .

Since the incoming degree of a vertex (a, b) is the number of roots of the quadratic polynomial x? — ax +
b =0 mod p, then we have the following.

Theorem 2.3.[4] Let py,p,,..., px be the prime component of the number n. Then the highest degree of a vertex
(a, b) in the graph G(Z,,) is less than or equal to 2*.

Definition 2.6.[1] The sequence

(a1, b1) = (az, by) =... = (ay, by) 1)
of arrows in G defines a cycle of length k (or k-cycle) if (ay + by, axby) = (a4, by), and (a; + by, a;b;) # (a;, bj)
forall j < i < k. In addition, C_k) will be referred to directed cycle with verticesv = 0,1,...,k — 1.

3. Main Results

Let p and g be relatively prime numbers, such that n = pq. We denote the longest cycle in the digraph
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G(Zy) by ?,,’ for short, and all our discussion later will be based on the construction of f; and f,. Furthermore, we
will refer to Z,, Z,, and Z, sets of natural numbers.

If we suppose that a|S, @ # 1 (a might equal to ), then it is not proved yet that the maps f; and f, send
the longest cycle 5y in G(Z,) to longest cycles 5‘a and C} in G(Zy,) and G(Z,) respectively. Because the cycles in
G(Zp) and G(Z4) which are smaller than 5,1 and 5,3 might have a pre-image which is a cycle with length longer
than the pre-image of Ea and 5,; themselves. For instance, in G(Z,) the longest cycle is 512, and in G(Z4,) the
longest cycle is 5‘6. While in G(Zs4,) the longest cycle is 530. Because there is a cycle 510 in G(Z,,) that has a pre-
image with 5‘6 in G(Zs,7); that is exactly a multiple of these two. The computer calculations show that for n from 1
to 200 this exception case does not exist. However, if cycles 5‘6 and 59in G(Z,) and G(Z,) respectively are divisors

of 5a and C} or they are loops, so the case like in G(Zs,-) can not happen again. Therefore, 1 <e < a,1 <8 < f,
and e|a, 6|p is considered in the following results.

Theorem 3.1 Let p and q be any two prime numbers. Then the longest cycle in the graph G(Z, X Z,) is a cycle of
length n = LCM (a, ), where « is the length of the longest cycle in G(Z,) and f is the length of the longest cycle
inG(Zg).

Proof. The projection map ¢,:7Z, X Z; = Z,, , where ¢,((a, b)) = [a], is a homomorphism. Also, the map
@2: L, X Ly = Lg, Where @,((a, b)) = [b], is a homomorphism.
Suppose that (aq,b;) = (az, by) —...— (ay, by) is the longest cycle in the graph G(Z, X Z,;), where
a;, b; € Z, X . Since ¢, is a homomorphism then,
¢1((ay, b1)) = (¢1(as), ¢1(b1))
= (¢1(an + by), 91(an.by))
= (@1(an) + @1(by), 91(an)- ¢1(by)) )

From the definition of ¢,, we observe that ¢;(a;) is the first coordinate of a;, we will refer to it by a;;.
Similarly, ¢4 (b;) is the first coordinate of b;, we will refer to it by b;;. In addition, ¢, (a;) is the second coordinate
of a;, we will refer to it by a;,. Similarly, ¢, (b;) is the second coordinate of b;, we will refer to it by b;,.

Thus, from (2) we get
. (a11,b11) = (@n1 + b1, Ana- bya). . . 3)
Itis clear that ¢, (C,) is a cycle in G(Z,), also it satisfies (3). That shows us ¢, (C,) divides C,,.

If we repeat the same procedure on ¢, we get
®2((as, by)) = (¢2(a1), p2(b1))
= (@2(an + by), p2(an-by))
= (p2(ay) + @2(bn), p2(an). 92(byn)) 4

. (a12,b12) = (Anz + bna, Anz- byz). . . ®)
Itis clear that ¢, (C,) is acycle in G(Z,), also it satisfies (5). That shows us ¢, (C,,) divides C,,.

Therefore,

That means C_n) is a multiple of <p1(67) and <p2((37). Observe that a and g are the lengths of the longest
cycles in the graphs G (Z,) and G(Z,) respectively. Furthermore, the maps ¢, and ¢, are onto and the multiple of
these two cycles is longer than any other two cycles. Therefore, By using the Chinese Remainder Theorem, we find

that the length of C—,{ is the Least Common Multiple of gol(C—n)) and §02(C—n))- [
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Remark 3.1. Let p and g be any two prime numbers. Then the longest cycle in the graph G(Z,, X Z,) has a length
L,q = lgp, Where 1, is the length of the longest cycle in G(Z, X Z,). That can be noted from the isomorphism;
Ly X Ly = Ly X L.

Theorem 3.2. Let p be a prime number, and C, is the longest cycle in the graph G(Zy,). The longest cycle in the
graph G(Z, x Z,) is C, such that,

1. k = LCM(a,y), if there is a cycle of length y suchthat 1 <y < a and (a,y) = 1.
2. k = a if there is no such a cycle CT, 1 <y < a, or the only cycles which are shorter than C—Og are
cycles of length divides a.

Proof. Define the maps ¢,:Z,, X Z,, = Zy, by ¢1((a, b)) = [a],, and @,: Z,, X Z,, = L, by @,((a, b)) = [b],.
The maps ¢, and ¢, are homomorphisms and onto. Consider that CT is the longest cycle in G(Z, X Zy);
that is, (ay, by) — (az, by) —...— (a,, b,), where a;, b; € Z,, X Z,,.
Since ¢, is a homomorphism then,
®1((as, b1)) = (p1(a1), 91(b1))
= (¢1(ar + by), 1(ar. b))

= (@1(ay) + @1(by), @1(ar). ¢1(by)) (6)
We use the same notations as we mentioned in the Theorem 3.1. a;; refers to the first coordinate in the element a;.

Similarly, b;; refers to the first coordinate of b;. a;, refers to the second coordinate of a;. Similarly, b;, refers to the
first coordinate of b;.
Thus, from (6) we get
(a11,b11) = (ar1 + byy, ap1. bry). (7
It is clear that ¢, (C,) is a cycle in G (Z,), also it satisfies (7). That shows us ¢, (C,) divides C,.
If we repeat the same process on ¢,, we get
®2((as, by)) = (¢2(a1), p2(b1))
= (@2(ar + by), p2(a,.by))
= (p2(a1) + @2(by), p2(ar). 92(by)) (8)

— (a12l blz) = (arz + brz, aTZ' bTZ)' N — (9)
Itis clear that ¢, (C,) isacycle in G(Z,), it satisfies (9). That shows us ¢, (C,.) divides C,..

Considering that ¢, and ¢, are onto, and C, is multiple of ¢, (C,) and @, (C,). Then, by Chinese Reminder
Theorem we have the following:

1. If G(Z,) contains at least a cycle CT, suchthat1 <y < a,and (a,y) = 1. Thenm = LCM(a, y).
2. If G(Z,) contains no cycles or contains cycle C_; suchthat 1 <y < a,or yla Thenm = LCM(a,y) =

Therefore,

a.
The largest multiple that we can get is the longest cycle in G(Z,), which means that the length of a is
exactly the length of the longest cycle in G(Z,). m

The following two theorems can be proved immediately from Theorem 3.2 by induction and using the
Chinese Remainder Theorem.

Theorem 3.3 Let py, py, ...,p, are distinct prime numbers. Then the longest cycle in the graph G(Z,, X Z,, X...X
Zy ) is a cycle of length [, = LCM(l,,, 1,,,..., 1 ), Wwhere 1, ,L,,,...,1, are the length of the longest cycles in

G(Zy,), G(Zp,), - G(Zy,).
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Theorem 3.4. Let p}*, p}?,..., pi" be coprimes, such that p; # p; for i # j, Then, the longest cycle C,, in G(Zym X
Zp1212 X... Zp;lr) has a length m = LCM (a4, a3, ..., @), Where a4, @y, ..., a, are the lengths of the longest cycles in
G (Zp;zl), G (Zp;lz), o G(Znr) respectively.

Theorem 3.5. Suppose that n = 1 (mod m). There is a cycle of length r,r > 1 in the graph G (Z,,,)( and not
necessarily the longest one) if and only if the longest cycle in G(Z,,) is of length .

Proof. Assume that C_l; is the longest cycle in the graph G (Z,,), that is
. (a1, b1) = (az, by) »...— (ar, by)
Since f is a homomorphism. Then f(C; ) is a cycle in the graph G (Z,,,) . Since every element in Im f is of the
form [nal,. a € Z,, , therefore, we notice that
f((ay, b)) = (f(ar), f(B1)) = (nay,nby) = (n(an + bp, n(an. bn)
Since f is injective. Then f(C, ) is a cycle of length r.
(=) This direction can be proved easily by taking a map g: Z,,, = Z, , Where g(a) = [a],,. =

4. Computer Calculations

A computer program has been written and runs on a PC to calculate some properties of the graph G,,. Some
notations are used, such as c¢,, (number of components), [ (length of the longest cycle), N.l. (number of longest
cycles), and p,, (the longest path).

Some observations can be seen in Table 1 and Table 2 such as;
. In case, when n; = n,; the construction of the digraphs G (Z,_,) and G (Z,, X Z,) is completeley different.
. In the construction of the digraphs G(Z,,) and G(Z, X Z;), we have that both have the same number of
components, the number of longest cycles, length of longest cycle, and length of the longest path, which has been
partly proved in chapter 3.
. In the digraph G(Z,, X Z,,), where n; is prime and n, = 2,3,7; the number of components ¢, ,, = c,, X cy,; the
longest cycle 1, ,, = l,,,; the number of cycles N.1,, ,,, = n,the length of the longest path p,, », = pp,.

Table 1: Results for 1 < n < 20

n Cn [, N.l. DPn
1 1 1 1 1
2 4 1 4 3
3 9 1 9 5
4 26 2 10 4
5 39 4 14 8
6 36 1 36 5
7 49 1 49 9
8 168 4 64 8
9 213 6 12 10
10 156 4 56 8
11 149 6 28 19
12 234 2 90 6
13 199 4 30 22
14 196 1 196 9
15 351 4 126 8
16 1232 8 448 10
17 375 20 4 34
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18 852 6 48 10

19 704 8 46 34

20 1154 4 504 8

Table 2: Results for 1 < nq,n, < 20

LUST ny Cn lc N. lc Pn LUST ny Cn lc N. lc Pn
2 3 6 1 6 5 4 13 71 4 6 22
2 4 10 2 2 4 4 14 70 2 14 9
2 5 12 4 2 6 4 15 93 4 18 8
2 6 12 1 12 5 4 16 164 8 24 10
2 7 14 1 14 9 4 17 97 10 6 18
2 8 24 4 4 6 4 18 146 6 4 6
2 9 28 3 4 6 4 19 101 8 6 34
2 10 24 4 4 6 4 20 166 4 36 6
2 11 24 6 2 14 5 6 36 4 6 8
2 12 30 2 6 6 5 7 42 4 7 12
2 13 28 4 2 22 5 8 80 4 30 8
2 14 28 1 28 9 5 9 87 12 2 14
2 15 36 4 6 8 5 10 78 4 28 8
2 16 60 8 8 10 5 11 73 12 2 18
2 17 38 10 2 18 5 12 93 4 18 8
2 18 56 3 8 6 5 13 87 4 22 22
2 19 40 8 2 34 5 14 84 4 14 12
2 20 62 4 12 6 5 15 117 4 42 8
3 4 15 2 3 6 5 16 206 8 36 12
3 5 18 4 3 8 5 17 118 20 2 24
3 6 18 1 18 5 5 18 174 12 4 14
3 7 21 1 21 9 5 19 132 8 9 34
3 8 36 4 6 8 5 20 209 4 84 8
3 9 42 3 6 7 6 7 42 1 42 9
3 10 36 4 6 8 6 8 72 4 12 8
3 11 36 6 3 14 6 9 84 3 12 7
3 12 45 2 9 6 6 10 72 4 12 8
3 13 42 4 3 22 6 11 72 6 6 14
3 14 42 1 42 9 6 12 90 2 18 6
3 15 54 4 9 8 6 13 84 4 6 22
3 16 90 8 12 12 6 14 84 1 84 9
3 17 57 10 3 18 6 15 108 4 18 8
3 18 84 3 12 7 6 16 180 8 24 12
3 19 60 8 3 34 6 17 114 10 6 18
3 20 93 4 18 8 6 18 168 3 24 7
4 5 31 4 6 6 6 19 120 8 6 34
4 6 30 2 6 6 6 20 186 4 36 8
4 7 35 2 7 10 7 8 84 4 14 12
4 8 64 4 12 6 7 9 98 3 14 11
4 9 73 6 2 8 7 10 84 4 14 12
4 10 62 4 12 6 7 11 84 6 7 14
4 11 61 6 6 15 7 12 105 2 21 10
4 12 78 2 30 6 7 13 98 4 7 22
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Table 3: Results for 1 < ny,n, < 20

LUST ny Cn lc N. lc Pn LUST ny Cn lc N. lc Pn
7 14 98 1 98 9 11 15 219 12 6 18
7 15 126 4 21 12 11 16 374 24 8 30
7 16 210 8 28 16 11 17 230 30 2 36
7 17 133 10 7 18 11 18 350 6 42 16
7 18 196 3 28 11 11 19 241 24 2 50
7 19 140 8 7 34 11 20 383 12 12 18
7 20 217 4 42 12 12 13 213 4 18 22
8 9 180 12 4 14 12 14 210 2 42 10
8 10 160 4 60 8 12 15 279 4 54 8
8 11 148 12 4 18 12 16 492 8 72 12
8 12 192 4 36 8 12 17 291 10 18 18
8 13 176 4 46 22 12 18 438 6 12 10
8 14 168 4 28 12 12 19 303 8 18 34
8 15 240 4 90 8 12 20 498 4 108 8
8 16 440 8 80 10 13 14 196 4 14 22
8 17 240 20 4 24 13 15 261 4 66 22
8 18 360 12 8 14 13 16 446 8 68 26
8 19 248 8 20 34 13 17 2710 20 2 38
8 20 440 4 180 8 13 18 398 12 4 30
9 10 174 12 4 14 13 19 283 8 17 34
9 11 175 6 21 16 13 20 457 4 132 22
9 12 219 6 6 10 14 15 252 4 42 12
9 13 19 12 2 30 14 16 420 8 56 16
9 14 196 3 28 11 14 17 266 10 14 18
9 15 261 12 6 16 14 18 392 3 56 11
9 16 462 24 8 26 14 19 280 8 14 34
9 17 272 30 2 34 14 20 434 4 84 12
9 18 426 6 24 10 15 16 618 8 108 12
9 19 283 24 2 50 15 17 354 20 6 24
9 20 467 12 12 14 15 18 522 12 12 16
10 11 146 12 4 18 15 19 369 8 27 34
10 12 186 4 36 8 15 20 627 4 252 8
10 13 174 4 44 22 16 17 610 40 8 34
10 14 168 4 28 12 16 18 924 24 16 66
10 15 234 4 84 8 16 19 642 8 148 34
10 16 412 8 72 12 16 20 1156 8 216 12
10 17 236 20 4 24 17 18 544 30 4 34
10 18 348 12 8 14 17 19 384 40 2 66
10 19 246 8 18 34 17 20 623 20 12 24
10 20 418 4 168 8 18 19 566 24 4 50
11 12 183 6 18 15 18 20 934 12 24 14
11 13 169 12 2 30 19 20 643 8 54 34
11 14 168 6 14 14 - - - - - -
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5 Graphsfor1 <n<3

In this section we present figures of the directed graphs G(Z,, X Z,) for some integer number 1 <n < 3. In

these three digraphs, v; refers to the element of i*" position in the cartesian product of Z,, X Z,,.

Figure 1: Shown is the Directed graph of Z; X Z,
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Figure 2: Shown is the directed graph of Z, X Z,
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Figure 3: Shown is the directed graph of Z; X Z5
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