Lexical Analysis Implementation by Using Deterministic Finite
Automata (DFA)

(DFA) daaiad) 53 gaaall Uila g3 g¥) aladialy aneal) Julail) 3

MA: Hassan .k. Mohamed. Assistant Lecturer, Computer Department. College of Arts and Sciences Sluk.
Benghazi University.
EmailL: Hassn.efakhari@uob.edu.ly
MA: Fathia . A. A. Albadri. Lecturer at the Faculty of Arts and Sciences. Benghazi University.
Email:Fathia.Elbadre@uob.edu.ly
MA: Raja . A. Mohamed. Lecturer at the Faculty of Information Technology. Benghazi University.
Email: Raja.moftah@uob.edu.ly
(5 el ks o slall g YV AS gl iy deliss pualae 32 484 (g
(5 ek dadla L1 o sladl s OV IS a5 0l Jonll dllae L
(5 Aaala | e sland) A A0S pnlae a2 hlallae elay

Gl ydi gy Gl J 5 gy) i) g U
2021/11/7 2021/10/10 2021 /9 /22

Abstract: A compiler is a computer program (or set of programs) that transforms source code written in a
programming language into another computer language known as the target language, often having a binary form
identified as object code. The compiler has some phases and the main concern of this report is about the
implementation of Lexical Analysis using the Deterministic Finite Automata (DFA) that is a finite state machine
that accepts or rejects finite strings of symbols and only produces a unique computation of the automaton for each
input string.

Through building a Finite Automata using a model known as JFLAP and utilizing it to execute some patterns,
which were integer number, real number, operators, and some keywords. This model approved that DFA is
accurate to produce a unique computation for each input string. In addition, using JFLAP approved that the time-
consuming.

Keywords: Automata, Lexical, Deterministic Finite Automata, Token, Lexical Analyzer.

A3) e iy A A el 5 D sa g (el) G e sene) isaneS ey s yial) paddal)
o pa el (g ging aagll 5k 4l e oxaat o AU 73 sad Led 5% Lo Ll 5 echagl) Aalll auly b pai (5 A S gaS
sadaall 53 sanall ASla 53 Y1 aladinly casrall Jalail) 35 Jsan 8 13gd i N JeLal 5 5So 5 dalpall (axy
JSI 4D 13y 5 Ul o i g gl (e 33 g3ne Dl (lad 53 5l Jui 33 gane Ala 3 A 0 35k 4 5(DFA)
Ay aluly

e ge b Hke S Al Jala) (any dgnil adladind 5 JFLAP iy Gy 3 g aladiinly 83 game Al ey DA (4
JSI 8 s LY (383 DFA O e z3saill 138 3815 At 5 ClalSl Gamy 5 (el Jal s 5 ¢ Aia 230 5 (anaa
Slsh U8 5 (3 xian of Ao 385 JFLAP alaaiuly c@lld) dileayly Jlas) dlula

(AR Maa 6‘5AA’.AS\)A)S\ c'é.lj..\;d\ 3a2a4ll u\.A}SJY\ (AR ‘LSLAJSJ‘Y\ ;‘U\.\S\ Cilalsly

1. Introduction

The computer has some stages, which have to be done to convert the program to the machine code, which is
understandable, by the computer. The machine code is faster than the other programming languages, but it could be

32

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Source_code

challenging to write a program using it; the compiler does this job to change the program from any programming
language to machine code. The stages involved in this action are Lexical Analysis, Syntax Analyzer, Semantic
Analyzer, Intermediate Code Generator, Code Optimizer, Code Generator, and Out Target Program. The output of
each phase is the input of the next stage. The first stage is Lexical Analysis, which breaks up a program into tokens,
and then sends these tokens to the next stage. The stage can be modeled using a Finite State Machine. This study
will use a model program to generate and simulate automata because using pen and paper could be difficult, error-
prone, and consuming of time. In more detail, it will be discussed in the following sections [1].

2. Lexical Analysis

Lexical Analysis takes a stream of characters and generates a stream of tokens (names, keywords, punctuation,
etc.). This is a key task is to remove all the white spaces and comments. This will make parsing much easier. A
lexical token is a sequence of characters that can be treated as a single unit. Some tokens have a value, this is called
a lexeme. A scanner is the piece of code that performs the lexical analysis. If any incorrect input is provided by the
programmer, Lexical Analysis correlates the error with the source file and line number. A key issue for scanners is
speed. Scanners can be automatically generated using a combination of regular expression and finite automata
[21[3].
2.1 Terminology used in Lexical Analysis
1. Token:

A set of input strings that are related through a similar pattern.
2. Lexeme:

The actual input string, which represents the Token.
3. Pattern

The rule, which a Lexical Analysis follow to create a Token.

2.2 Types of Token

Each keyword is a token

Each punctuation symbol is a token

Each operator is a token

An identifier is a token (and we are interested in its value)

An integer literal is a token (and we are interested in its value)
Spaces, new lines, tabs and comments are ignored.

Source Code: X=X +123

:

Token Stream: | X| =| X| +|123

Figl: Example of Lexical Analysis
2.3 Lexical Analysis flow of events

Syntax Analyzer in the compiler serve as the master program, so it first send a request to get a valid token from the
lexical analyzer.

Scanner (Lexical Analyzer) do its pattern matching to create a valid token if possible and sends back to the Syntax
Analyzer and get suspended.

Syntax Analyzer do the grammar check over the Token and asks for next Token.

This process continues recursively till input string is consumed

33

Token

Syntax

Input String Lexical
.
Analyzer

Analyzer

Request

Fig2: Work of Lexical Analysis

2.4 Building a scanner (Lexical Analyzer)

Specify the valid tokens of a given language in terms of Regular Excretion.

Create a NFA (None Deterministic Finite Automata) from the previous Regular Expression.

Convert from the previous NFA to a DFA (Deterministic Finite Automata) and try to minimize it if possible.
Translate a DFA to program with any of programming languages.

B 0 N

Fig3: Stages of building Lexical Analysis

These steps could be time consuming, so there are some software, which convert the Regular Expiration
automatically to program in different languages like C or Java. Flex Scanner Generator is one of these software

The input to the flex program (known as flex compiler) is a set of patterns or specification of the tokens of the
source language. Actions corresponding to different matches can also be specified.

The output from the flex software compiles the regular expression specification to a DFA and implements it as a C
program with the action codes properly embedded in it [4].

3. Model of Some Patterns

This section is about some pattern that will be used to determine the Token by the Lexical Analysis, this model will
be use a DFA since it could recognize a specific rule over input string. The pattern first construct as a Regular
Expiration, so let define the basic RE pattern.

3.1 The Following Abbreviations are generally used:

[axby] means (a|x|bly)

[a — e] means [abcde]

M? means (M | g)

M+ means (MM*)

. Means any single character except a newline character

”a+*” is a quotation and the string in quotes literally stands for itself.
3.2 Disambiguation Rules for Scanners

Is do99 and identifier or a keyword (do) followed by a number (99)? Most modern lexical-analyzer generators
follow 2 rules to disambiguate situations like above.

« Longest match: The longest initial substring that can match any regular expression is taken as the next token.

* Rule priority: In the case where the longest initial substring is matched by multiple regular expressions, the first
regular expression that matches determines the token type. So do99 is an identifier. See tablel below.

Regular Expiration Represent
If if(Key Word)
While while(Key Word)

34

+ Operator (Addition)

/ Operator (Subtraction)
[a—zA — Z][a — zA — Z0 — 9]* Identifier

[0 —9]+ Integer number

(0 —=9] +.” [0 —9]1*) | (]O — 9] *>.”[0 — 9]+) Real number

?/’[a — zA — Z0 — 9]* *\n” | (*”|"\n”|"\t”") + comment or white space

3.3 Finite Automata

Regular expressions are good for specifying lexical tokens. Finite automata are good for recognizing regular
expressions. A finite automata consists of a set of nodes and edges. Edges go from one node to another node and
are labelled with a symbol. Nodes represent stafes. £ng, 9fthe nesles.spresents the start node and some of the
nodes are final states. A deterministic finite automaton (DFA) is a finite automaton in which no pairs of edges
leading away from a node are labelled with the same symbol. A nondeterministic finite automaton (NFA) is a finite
automaton in which two or more edges leading away from a node are labelled with the same symbol.
Consequently, DFA is a single state after reading any sequence of inputs. The number of states of the DFA can be
exponential in the number of states of the NFA. Where NFA has the facility to be in several states at once. As
mentioned in section 2. Each state of DFA has always one exiting transition arrow for every symbol in the
alphabet. In other words, Labels on the transition arrows are symbols from the alphabet. DFA works could be
summarized in Figl. Below. When input string and finite automata model are applied, the output has accepted or
rejected.

Fig 1. Show Finite Automation process.

FINITE AUTOMATON
Input

String |

I

output

Finite “Accept”
Automaton or
“Reject™

3.4 DFA Model

The patterns, which are used as an Integer number, Real number, Operators, and some keywords.

DFA D= (Q, >, 6, q0, F)

Q ={q0, q1, 92, 93, g4, g5, 96, 97, 08, 99, q10, q11, q12, 913, q14, q15, 916, 917, 918, q19, 920, 921, 922, 923}
> ={[0-9], [a-Z], [A-Z], +,-, /,*, =, ==, w ,h,i lentfma,.}

§=0xZ—>0

35

q0 €Q ={q0}
F<cQ={ql, 093,94, q9, ql11, 913, q14, q15, 16, 917, 918, q19, 923}

Where JFLAP program create and simulate automata. Additionally, it is easy along with it supports creation of
DFA and NFA, Regular Expressions, PDA, Turing Machines, Grammars and more. See Fig2. That is clear
transition diagram. Along with table2. Transition Table.

(=) /\
@Q Mw-sl

@ Operator mul|lca(lon integer] [a-7 Floa
Operator (plus; 0-9
= Operator (division) [0-9]

Operator (compare)

Key word (while)

Fig2: Transition Diagram

[0-9] | [a-z] | [A-Z] = = i = = == w h i 1 e n t f m a

g0 gl g4 a4 gld | gl5 | gi6 | g7 | gi8 | gl9 | g5 o qlo = . o - = q20 N =
(L gl - - - - - - - b = - . = N - - - . - g2

qZ2 g3 - - - - - - - - - - - - - - - - - - -

g3* g3 - - - - - - - - = - B = . - - - - - .-

gt* | g4 | g4 | g« | - | - -V -1 -1 -1-1-1V -01V-1-010 -1 -1 -1 -1 -1 -
e | | - - [T T T T -"T-"T-"Jas] - [T @—T—T-"T-"1T-"1-

g6 - - - - - - - - - - - Tar 1 -1- - - - - - -

q7 - - - - - - - - - - - - a8 - - - - - - -

g8 = = = = = = = = = = = = - | g2 = = s = = =
qo* _ _ _ _ _ _ _ _ — _ _ _ _ _ — _ _ _ _ _
qlo - = - - - - - - E = = - = 2 qglz2 - gll - - =
gll* - - - - - - - - = = - - - - - - - - - -
ql2 - - - = - - - s = = - s . = - ql3 - = - =
(F ST -
gld* = - - - = - = B - = = B = = = - = - = =
(riliaTos - - - - - - - - = - = - - = - = = = = -
glc™ - - - = - - B — = = = — - - - - - = - =
gL7= -
gls* B = - - = - - = = = = = = = - - = - - =
glo* - = - - - - - - e ==, = - = - - - - - - =
q20 - - - - - - - - - - - - - - - - - - q21 -
q2i = - - - = - = . - = 25 q22 = e = - = - - =
q22 - - - - - - - - - - - - - - gqg23 - - - - -
g23%* - - - = - - - - - = = - - - - - - - - -

Table 2: Transition Table

36

Fig3. Clarifying simulation using JFLAP

DHDHIIDIDDD DD
88sbsassnssasl

T0
aQa

| Losdinputs Runinputs Clear Enter Epsiion View Trace

Fig5: Simulation Using JFLAP

3.5. Some Accepting and Rejecting Scenarios
3.5.1. Accepting Strings
a- ==. b- 23.5. ¢- Sum1l. d- While.

Here through using the JFLAP program after input string of expression the program checks it. Systematically via
each symbol when examines all expressions related to language consequently the results explain it accepts. For
example, the program checking section a. == operation in Fig6. Start from the initial state. Along with moving
through transition to check, the next symbol and so on until examining all symbols and typing its acceptance. Fig
7. Showed acceptance expression and given the name of the string. Where b- 23.5 shows if float. c- Sum1 here
shows its identifier. d- While where are keywords.

[Opecator (compe)] | 1

Fig6. Start from initial state

37

== [FF Operator(Compare)

Fig 7. Showed acceptance expression and given the name of string

3.5.2. Unacceptable String

By using JFLAP program after input string of expression the program check it. Gradually for each symbol when
examine all and shows that expression are incorrect and do not related to language. Example the program check

1sum. Here in Fig8. Shows that initial state check an integer symbol. After accept look to another symbol, which
is S. Fig.9. Shows that rejected the expression.

Fig8. Shows that initial state check integer symbol

3 4

Fig.9. shows that rejected the expression.
4. Conclusion
Automata models are being used in different types of software development phases and its benefit are that it can be
reused as a general model for some software development phases and it could reduce the cost of using the real

system first and diagnoses for reliability for example. Searching to use of automata theory in complier found many
usages of it and the main concern was about using DFA in Lexical Analysis phase in complier.

38

5. References

http://en.wikipedia.org/wiki/Automata_theory.

Jacquemard, F., Klay, F., & Vacher, C. (2009). Rigid tree automata. In Language and Automata Theory and
Applications (pp. 446-457). Springer Berlin Heidelberg.

Ezhilarasu, P., & Krishnaraj, N. (2015). Applications of Finite Automata in Lexical Analysis and as a Ticket
Vending Machine—A Review. Int. J. Comput. Sci. Eng. Technol, 6(05), 267-270.

Abdulnabi, N. L., & Ahmad, H. B. (2019). Data type Modeling with DFA and NFA as a Lexical Analysis
Generator. Academic Journal of Nawroz University, 8(4), 415-420.

Ipate, F. (2012). Learning finite cover automata from queries. Journal of Computer and System Sciences, 78(1),
221-244,

Fraser, C. W., & Hanson, D. R. (1995). A retargetable C compiler: design and implementation. Addison-Wesley
Longman Publishing Co., Inc..

Steven S. Muchnick. (1997). Advanced compiler design implementation. Morgan Kaufmann.

Lesk, M. E., & Schmidt, E. (1975). Lex: A lexical analyzer generator.

39

http://en.wikipedia.org/wiki/Automata_theory

