Differentiability of Inverse Matrices
DOI:
https://doi.org/10.37376/deb.v17i1.1919الملخص
Consider a m x m matrix A consisting of elements aij as independent variables. Let f(A) be a I x I non-singular matrix with its elements as functions of aij. Okamoto (l), Memon and Okamoto (2), and Siotani (3) evaluate the effects of differential operator ê/êaij on some matrices f-I (A) at A = I(m), m x m identity matrix, for purpose of obtaining asymptotic expansions of certain probability distributions. Normally one inverts a matrix before applying differential operator. This paper proposes a method to deal with problems of this nature without inverting matrices. Some illustrations for use in multivariate statistical analysis are given
التنزيلات

التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2022 دراسات في الاقتصاد والتجارة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.