Differentiability of Inverse Matrices

المؤلفون

  • AHMED ZOGO MEMON

DOI:

https://doi.org/10.37376/deb.v17i1.1919

الملخص

Consider a m x m matrix A consisting of elements aij as independent variables. Let f(A) be a I x I non-singular matrix with its elements as functions of aij. Okamoto (l), Memon and Okamoto (2), and Siotani (3) evaluate the effects of differential operator ê/êaij on some matrices f-I (A) at A = I(m), m x m identity matrix, for purpose of obtaining asymptotic expansions of certain probability distributions. Normally one inverts a matrix before applying differential operator. This paper proposes a method to deal with problems of this nature without inverting matrices. Some illustrations for use in multivariate statistical analysis are given

التنزيلات

بيانات التنزيل غير متوفرة بعد.

التنزيلات

منشور

1981-04-01

كيفية الاقتباس

MEMON, A. . (1981). Differentiability of Inverse Matrices. دراسات في الاقتصاد والتجارة, 17(1). https://doi.org/10.37376/deb.v17i1.1919

إصدار

القسم

Articles