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Magnetohydrodynamic (MHD) Waves in Plasmas

Abstract

The model for a magnetoplasma is given by the MHD equations, so the first aim is to give a full
list of MHD equations, with the criteria of their applicability for wave propagation. The validity
conditions under which the MHD equations are used require the wave frequency to be, w < w;
and the seven eigenvectors are obtained. In MHD, the magnetic fields are frozen into the fluid
and are elastic; displacing fluid elements causes magnetic restoring forces to switch on. This
action appears as distorted magnetic field lines due to torsional and compressional Alfve’n
waves.
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1. Introduction

In some cases the macroscopic variables change on time and length scales which are long enough
for an adequate description of a magnetoplasma to be provided by the usual one-fluid equations,
normally used in plasma. In ordinary fluid dynamics, the basic dependent variables are; the
density (p ), the temperature (T) and the velocity (v ) with the addition to the magnetic field
induction (§ ). For the transport of energy, momentum and charge the constitutive laws are
required. This group of equations defined what is meant by ‘Magnetohydrodynamic’ (MHD).The
simplest model for a magnetoplasma is given by the MHD equations, so our first aim is to give a
full list of MHD equations, with the criteria of their applicability for wave propagation in
Section.3 [9]. For the validity of the conditions under which the MHD equations are used, we
require the values of the collision interval 7, for the electron-component test particles moving
through a back-ground of ion-component particles. If the electron-component particles are
initially in a non-equilibrium distribution, and if perturbation influence is removed, the electron-
components will reach equilibrium with themselves within a time 7,.. The ion-components will
reach equilibrium among each other within a time a bit later t;;. Finally the thermal equilibrium
between the electron and the ion-components will be reached in a time t,;. These times scale a

1

Toe ! Tjj ¢ Te; =1 (:—;)E : m%‘ ; they are about two orders of magnitude apart [2,7].

The fluid representation demands that the macroscopic time scale 77 be much longer than
relaxation for the components in the process. The length scales constraints depend on the

orientation of the magnetic field (B_)) and they are:
Ly >» A, A-mean free path.

L, » r,, r;- Larmor radius.

Length scales parallel and perpendicular to the magnetic field B respectively.
Another important constraint in MHD is that the diffusion velocity be small such that;

1

ZkTe)z. Where c,;, is the thermal speed for the electrons

B = Bl < cop = 1] < engcen = e (

e

in the plasma, j is the current density and k is the Boltzmann constant respectively. This will
reduce the streaming velocity of electrons past the ions to low subsonic speeds. The final
constraint is imposed by the neglect of charge separation, for any wave of frequency w, to be
with a macroscopic time scale

wl= a),;el , Where w,, is the plasma electrons oscillation frequency. Furthermore restrictions
are imposed by the form adopted for Ohm’s law used and the non-relativistic particle speed, [1,5]
and [9].

Small amplitude wave propagation is a topic of considerable importance for many practical
reasons: first, it gives a relatively simple method of comparing theory with experiment;
secondly, if theory is confirmed, this offers a way that waves can be used for diagnosing plasma
and may be used to heat it. Thirdly; waves do occur naturally in the ionosphere and the
turbulence they generate by their growth unstable lead to phenomena known as plasma transport.
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Huge numbers of propagation modes exist, [6] and dispersion relation of quite high order can be
given, especially in fluid mixture when viscosity and other dissipative effects are included.
However, our concern will be only with the three basic MHD modes, known as: The Alfven
waves and the slow and fast magnetosonic waves [8], also known as magnetoacoustic waves. In
this work the dissipation is treated as a small effect, superimposed on the basic mode.

2. The MHD Equations
The MHD equations can be classified into four categories:
a) The electromagnetic equations:

Vx§+aa—'f=0 ., and V-B=0
(1a)
VXB—pyf=0 . and V-j=0
(1b)
b) The conservation equations:
Dp+pV-0=0
(22)
pDG+V-P—]xB—pF =0
(2b)

Eq.(2a-2b) are the mass conservation with p is the mass density and the momentum conservation
with P is the total momentum tensor respectively, and the total derivative D = % +3-V.

The fluid outside the volume V (enclosed by surface § ) exerts inward force per unit volume
(force density) on the fluid inside the volume within § as; —V-P , see Fig.(1). Hence it is

convenient to divide P into two parts: P = pd + 7, where 7 is the so called the viscous stress
tensor, which nonzero if the fluid possesses shear, otherwise would be zero, p is the normal

scalar fluid pressure and the diagonal unit tensor or a delta tensor & which is more perspicuous in

component form § = ii + jj + kk  with trace 5:6 = 3, has a lot of properties normally used in
tensor calculus applications,[Brunetti,2020]. One of its properties applied to scalar function ¢(r)

is V- (p8) =V usedin -V-P=-V-(p§+7)=-V-(p§)— V-7 =—Vp— V-7 which
is reduced to —V - P = —Vp when the fluid has no shear viscosity, hence P = p5. The pf is
the force density acting on the body of the fluid, proportional to the gravitational gradient, which
Vg « Vp and it can be dropped from Eq.(2b).
pDu + ppDp ' + TV +V-G—j- (E+3xB)=0

(2¢)

is the energy conservation equation excluding the radiation energy. Where u = ¢, T, the internal
energy with ¢y, is the specific heat at constant volume and g is the heat flux vector. The third
term in Eq.(2c) defined as 7:Vi = & , is known as the viscous dissipation function. With the
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help of m = pdV and Eq. (2a), we can relate the term ppDp~! to velocity divergence of the fluid
using

lpp= b5Vi=-vV-.;=Yp(r)=_L —_Pp(™m) = _ -1 V-3 =
pr =—=6:Vi=-V-U=— D(dv) = dVD(dV) = mD(p) =—pDp™" —pV-v=
ppDp~*

as required. It can be easily shown what p~1 is the specific volume using % = % =p7 1, If

our infinitesimal volume dV is a convicted point P. with the fluid, than the first term in Eq. (2c)
is the change in the internal energy at P. , the second term is the reversible work done by P. on
the surrounding fluid, the third term is the irreversible work supplied to P. by viscosity, the fourth
term is the heat (energy) conducted into the point P, , the last term is the Ohmic heat supplied by

P, into the surrounding fluid, see,Fig.(1).

Reversible work done by dv
into the surrounding fluid

The Ohmic heat supplied by dv
into the surrounding fluid

="

Irreversible Work
by fluid viscosity
intodv

Heat conducted by
the fluid into dv

N

Surrounding plasma fluid

Figure.(1): A volume element dv enclosed by surface S Convicted though the plasma fluid.

¢) The thermodynamic relations with (s) is the entropy of the fluid system

TDs = Du + pDp~ 1! , and u= %% =c,T
(32)
p x pyexp(a) , and p = nkT
(3b)
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Where, y = g and n is the plasma density and k is the Boltzmann constant.

d) The simplified constitutive equations

j=&-E g=—k-VT and P=p5+7

(4a)

E'=E+UxB —ifx§+iﬁpe and T = —2W: V5
eneg ene

(4b)

Where ¢ is the plasma electric conductivity and x is the plasma thermal conductivity with both
quantities been second-order tensors. The constitutive equations are termed simplified, because

we have dropped the thermoelectric terms from 7 and g in Eq. (4a). The term if x B in Eq.

(4b) is called the ‘Hall’ or the ‘gyroscopic’ term. Also in the second set of Eq.(4b), @ is a fourth-
order tensor, laterally isotropic, shear viscosity tensor, called laterally isotropic because it is un

affected by rotation about b the direction of the magnetic field B and V°3 s called deviatoric
rate of strain, representing pure straining motion without volume change. It plays a central role in

fluid transport theory, [3], When the length scales introduced earlier AV =~ i Kland vV, =

—= << 1 are sufficiently well-satisfied the constitutive equations can be S|mpI|f|ed further by
|gnor|ng the gradient terms in Eq.(4a-b), to reduced it to:

(o oT]]

e S 1y - n
]=0-(E+v><B—e—ne]><B) , and P=p
()

The magnitude of the gyroscopic approximately is |aj X £| ~weeTe|J] Shows that this term can
e

|
Il
o

be dropped if w..t, < 1, where w., = ;—B is the electron cyclotron frequency, the plasma
e
conductivity &, becomes isotropic and leads to the following form of Ohm’s law:

- —

nj’=§+17><§ _$JXB
(6)

Where, n is the plasma resistivity equal to; (% =

262 ) On the limit of ¢ — o

Eq.(6) becomes:

N —

E+3xB —L]XB=0
ene
(7)
3. Unbound Plasma MHD Waves Propagation

We ignore wave damping by basing this work on Eq. (1) to Eq. (5), using Eq.(7) into Eq.(1a-1b)
the electromagnetic equations become:
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V X B = pof : and V-BE=0
(82)
0B = S B 1 5.3
5?=v><(u><13—-;n—e]xB)

(8b)
The ideal MHD equations are:
Dp+pV-3=0 and pDG+Vp -7 xBE=0
(92)

5

Ds=0 and p X p3
(9b)
The ideal constitutive relations are:

P =pd and g=0

(10)

Apart of EQ.(8a) the rest of the equations below it are nonlinear. To find the modes of
propagation of small-amplitude waves, we linearize them as follows. Using a typical dependent
variable such as y(#,t) which is then separated into a uniform part ¥, and a perturbation,
which is Fourier analyzed into components such as ¥, (#,t) = ¥ expi("'f‘“’t) , representing

plane waves propagating in the k-direction. The propagation vector k and frequency w satisfy a
dispersion relation function;

g»(w,l_c)) =0

(11)

This function is a principle object of our analysis. For a given mode;
Y@, 1) = o +h expi(F 7o)

(12)

Where the wave amplitude 1) depends on the initial conditions: complete solutions are obtained
by summing over modes. In linearization we omitted all terms that are not linear in the
perturbations. For this reason we show that; the term v x Bin Eq.(8b) can be linearized as
ﬁX§:ﬁ0X§0+ﬁ0X§1+ﬁl X§0+ﬁ1X§1~ﬁ1X§O

(13)

Where we have chosen a steady state in which the change Ds, = Dp, = 0, U, and J, are zeros

and omitted the second- order terms such as #, X B, in Eq.(13). Also in the linearization we
adopt the replacements of:

D — —iwt and V— ik
(14)
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Figure.(2): Propagation vector and wave front.

The scalar pressure in Eq.(9b) is linearized to obtain the definition of the sound speed;

5 2

5 = 5B
Po +p1 X (po + p1)3 ~pg +3PoP1
(15)
By comparing terms of Eq.(15) we get;
5 2 2
3 5 3 5 3 5
Po = Py and P1=3p0p1 = Cip1 = =5pg =37
(16)
1 _
We defined ¢, = (y @)2 and ¢, = ( 2o )2 as the speed of sound and the Alfven speed in the
Po HoPo

plasma fluid respectively.

Linearizing Eq.(8) — Eq.(9) using Eq.(14) and Eq.(16) , after reorganizing the equations order for
the entropy the first part of Eq.(9b) we obtain:

Ds = Dsy + Ds; = Ds; = D3 exp'(k 7-0) = _jg5expi(k7-0t) = 0 = s =0 (17)
For mass continuity equation first part of Eq.(9a) to have

Dp+pV -0 =Dp, 4+ poV- 0y = —iwp;, +ik -0, =0 = wp—pok -0 =0 (18)
For momentum balance equation second part of Eq.(9a) to get

pDT+Vp+B X7=0 = wpyd — c2kp + HiOkBOCOSQE - MLOEEH =0 (19)

Where 6 is the angle between §0 and k, see Fig. 2, Il denotes a component parallel to B, and
Eq.(8a) is used in Eq.(19) in the following form

~

Ho
K
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And for the electromagnetic Eg.(8b) we obtain

0B = LB 1 5.8 5 ~ (7 . \J kB A
E—VX(UXB—EJXB)=0=>a)B+kBoc059v—(k-v)B0—ﬁc056]=0
(21)

Where we set n,, = n,, another variable of considerable importance is the fluid vorticity fz

V x © relate to the angular velocityf = 20. A convenient dependent variable is the amplitude of
the perturbation in the vorticity:

g=v)><17 ﬁé:lEXﬁ :Eo'é:é”:iﬁoxz'ﬁ
(22)

It is natural to project Eq.(19) and Eq.(21) in the directions of the vectors k, B, and B, X k ,
where Eq.(20) and Eq.(22) are used . The projections of Eq.(19) along these vectors respectively
are:

~

—k2c2p + wpok 0 — k2c2E2B, = 0

52
(23a)
—kcZcos6 p + w?ﬁu =0

0

(23b)
1 Ho ~ Pogs __
EkBO coso Bl +a)B—OE" =0
(23c)

Eqg.(21) has no component along k when Eq.(20) is used. Its projections along EO and §0 X k
respectively are:

P, Po & Popy Fpo Lo% _
po k-0 + kcos@ 5, Ui + @ g2 By T cos6 B, = 0
(24a)
2 o~ a
k3% cosO 22 B, + wilj + o, cosf22§, =0
eng Bj Bg Po Bo
(24b)

Closer look to the Eq.(17)-Eq.(18) and Eq.(23)-Eq.(24) shows that there are seven

eigenvectors: 8, p, pok- D, £20; , £5By, 22, and 22§ The coefficients of these
0 0 0 0
eigenvectors comprise the following matrix whose determinant, must vanish for a solution of

the g(w,k ) = 0, Eq.(11).
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S
— 0 A
) 0 0 0 0 0 0 p R
0 w 1 0 0 0 0 pok-U
0  —k?c w 0 k?cg 0 0 = 9
0 —kcZcos® O w 0 k p 0 P " 1=[0]
0 "0 —1 kecos® | B %,TZ cost 0 %Bll
0 0 0 0 ——k3c%cosh W kBo ¢os6 00 .
0 0 0 oo _kBo Po B,/
0 0 cos0 w 0
L !,LO po A
B—Ofn
(25)

Where tw iIinihvmr:=/p—°n = 22 the soun n
ere two special velocities have emerged: ¢, Vpo’adca m,tesou d speed and

the Alfve’n speed, respectively. The former is familiar from fluid dynamics, while the latter is
another speed, arising in MHD, at which perturbations can travel.

Figure.(3): Distortion in the magnetic field lines due to torsional Alfven waves

As implied by the second part of Eq.(20) if the perturbation magnetic field B is perpendicular to
§0 , the field lines are distorted due to torsional Alfve’n waves, see Fig.(3). However if the

perturbation magnetic field parallel §0 as B, , compression of the magnetic field lines under the
effect of the compressional Alfve’n waves take place, shown in Fig.(4).

3. Conclusion

The above matrix splits into four submatrices, corresponding to: 1) the top row ‘marked blue’
give the non-propagating entropy waves, it represents the convective transport of a constant
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pressure and temperature fluctuation and always decoupled, 2) the classical sound (acoustic)
waves, top left submatrix ‘marked black’, 3) the magnetoacoustic waves consisting of the
submatrix for the acoustic waves plus the column ‘marked red’, 4) the Alfve’n waves, lower for
the acoustic waves plus the column ‘marked red’, 4) the Alfve’n waves, lower right submatrix
‘marked green’.

=

Figure.(4): Compression of the magnetic field lines under the effect of the compressional Alfve’n
wave.

By Eq.(25) the magnetosound waves and the Alfve’n waves are decoupled if the ‘gyroscopic’
term is omitted from Eq.(7), [4]. The ratio of the square of the characteristic speeds, the sound c,
to the Alfve’n ¢, , is a typical plasma parameter measuring the kinetic plasma pressure to the
confining magnetic pressure as:

i (V Z—Z)/ (,jio) - B?/DZO
(26)

Thinking in terms of displacements makes sense in MHD but not so much in (homogeneous)
hydrodynamics because in the latter case, just displacing a fluid element produces no back
reaction, whereas in MHD, since magnetic fields are frozen into the fluid and are elastic,
displacing fluid elements causes magnetic restoring forces to switch on. In other words, an (ideal)
MHD fluid “remembers” the state from which it has been displaced, whereas neutral (Newtonian)
fluids only “know” about velocities at which they flow.
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