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Abstract  

The model for a magnetoplasma is given by the MHD equations, so the first aim is to give a full 

list of MHD equations, with the criteria of their applicability for wave propagation. The validity 

conditions under which the MHD equations are used require the wave frequency to be,  𝜔 ≪ 𝜔𝑐𝑖 

and the seven eigenvectors are obtained. In MHD, the magnetic fields are frozen into the fluid 

and are elastic; displacing fluid elements causes magnetic restoring forces to switch on. This 

action appears as distorted magnetic field lines due to torsional and compressional Alfve’n 

waves.   

Keywords: Alfven wave, Shear viscosity, magnetoacoustic wave. 

  

 

 (بلازمابعة للمادة )احالة الر في ال المغناطيسية هيدروديناميكيةالموجات ال

 الملخص:

الهدف  ، لذا فإن   (MHD)الهيدروديناميكية المغناطيسية معادلاتبواسطة للمادة  الحالة الرابعة يعطي نموذج
، مع معايير قابليتها للتطبيق لانتشار الموجات. تتطلب  (MHD) الأول هو إعطاء قائمة كاملة من معادلات

𝜔 أن يكون تردد الموجة ،  (MHD) شروط الصلاحية التي يتم بموجبها استخدام معادلات ≪ ω𝑐𝑖   ويتم
تجميد المجالات  علي يدل ذلك  ،الهيدروديناميكية المغناطيسية في المتجهات الذاتية السبعة الحصول على

 قوى مغناطيسية امبعاثإلى لمائع ؤدي إزاحة عناصر اتنة  و مر له  نوع من ال كون يو  المائعالمغناطيسية في 
ين الالتوائية اكخطوط مجال مغناطيسي مشوهة بسبب موجات ألف ذللك يظهر  و ،لسيطرة علي الوضع

 .غطيةاضتوال
 

 

 

 

 

 

 

 

 

 



Benghazi University … Faculty of Education  … Journal of Faculty Education … The  Twelve 

number… November ... 2022 

 

 

 
 234 

1. Introduction 

In some cases the macroscopic variables change on time and length scales which are long enough 

for an adequate description of a magnetoplasma to be provided by the usual one-fluid equations, 

normally used in plasma. In ordinary fluid dynamics, the basic dependent variables are; the 

density (𝜌 ), the temperature (T) and the velocity (�⃗� ) with the addition to the magnetic field 

induction (�⃗⃗� ). For the transport of energy, momentum and charge the constitutive laws are 

required. This group of equations defined what is meant by ‘Magnetohydrodynamic’ (MHD).The 

simplest model for a magnetoplasma is given by the MHD equations, so our first aim is to give a 

full list of MHD equations, with the criteria of their applicability for wave propagation in 

Section.3 [9]. For the validity of the conditions under which the MHD equations are used, we 

require the values of the collision interval 𝜏𝑒 for the electron-component test particles moving 

through a back-ground of ion-component particles. If the electron-component particles are 

initially in a non-equilibrium distribution, and if perturbation influence is removed, the electron-

components will reach equilibrium with themselves within a time 𝜏𝑒𝑒. The ion-components will 

reach equilibrium among each other within a time a bit later 𝜏𝑖𝑖. Finally the thermal equilibrium 

between the electron and the ion-components will be reached in a time 𝜏𝑒𝑖. These times scale a 

 𝜏𝑒𝑒 ∶  𝜏𝑖𝑖 ∶  𝜏𝑒𝑖 = 1 ∶  (
𝑚𝑖

𝑚𝑒
)

1

2
∶  

𝑚𝑖

𝑚𝑒 
 ; they are about two orders of magnitude apart [2,7]. 

The fluid representation demands that the macroscopic time scale 𝒯 be much longer than 

relaxation for the components in the process. The length scales constraints depend on the 

orientation of the magnetic field (𝐵)⃗⃗⃗⃗⃗ and they are:  

 𝐿∥ ≫ 𝜆 ,      𝜆- mean free path.  

 𝐿⊥ ≫ 𝑟𝐿 ,  𝑟𝐿- Larmor radius.  

 Length scales parallel and perpendicular to the magnetic field �⃗⃗�  respectively. 

Another important constraint in MHD is that the diffusion velocity be small such that; 

|�⃗�𝑒 − �⃗�𝑖| ≪ 𝑐𝑡ℎ ⟹ |𝑗| ≪ 𝑒𝑛𝑒𝑐𝑡ℎ = 𝑒𝑛𝑒 (
2𝑘𝑇𝑒

𝑚𝑒
)

1

2
. Where 𝑐𝑡ℎ  is the thermal speed for the electrons 

in the plasma,  𝑗  is the current density and k is the Boltzmann constant respectively. This will 

reduce the streaming velocity of electrons past the ions to low subsonic speeds. The final 

constraint is imposed by the neglect of charge separation, for any wave of frequency 𝜔, to be 

with a macroscopic time scale 

 𝜔−1 = 𝜔𝑝𝑒
−1 , where 𝜔𝑝𝑒 is the plasma electrons oscillation frequency. Furthermore restrictions 

are imposed by the form adopted for Ohm’s law used and the non-relativistic particle speed, [1,5] 

and [9].  

Small amplitude wave propagation is a topic of considerable importance for many practical 

reasons:  first, it gives a relatively simple method of comparing theory with experiment; 

secondly, if theory is confirmed, this offers a way that waves can be used for diagnosing plasma 

and may be used to heat it. Thirdly; waves do occur naturally in the ionosphere and the 

turbulence they generate by their growth unstable lead to phenomena known as plasma transport. 
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Huge numbers of propagation modes exist, [6] and dispersion relation of quite high order can be 

given, especially in fluid mixture when viscosity and other dissipative effects are included. 

However, our concern will be only with the three basic MHD modes, known as: The Alfven 

waves and the slow and fast magnetosonic waves [8], also known as magnetoacoustic waves. In 

this work the dissipation is treated as a small effect, superimposed on the basic mode. 

2. The MHD Equations 

The MHD equations can be classified into four categories: 

a) The electromagnetic equations: 

             ∇⃗⃗⃗ × �⃗⃗� +
𝜕�⃗⃗�

𝜕𝑡
= 0   , and         ∇⃗⃗⃗ ∙ �⃗⃗� = 0                                                                                 

(1a)   

          ∇⃗⃗⃗ × �⃗⃗� − 𝜇0𝑗 = 0   , and         ∇⃗⃗⃗ ∙ 𝑗 = 0                                                                                   

(1b) 

b) The conservation equations:   

𝒟𝜌 + 𝜌∇⃗⃗⃗ ∙ �⃗� = 0                                                                                                                               
(2a) 

   𝜌𝒟�⃗� + ∇⃗⃗⃗ ∙ �̿� − 𝑗 × �⃗⃗� − 𝜌ℱ⃗⃗ = 0                                                                                                         
(2b) 

Eq.(2a-2b) are the mass conservation with 𝜌 is the mass density and the momentum conservation 

with �̿� is the total momentum tensor respectively, and the total derivative 𝒟 ≡
𝜕

𝜕𝑡
+ �⃗� ∙ ∇⃗⃗⃗ .  

The fluid outside the volume 𝒱 (enclosed by surface 𝒮 ) exerts inward force per unit volume 

(force density) on the fluid inside the volume within 𝒮 as; −∇⃗⃗⃗ ∙ �̿� , see Fig.(1). Hence it is 

convenient to divide �̿� into two parts: �̿� = 𝑝𝛿̿ + �̿�, where �̿� is the so called the viscous stress 

tensor, which nonzero if the fluid possesses shear, otherwise would be zero, 𝑝  is the normal 

scalar fluid pressure and the diagonal unit tensor or a delta tensor 𝛿̿  which is more perspicuous in 

component form 𝛿̿ = 𝑖̂𝑖̂ + 𝑗̂𝑗̂ + �̂��̂�   with trace 𝛿̿: 𝛿̿ = 3, has a lot of properties normally used in 

tensor calculus applications,[Brunetti,2020]. One of its properties applied to scalar function 𝜑(𝑟) 

is ∇⃗⃗⃗ ∙ (𝜑𝛿̿) = ∇⃗⃗⃗𝜑  used in  −∇⃗⃗⃗ ∙ �̿� = −∇⃗⃗⃗ ∙ (𝑝𝛿̿ + �̿�) = −∇⃗⃗⃗ ∙ (𝑝𝛿̿) − ∇⃗⃗⃗ ∙ �̿� = −∇⃗⃗⃗𝑝 − ∇⃗⃗⃗ ∙ π̿, which 

is reduced to −∇⃗⃗⃗ ∙ �̿� = −∇⃗⃗⃗𝑝  when the fluid has no shear viscosity, hence �̿� = 𝑝𝛿̿.  The  𝜌ℱ⃗⃗  is 

the force density acting on the body of the fluid, proportional to the gravitational gradient, which 

∇⃗⃗⃗𝑔 ≪ ∇⃗⃗⃗𝑝 and it can be dropped from Eq.(2b). 

      𝜌𝒟𝑢 + 𝜌𝑝𝒟𝜌−1 + �̿�: ∇⃗⃗⃗�⃗� + ∇⃗⃗⃗ ∙ �⃗� − 𝑗 ∙ (�⃗⃗� + �⃗� × �⃗⃗�) = 0                                                              

(2c) 

is the energy conservation equation excluding the radiation energy. Where  𝑢 = 𝑐𝒱𝑇,  the internal 

energy with 𝑐𝒱  is the specific heat at constant volume and �⃗� is the heat flux vector. The third 

term in Eq.(2c) defined as �̿�: ∇⃗⃗⃗�⃗� ≡ Φ , is known as the viscous dissipation function. With the 
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help of 𝑚 = 𝜌𝑑𝒱 and Eq. (2a), we can relate the term 𝜌𝑝𝒟𝜌−1 to velocity divergence of the fluid 

using 

 
1

𝜌
𝒟𝜌 = −𝛿̿: ∇⃗⃗⃗�⃗� ≡ −∇⃗⃗⃗ ∙ �⃗� =

𝑑𝒱

𝑚
 𝒟 (

𝑚

𝑑𝒱
) = −

1

𝑑𝒱
𝒟(𝑑𝒱) = −

𝜌

𝑚
𝒟 (

𝑚

𝜌
) = −𝜌𝒟𝜌−1 ⟶ 𝑝∇⃗⃗⃗ ∙ �⃗� =

𝑝𝜌𝒟𝜌−1  

as required. It can be easily shown what 𝜌−1 is the specific volume using  
𝑑𝒱

𝑚
=

𝑑𝒱

𝜌𝑑𝒱
= 𝜌−1 ,   If 

our infinitesimal volume 𝑑𝒱 is a convicted point 𝑃𝑐 with the fluid, than the first term in Eq. (2c) 

is the change in the internal energy at 𝑃𝑐 , the second term is the reversible work done by 𝑃𝑐 on 

the surrounding fluid, the third term is the irreversible work supplied to 𝑃𝑐  by viscosity, the fourth 

term is the heat (energy) conducted into the point  𝑃𝑐 , the last term is the Ohmic heat supplied by  

 

𝑃𝑐 into the surrounding fluid, see,Fig.(1).  

 

 

 

 

Figure.(1): A volume element  𝑑𝑣 enclosed by surface 𝒮 Convicted though the plasma fluid. 

 

 

c) The thermodynamic relations with  (𝑠) is the entropy of the fluid system 

 𝑇𝒟𝑠 = 𝒟𝑢 + 𝑝𝒟𝜌−1   , and   𝑢 =
3

2

𝑝

𝜌
= 𝑐𝑣𝑇                                                                                     

(3a)        

 𝑝 ∝ 𝜌𝛾𝑒𝑥𝑝
(

𝑠

𝑐𝑣
)
   , and            𝑝 = 𝑛𝑘𝑇                                                                                                

(3b) 
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Where,  𝛾 =
5

3
  and 𝑛  is the plasma density and k is the Boltzmann constant. 

d) The  simplified constitutive equations 

   𝑗 = 𝜎 ∙ �⃗⃗�′ ,   �⃗� = −�̿� ∙ ∇⃗⃗⃗𝑇           and       �̿� = 𝑝𝛿̿ + �̿�                                                                      

(4a) 

   �⃗⃗�′ = �⃗⃗� + �⃗� × �⃗⃗�  −
1

𝑒𝑛𝑒
𝑗 × �⃗⃗� +

1

𝑒𝑛𝑒
∇⃗⃗⃗𝑝𝑒        and             �̿� = −2�̿�: ∇⃗⃗⃗0�⃗�                                           

(4b)                   

Where 𝜎 is the plasma electric conductivity and �̿� is the plasma thermal conductivity with both 

quantities been second-order tensors. The constitutive equations are termed simplified, because 

we have dropped the thermoelectric terms from  �⃗⃗⃗� and �⃗� in Eq. (4a). The term 
1

𝑒𝑛𝑒
𝑗  ×  �⃗⃗� in Eq. 

(4b) is called the ‘Hall’ or the ‘gyroscopic’ term. Also in the second set of Eq.(4b), �̿� is a fourth-

order tensor, laterally isotropic, shear viscosity tensor, called laterally isotropic because it is un 

affected  by rotation about �̂� the direction of the magnetic field �⃗⃗� and ∇⃗⃗⃗0�⃗�  is called deviatoric 

rate of strain, representing pure straining motion without volume change. It plays a central role in 

fluid transport theory, [3], When the length scales introduced earlier 𝜆∇∥=
𝜆

𝐿∥
≪ 1 and 𝑟𝐿∇⊥=

𝑟𝐿

𝐿⊥
≪ 1 are sufficiently well-satisfied the constitutive equations can be simplified further by 

ignoring the gradient terms in Eq.(4a-b), to reduced it to: 

   𝑗 = 𝜎 ∙ (�⃗⃗� + �⃗� × �⃗⃗�  −
1

𝑒𝑛𝑒
𝑗 × �⃗⃗�)     ,  𝓆 ̿ = 0  and  �̿� = 𝑝𝛿̿                                                                

(5) 

The magnitude of the gyroscopic approximately is |𝜎𝑗 ×
�⃗⃗�

𝑒𝑛𝑒
| ~𝜔𝑐𝑒𝜏𝑒|𝑗| shows that this term can 

be dropped if 𝜔𝑐𝑒𝑡𝑒 ≪ 1, where 𝜔𝑐𝑒 =
𝑒𝐵

𝑚𝑒
   is the electron cyclotron frequency, the plasma 

conductivity 𝜎, becomes isotropic and leads to the following form of Ohm’s law: 

𝜂 𝑗 = �⃗⃗� + �⃗� × �⃗⃗�  −
1

𝑒𝑛𝑒
𝑗 × �⃗⃗�                                                                                                                  

(6) 

Where, 𝜂 is the plasma resistivity equal to; ( 
1

𝜎
=  

𝑚𝑒

2𝑒2𝑛𝑒𝜏𝑒
 ).  On the limit of 𝜎 → ∞ 

Eq.(6) becomes: 

�⃗⃗� + �⃗� × �⃗⃗�  −
1

𝑒𝑛𝑒
𝑗 × �⃗⃗� = 0                                                                                                                     

(7)        

3. Unbound Plasma MHD Waves Propagation 

We ignore wave damping by basing this work on Eq. (1) to Eq. (5), using Eq.(7) into Eq.(1a-1b) 

the electromagnetic equations become: 
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∇⃗⃗⃗  × �⃗⃗� = 𝜇0𝑗  ,      and         ∇⃗⃗⃗  ∙ �⃗⃗� = 0                                                                                                   

(8a) 

𝜕�⃗⃗�

𝜕𝑡
= ∇⃗⃗⃗ × (�⃗� × �⃗⃗�  −

1

𝑒𝑛𝑒
𝑗 × �⃗⃗�)                                                                                                               

(8b) 

The ideal MHD equations are: 

𝒟𝜌 + 𝜌∇⃗⃗⃗ ∙ �⃗� = 0          and    𝜌𝒟�⃗� + ∇⃗⃗⃗𝑝 − 𝑗  × �⃗⃗� = 0                                                                            

(9a) 

𝒟𝑠 = 0    and    𝑝 ∝ 𝜌
5

3                                                                                                                            

(9b) 

The ideal constitutive relations are: 

  �̿� = 𝑝𝛿̿                  and             �̿� = 0                                                                                                    

(10) 

Apart of Eq.(8a) the rest of the equations below it are nonlinear. To find the modes of 

propagation of small-amplitude waves, we linearize them as follows. Using a typical dependent 

variable such as 𝜓(𝑟, 𝑡)  which is then separated into a uniform  part 𝜓0 and a perturbation, 

which is Fourier analyzed into components such as 𝜓1(𝑟, 𝑡) = �̂� 𝑒𝑥𝑝𝑖( �⃗⃗� ∙ 𝑟−𝜔𝑡) , representing 

plane waves propagating in the �⃗⃗�-direction. The propagation vector �⃗⃗� and frequency 𝜔 satisfy a 

dispersion relation function; 

                ℊ(𝜔, �⃗⃗� ) = 0                                                                                                                            

(11) 

This function is a principle object of our analysis. For a given mode; 

                 𝜓(𝑟, 𝑡) = 𝜓0 + �̂� 𝑒𝑥𝑝𝑖( �⃗⃗� ∙ 𝑟−𝜔𝑡)                                                                                             
(12) 

Where the wave amplitude �̂� depends on the initial conditions: complete solutions are obtained 

by summing over modes. In linearization we omitted all terms that are not linear in the 

perturbations. For this reason we show that; the term �⃗� × �⃗⃗� in Eq.(8b) can be linearized as 

�⃗�𝑥�⃗⃗� = �⃗�0 × �⃗⃗�0 + �⃗�0 × �⃗⃗�1 + �⃗�1 × �⃗⃗�0 + �⃗�1 × �⃗⃗�1~�⃗�1 × �⃗⃗�0                                                                 
(13) 

Where we have chosen a steady state in which the change  𝒟𝑠0 = 𝒟𝜌0 = 0 , �⃗�0 and 𝑗0  are zeros 

and omitted the second- order terms such as  �⃗�1 × �⃗⃗�1  in Eq.(13). Also in the linearization we 

adopt the replacements of: 

 𝒟 ⟶ −𝑖𝜔𝑡 and  ∇⃗⃗⃗⃗  ⟶ 𝑖�⃗⃗�                                                                                                                     

(14) 
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Figure.(2): Propagation vector and wave front. 

 

The scalar pressure in Eq.(9b) is linearized to obtain the definition of the sound speed; 

 𝑝0 + 𝑝1 ∝ (𝜌0 + 𝜌1)
5

3 ~𝜌0

5

3  +
5

3
𝜌0

2

3𝜌1                                                                                                  

(15)     

By comparing terms of Eq.(15) we get;    

𝑝0 = 𝜌0

5

3       and    𝑝1 =
5

3
𝜌0

2

3𝜌1 = 𝑐𝑠
2𝜌1 ⟹ 𝑐𝑠

2 =
5

3
𝜌0

2

3 =
5

3

𝑝0

𝜌0
                                                               

(16)    

We defined  𝑐𝑠 = (𝛾
𝑝0

𝜌0
)

1

2
  and 𝑐𝑎 = (

𝐵0
2

𝜇0𝜌0
)

1

2
  as the speed of sound and the Alfven speed in the 

plasma fluid respectively. 

Linearizing Eq.(8) – Eq.(9) using Eq.(14) and Eq.(16) , after reorganizing the equations order for 

the entropy the first part of Eq.(9b) we obtain:             

𝒟𝑠 = 𝒟𝑠0 + 𝒟𝑠1 = 𝒟𝑠1 = 𝒟�̂� 𝑒𝑥𝑝𝑖( �⃗⃗� ∙ 𝑟−𝜔𝑡) = −𝑖𝜔�̂�𝑒𝑥𝑝𝑖( �⃗⃗� ∙ 𝑟−𝜔𝑡) = 0 ⟹ 𝜔�̂� = 0           (17) 

For mass continuity equation first part of Eq.(9a) to have  

𝒟𝜌 + 𝜌∇⃗⃗⃗ ∙ �⃗� = 𝒟𝜌1 + 𝜌0∇⃗⃗⃗ ∙  �⃗�1 = −𝑖𝜔𝜌1 + 𝑖�⃗⃗� ∙ �⃗�1 = 0  ⟹ 𝜔�̂� − 𝜌0�⃗⃗� ∙ 𝜐 = 0                   (18)   

For momentum balance equation second part of Eq.(9a) to get  

 𝜌𝒟�⃗� + ∇⃗⃗⃗𝑝 + �⃗⃗�  × 𝑗 = 0  ⟹ 𝜔𝜌0�̂� − 𝑐𝑠
2�⃗⃗��̂� +

1

𝜇0
𝑘𝐵0𝑐𝑜𝑠𝜃�̂� −

1

𝜇0
�⃗⃗��̂�∥ = 0                            (19) 

Where  𝜃 is the angle between �⃗⃗�0  and  �⃗⃗� , see Fig. 2, ∥ denotes a component parallel to 𝐵0 and 

Eq.(8a) is used in Eq.(19) in the following form 

⟹ 𝑗̂ =  
𝑖

𝜇0
�⃗⃗�  × �̂�  ⟹ �⃗⃗�0 ∙ 𝑗̂ = 𝑗∥̂ =

𝑖

𝜇0
�⃗⃗�0  × �⃗⃗� ∙ �̂�               and               ⟹  k⃗⃗  ∙ �̂� = 0              (20) 
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And for the electromagnetic Eq.(8b) we obtain 

𝜕�⃗⃗�

𝜕𝑡
− ∇⃗⃗⃗ × (�⃗� × �⃗⃗�  −

1

𝑒𝑛𝑒
𝑗 × �⃗⃗�) = 0 ⟹ 𝜔�̂� + 𝑘𝐵0𝑐𝑜𝑠𝜃𝜐 − (�⃗⃗� ∙ 𝜐)�⃗⃗�0 −

𝑘𝐵0

𝑒𝑛0
𝑐𝑜𝑠𝜃𝑗̂ = 0            

(21) 

Where we set 𝑛𝑜𝑒 = 𝑛0 , another variable of considerable importance is the fluid vorticity  𝜉 =

∇⃗⃗⃗ × �⃗� relate to the angular velocity 𝜉 = 2Ω⃗⃗⃗. A convenient dependent variable is the amplitude of 

the perturbation in the vorticity: 

𝜉 = ∇⃗⃗⃗ × �⃗�                     ⟹   𝜉 = 𝑖�⃗⃗� × �̂�   ⟹ �⃗⃗�0 ∙ 𝜉 =  𝜉∥ = 𝑖�⃗⃗�0 × �⃗⃗� ∙ 𝜐                                         

(22)     

It is natural to project Eq.(19) and Eq.(21) in the directions of the vectors �⃗⃗�, �⃗⃗�0 and �⃗⃗�0 × �⃗⃗� , 

where Eq.(20) and Eq.(22) are used . The projections of Eq.(19) along these vectors respectively 

are: 

−𝑘2𝑐𝑠
2�̂� +  𝜔𝜌0�⃗⃗� ∙ �̂� − 𝑘2𝑐𝑎

2 𝜌0

𝐵0
2 �̂�∥ = 0                                                                                          

(23a)     

−𝑘𝑐𝑠
2𝑐𝑜𝑠𝜃 �̂� + 𝜔

𝜌0

𝐵0
�̂�∥ = 0                                                                                                             

(23b) 

1

𝜇0
𝑘𝐵0 cosθ 

𝜇0

𝐵0
𝑗∥̂  + 𝜔

𝜌0

𝐵0
𝜉∥ = 0                                                                                                      

(23c) 

Eq.(21)  has no component along �⃗⃗� when Eq.(20) is used. Its projections along �⃗⃗�0 and �⃗⃗�0 × �⃗⃗�  

respectively are: 

−𝜌0 �⃗⃗� ∙ �̂� + 𝑘𝑐𝑜𝑠𝜃
𝜌0

𝐵0
 �̂�∥ +  𝜔

𝜌0

𝐵0
2 �̂�∥ −

𝑘

𝑒𝑛0

𝜌0

𝜇0
 𝑐𝑜𝑠𝜃

𝜇0

𝐵0
𝑗∥̂ = 0                                                            

(24a) 

−𝑘3 𝑐𝑎
2

𝑒𝑛0
𝑐𝑜𝑠𝜃

𝜌0

𝐵0
2 �̂�∥ +  𝜔

𝜇0

𝐵0
𝑗∥̂ +

𝑘𝐵0

𝜌0
 𝑐𝑜𝑠𝜃

𝜌0

𝐵0
𝜉∥ = 0                                                                                       

(24b) 

Closer look to the Eq.(17)-Eq.(18) and Eq.(23)-Eq.(24) shows that there are seven 

eigenvectors: �̂�, �̂�,    𝜌0�⃗⃗� ∙  �̂�,   
 𝜌0

𝐵0
�̂�∥ ,   

𝜌0

𝐵0
2 �̂�∥ ,

𝜇0

𝐵0
𝑗∥̂ and 

𝜌0

𝐵0
𝜉∥. The coefficients of these 

eigenvectors comprise the following matrix whose determinant, must vanish for a solution of 

the ℊ(𝜔, �⃗⃗� ) = 0, Eq.(11). 
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[
 
 
 
 
 
 
 𝜔
0
0
0
0
0
0

     

0
𝜔

−𝑘2𝑐𝑠
2

−k𝑐𝑠
2𝑐𝑜𝑠𝜃 
0
0
0

     

0
−1
𝜔
0

−1
0
0

    

0
0
0
𝜔

k𝑐𝑜𝑠𝜃
0
0

   

0
0

𝑘2𝑐𝑎
2

0
𝜔

−
1

𝑒𝑛0
𝑘3𝑐𝑎

2𝑐𝑜𝑠𝜃

0

     

0
0
0
0

−
k

𝑒𝑛0

𝜌0

𝜇0
 𝑐𝑜𝑠𝜃

𝜔

−
𝑘𝐵0

𝜇0
cosθ

     

0
0
0
0
0

𝑘𝐵0

𝜌0
 𝑐𝑜𝑠𝜃

𝜔

      

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

ŝ
 �̂�

 𝜌0 �⃗⃗� ∙ �̂�
𝜌0

𝐵0
 𝜐∥

𝜌0

𝐵0
2 �̂�∥

𝜇0

𝐵0
𝑗∥̂

𝜌0

𝐵0
𝜉∥ ]

 
 
 
 
 
 
 
 
 

 =[0]     

(25) 

 

Where two special velocities have emerged: 𝑐𝑠 = √𝛾
𝑝0

𝜌0
, and 𝑐𝑎 =

𝐵0

√4𝜋𝜌0
 , the sound speed and 

the Alfve’n speed, respectively. The former is familiar from fluid dynamics, while the latter is 

another speed, arising in MHD, at which perturbations can travel.  

 

 

 

Figure.(3): Distortion in the magnetic field lines due to torsional Alfven waves 

 

 

As implied by the second part of Eq.(20) if the perturbation magnetic field �̂�  is perpendicular to  

�⃗⃗�0 , the field lines are distorted due to torsional Alfve’n waves, see Fig.(3). However if the 

perturbation magnetic field parallel �⃗⃗�0 as �̂�∥ , compression of the magnetic field lines under the 

effect of the compressional Alfve’n waves take place, shown in Fig.(4). 

3. Conclusion 

The above matrix splits into four submatrices, corresponding to: 1) the top row ‘marked blue’ 

give the non-propagating entropy waves, it represents the convective transport of a constant 
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pressure and temperature fluctuation and always decoupled, 2) the classical sound (acoustic) 

waves, top left submatrix ‘marked black’, 3) the magnetoacoustic waves consisting of the 

submatrix for the acoustic waves plus the column ‘marked red’, 4) the Alfve’n waves, lower for 

the acoustic waves plus the column ‘marked red’, 4) the Alfve’n waves, lower right submatrix 

‘marked green’. 

 

 

 

Figure.(4): Compression of the magnetic field lines under the effect of the compressional Alfve’n 

wave. 

By Eq.(25) the magnetosound waves and the Alfve’n waves are decoupled if the ‘gyroscopic’ 

term is omitted from Eq.(7), [4]. The ratio of the square of the characteristic speeds, the sound  𝑐𝑠 

to the Alfve’n 𝑐𝑎 , is a typical plasma parameter measuring the kinetic plasma pressure to the 

confining magnetic pressure as: 

                  𝛽 = (𝛾
𝑝0

𝜌0
) (

𝐵0
2

𝜇0𝜌0
)⁄ =

𝛾𝑝0

𝐵0 𝜇0⁄
                                                                                                  

(26) 

Thinking in terms of displacements makes sense in MHD but not so much in (homogeneous) 

hydrodynamics because in the latter case, just displacing a fluid element produces no back 

reaction, whereas in MHD, since magnetic fields are frozen into the fluid and are elastic, 

displacing fluid elements causes magnetic restoring forces to switch on. In other words, an (ideal) 

MHD fluid “remembers” the state from which it has been displaced, whereas neutral (Newtonian) 

fluids only “know” about velocities at which they flow. 
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