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Abstract

Motivated by the linear operator studied by the author in [2, 3], the
author introduce and study a new general integral operator defined on the
class of normalized analytic function in the unit disc. This operator is motivated
by many researchers. With this operator univalence conditions for the
normalized analytic function in the open unit disc are obtained. Indeed, the
author present a few conditions of univalency for our integral operator. .
Having the integral operator, there are interesting properties of normalized
function in the unit disc for univalent conditions for an integral operator. In
addition, the author also find some interesting corollaries on the class of
normalized analytic of functions in the open unit disc.
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1 Introduction

Let A denote the class of functions f normalized with f(0)= f'(0)-1=0, in
the open unit disc in the complex plane

U={z €C:|z |<1},
given by the normalized power series
f(z)=z +Za 2"t (zeU) |,
Let S be the subclass of A oonS|st|ng of all univalent functions f in

U. Fortwo functions f e A and g(z)—z+sz (zeU), wherea, b area
complex number. i

The Hadamard product of two functions (or convolution) is defined by

(f *g =z +Za b.z"
Many authors studied the problem of mtegral operators acting on functions in
S, tobelongtothe class S. In this sense, the following result due to Ozaki and
Nunokawa [1] is useful to study the univalence of integral operator for certain
subclass of S.

Theorem 1.1 Lef f A satisfy the following inequality:
2
L (Z)—4<1 forall (z e U), (1)

f2(z)

then the function f is univalent in U.

Let the function ¢(a,c;z) be given by
p(@.c;z)= Zga;k 2" (z eU,c#0,-1,-2,-3,..),

where (x), denotes the Pochhammer symbol (or the shifted factorial).

Corresponding to the function ¢(a,c;z), Carlson and Shaffer [9] introduced a
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linear operator L(a,c) by

L@o)f (2):=placiz)f ()= gk a,z*"
n=0 K
The author [2, 3] has recently introduced a new linear operator D"*(a,b)f (z)

as the following:

Definition 1.2 Let

m,A = (14 2k +1)" @), ., ka
“(@,b;z) = [ j z",
d é 1+1 b), _
where  (z eU,b#0,-1,-2,-3,..),A>0,meZ,1 >0, and (x), is the

Pochhammer symbol.

We define a linear operator D"*(a,b):A —-A by the following Hadamard
product:

Dlm,/1 (a, b) f (Z) = ﬂm,ﬂ (a’ b, Z)* f (Z) = i(l‘f‘likl-i- I J EZ;k aka+l.

Special cases of this operator includes:
e DM(a,b)f (z)=D(ab)f (z)=L(ab)f ().

o the Ruscheweyh derivative operator [11] in the cases:
D2°(B+11)f (z)=D’f (z);8>-1.

o the Salagean derivative operator [13]: DJ""(1,1)f (z).

« the generalized Salagean derivative operator introduced by Al-Oboudi
[12]: DI (L,1)f (2).

o the Catas drivative operator [10]: D"*(1,1)f (z), and finally

« The fractional operator introduced by Owa and Srivastava [14]

Dg'°(2,2—7/)f )=t (z)=T@2-y)z’D/f (z);
D/f (z) is the fractional derivative of f of order y;y =23 4,.-..

Using the operator D™*(a,b)f (x), we now introduce the following
integral operator.
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Definition 1.3  For f, eA forall (i =1,2,..n) , and the parameters
>0, A>0,meN and y is a complex number, we define the integral
operator E}' (f,,...f.):A" >A by

b (. fo @)= X
((k (y—1)+1)j02 (D”‘(ﬂ,,l,a,b)fl(t))y_l...(Dm(/l,l,a,b)fn(t))y_ldt)W'M. (3)
Remark 1.1 /t /s interesting to note that the integral operators E}' (f,,...f,)

generalizes many operators which were infroduced and studied recently, for
example:

(1) If m=0 and b =a=1, then the operator F}'(f,,..f )(z) reduces
to the integral operator

S
(G G=0+1)f; (1LO) " (f,©) a7,
was introduced and studied by Breaz and Breaz [6].
2) If 1 =1-1 and b =a=1, then we obtain the integral operator
(
1
o, =k G-D+)]; (O7,0) (D7, O) Td ],

was introduced and studied by Bulut [7],where D™ is the Al-Oboudi derivative
operator

(3) If m=0, b=a=1, and k =1 then we qbtain the integral operator

. (y_[:f () dt )7.

We now state the following results which we need to establish our results in the
sequel.

Lemma 1.4 /5] Let the function f be regular in the disc
U; ={z €C:|z |<R},

with |f (z)|<M for fixed M. If f (z) has one zero with multiplicity order
greater than m for z =0, then
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M
Rm

If @) so7 121" (z €Ug).

The equality can hold only if
io, M
f - g V" m,
(z)=e (Rm)z

where ¢ is a constant.

Lemma 1.5 /4] Let f eA and p,ccC where Re{f}y>0 and (c|<l,c=-1).
If

26 | (1— 28 Zf"(Z) <1,
12 P74z ) 2 5 <

for all z eU, then the function

Fﬁ(z):[ﬂjozuﬁ‘lf'(u)dt: ,

belongs to S.

Lemma 1.6 /8] Let the function t  satisfy the inequality (1). Also let
a € R, (ae[l,g]j, c eC,

if
cl222 (o 2-1)
and
lg(z) <1, (z €V).
Then the function G, defined by 1

G, = (a [lo@) ot )

is analytic and univalent in U.
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2 Main results

In this section, we first state the main univalent condition involving the
general integral operator given by (3).

Theorem 2.1 Lef f eA, i=1,2.n, ceC, yeR, and M >1, with

1-y
lc |§1+m(2M +1k, W)

and

{1’ (2M +1)k }
(M +1)k -1

22(D|m'l(a’b)fi(z))’—l‘<l (6)
O @b, @)’ 1~

where |,1>0, meN,
and
|(DM*(@,b)f, (z)IKM, (z eU, ie{l2.n}),

then the integral operator E[}'(f,,...f )defined by (3) is analytic and univalent
in U.

Proof: Since i €1,2,..,n,f, eA, wehavgk —1)+1+I jm @),
o Z+ a,z
Fo (fr,nf)(@) — k=2 1+1 b))

oAk )Y @, G
'“é( Lol ]<b>klakZ |

and

b (fL,.nf)@)
Z
Let us consider the function defined by

#0,forall z eU.
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F(2)= J-H[D'”(a b)f, (t)jk(y =

1

F'(z)= H(Dml(a Jo)f. (Z)]k(y 1)+
It is clear that F(0)=F’'(0)-1=0.

A simple computation yields
ZF"(z z(D™*(a,b)f. (2))
F@) )2{ O/ )A))_q,
F'(z) = D" (@b)fi(z)
which readily shows that

ZF (z) |

C |Z |2[k (7-1)+1] +(l—|Z |2[k (7—l)+1])
[k (y 1) +1]F'()|

y-1
SIC“(k(r—lhljz[

ID"*(@,b)f, (z) KM, (zeU, ie{l2,.n}),

7 (Dm/l
(Dm%aMfc» |

ID™*(a,b)f, (z)I 1j
YA
Since

Using inequality (6) and the general Schwarz lemma, we obtain
ZF (z) |
[k (y-D)+1F )|

C |Z |2[k (y-1)+1] +(l—|Z |2[k (7—l)+1])

s+l 2 e b | ]

=lc |+ (7_12+ Izm: ?D ﬁ?a Bf)f(@)) M+M +1
TG S\ Db, @)

“lc|+ @M +1)k,

K(y-1)+1

which, by (5) yields
C |z PlODAI (1|7 G-y zF (z) |S
_ [k (7 -1)+1]F'(2)| _
Applying Theorem 1.5, we conclude that the function F7'(f,,...,f,) defined by

(3) is in the class S.
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3 Applications of Theorem 2.1

Putting M =1 in Theorem 2.1, we get the following result.

Corollary 3.1 Letf eA, i=12.n, ceC, yeR, and M =1, with

c |sl+3[l_—7/jk. (7)
K(—1)+1)

3k
11— )
76[ 3K —1}

|(D™*(@,b)f,(z)KM, (zeU, ie{l2,..n}),

and

then the integral operator E1'(f,,...f,)(z) defined by (3) is analytic and
univalent in U.

If we set k =1 in Theorem2.1, we obtain the following result.

Corollary 3.2 Lef M >1,and suppose f A and satisfies the inequality

Ic |< 1+1_77(2M ~1). (8)

If ye{l,M}, and
@M +1)-1

IDM*(@b)f z)|KM, (zeU, ie{l,2,.n}),

then the integral operator E1'(f,,...f,)(z) defined by (3) is analytic and
univalent in U.

Remark 3.1 /fwe sef | =0 and b =a =1, in Theorem 2.1, then we have
Theorem [ [7].

Remark 3.2 /fwe set m =0and b =a=1, in Corollary 3.1,then we have
Corollary 1 [6].
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