%%%%%%%%%%%%%%%%%

%%%D%D%<%<>€><%<>€><%<>€>%D%%D%%D%%D%%D%%D%%D%%D

University of Benghazi ... Faculty of Education
Journal of Faculty Education ... The Eighteen number...June 2025

PERIODIC  SOLUTIONS FOR IMPULSIVE
NEUTRAL DYNAMIC EQUATIONS WITH
INFINITE DELAY ON TIME SCALES SPACE

Haitham Ali Makhzoum

Department of mathematic, Faculty of Science, University of Benghazi, Benghazi,
Libya

20 laa ) s Sy Analag o slall IS cilyualy ) pud
Ibtissem Daira
8 ald aludly)
Department of Mathematics and Informatics, University of Souk-Ahras Algeria
salaa 5l Gal A (g daala ciludaly M) anid L o) 3830 g  glal) A0S
AMIRA ALI MOHAMMED BEN FAYED
b o s Ao B gl

Department of mathematic, Faculty of Education, University of Benghazi, Benghazi, Libya

2obna (g Jlacs daaly Ay a1 A0S byl ) anid

haitham.makhzoum@uob.edu.ly

S S R VI VIS NG S SR G i Vv Vv S S G W



mailto:haitham.makhzoum@uob.edu.ly

~N

Spalmll i yal? 4415

PERIODIC SOLUTIONS FOR IMPULSIVE NEUTRAL DYNAMIC EQUATIONS WITH
INFINITE DELAY ON TIME SCALES SPACE

Abstract.

This study addresses the problem of determining the existence and uniqueness of periodic
solutions to a class of impulsive neutral dynamic equations that incorporate infinite delay,
defined over a periodic time scale denoted by .

14 p
0 =-] | Bor©+) wiexe-roy
i=1 i=1

¢ p
+ f_w [1[ E;(t, wh(x(w)) + gw) | Au+ D(t,x(t), x(t — O(t)), t # t;,t €T,

x(6) = x(57) + 1 (x()) J € Z¥,

The focal point of this work is a complex dynamic system that integrates multiple mathematical
features: neutral terms, impulsive discontinuities at discrete instances, and an integral

representation of the system’s historical behavior extending indefinitely into the past.

The dynamic model under consideration involves a delta derivative, multiplicative operator
terms, and delayed functional components, and is governed by impulsive effects at specified
time points. The analysis is grounded in a general framework that accommodates both discrete

and continuous behavior through the unifying language of time scale calculus.

To establish the existence of periodic solutions, we utilize Krasnoselskii’s fixed point
theorem—an essential tool in nonlinear operator theory known for its effectiveness in handling
non-compact and non-linear mappings in Banach spaces. In contrast, the uniqueness of the
solution is ensured by applying the Banach contraction principle, which demands more
restrictive structural conditions on the system’s parameters but provides strong guarantees of

solution distinctiveness.

The theoretical contributions presented herein not only address the inherent analytical
challenges posed by the neutral and impulsive dynamics but also offer valuable insights into

systems exhibiting long-term memory. Such systems are prevalent in various scientific domains,
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including automatic control mechanisms with feedback delays, macroeconomic models driven

by historical trends, and biological oscillators subject to abrupt environmental perturbations.

By integrating advanced methods from time scale calculus, infinite-dimensional functional
analysis, and fixed point theory, this work offers a comprehensive approach that enhances both
the theoretical understanding and practical applicability of periodic solutions in delay-

dominated dynamic systems.

.Key words and phrases. Periodic , dynamic equations, impulses, Krasnoselskii fixed point,

time scales.
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1. INTRODUCTION

Stephan Hilger's introduction of time scales (or measure chains) in 1988 provided a unifying
framework for discrete and continuous calculus, as detailed in references [7, 8, 9]. This
groundbreaking work initiated a thriving area of research, leading to significant advancements
in the theory of dynamic equations on time scales. The scope of this theory has expanded
considerably beyond its initial formulation, now encompassing a wide array of mathematical
problems, as evidenced by [2, 3, 4, 18, 19] and their respective bibliographies. Furthermore, the
study of impulsive initial and boundary value problems within this context has become an active
area of investigation. For a comprehensive understanding of the theoretical foundations and
established results in this field, the monographs [6, 16, 20] are highly recommended. In a recent
contribution, A. Ben Fayed, M. Illafe, H. A. Makhzoum, and R.A. Elmansouri in [2] employed
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Krasnoselskii's fixed point theorem to demonstrate the existence and uniqueness of solutions for
a specific class of nonlinear neutral dynamic equations with infinite delay.

14
@ =-] | Bwx®+ Z w2 (6,x(t - £(©))) f 1_[ E;(t, w)h(x(w)) + g(w) | Au
i=1
+D (t,x(t),x(t - @(t))),t #t,t€T

In this paper, our central focus lies on delving into the qualitative properties of periodic
solutions concerning impulsive neutral dynamic equations. Building upon the foundation laid by
previous research in this area, particularly the insights and methodologies presented in the
works [1-5, 10-15, 20-22] and their respective bibliographies, we aim to contribute to a deeper
understanding of the behavior of solutions within the framework of the specific system under
consideration. Our investigation will explore conditions for the existence, uniqueness, and
stability of these periodic solutions, while also examining the impact of impulsive effects and
neutral terms on the overall dynamics.

A (t) = 1_[ Bi()x°(t) +z Wt (6x(t— £ ©)) f 1_[ E;(t, wh(x(w)) + g(w) | Au

+D (t,x(t),x(t — @(t))),t #t,t€T

x(t) = x(67) + I (x(1)) . € Z*, (1.1)

where T represents an w-periodic time scale, 0 € T and x? = x o ¢. For all interval U of
R, we denote by Uy = U N'T,x(t}")and x(t; )represent the right and the left limit of
x(tj) in the sense of time scales, in addition, if t; is left-scattered, then x(t7) =
x(t;), B(t) = diag (b;(©)nxn(b; € RY)),W:RXR > R E:RXR - R,x:R - R, h:R -
R,g:R > R,D:R x R x R — R, are Continuous functions. Also, to ensure periodicity, we
assumed that, Rt ={b € C(T,R):1+ u(t)b(t) >0} where u(t)=0(t)—t g€
C(T,T),f = (fi,for, -, fn) EC(T XR,R),h = (hy, hy, ..., hy) € C(R™, R™M), I; =
(Ij(l),lj(z), ...,Ij(n)) € C(R",R") and B(t), g(t),W(t,x(t—g(t))) are all w-periodic
functions with respect to t,E(t + w,u + w) = E(t,u), w > 0 without loss of generality,
we also assume that [0, w)y N {tj,j € Z+} = {ty, 65, ..., t}

Having converted the original system (1.1) into an equivalent integral system, the subsequent
objective is to establish the existence of periodic solutions. To achieve this, we leverage
Krasnoselskii's fixed point theorem, a powerful tool detailed in [21]. A crucial step involves
demonstrating that the resulting integral equation can be expressed as the product of a compact
operator and a contraction operator, setting the stage for applying the theorem. Furthermore, we
aim to prove the uniqueness of the periodic solution. This will be accomplished by transforming
system (1.1) into an integral equation and then employing the contraction mapping principle.
The structure of the paper is as follows: Section 2 lays the groundwork by introducing the
essential principles, notations, and necessary preliminary results. Section 3 then presents the
core contributions of the paper, where we prove our key findings regarding the existence and
uniqueness of periodic solutions, utilizing both the contraction mapping concept and
Krasnoselskii's fixed point theorem.
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2. Preliminaries:

For notational convenience, we adopt the convention that for a time scale inT, the interval
[a1, an]T represents the set of all points t in T such that a; <t < a,,, where a, and a, are
points in T and a; < a,. Furthermore, if a, is equal to infinity, we denote the half-line T{ =
[aq, oo[ T, representing all points in T greater than or equal to a_1. We refer the reader to the
comprehensive work by Bohner and Peterson (references (2) and (3)) for a detailed exposition
of fundamental concepts and results in the theory of time scales. The subsequent analysis and
results presented in this paper are based on the following assumptions, which will hold
throughout.

(Hy)Let f = (f1, f2, -, fn) be a vector-valued function that adheres to a Lipschitz continuity
condition with respect to the variable x. That is, for each component j € {1,2, ..., n}, there exists
a non-negative constant L; such that

W (t, ) = W (&, )] < Ljllx =yl

forall t € T and x, y € R™. This condition ensures that the variation in each component of the
function is bounded linearly by the normed distance between inputs, a critical property for
ensuring uniqueness and stability of solutions.

( H, )Consider the function h = (hy, h,, ..., hy,), which similarly satisfies a Lipschitztype
criterion with respect to the spatial variable x. Specifically, for each € {1,2, ..., n}, there exists a
constant M, ; > 0 such that

|1y () = )| < Myjllx = yll,

for all x, y € R™. This condition guarantees controlled sensitivity of the function h to
perturbations in its arguments.

(H3)Let D = (D4, Dy, ..., D,,) be a function that is also Lipschitz continuous in its arguments
x1,x, € R™ For each index j € {1,2, ...,n}, there exist constants M, ;, M5; > 0 such that

|Dj(t; Xq,X2) — Dj(t,}’p}’z)l < Majllxg = y1ll + M3jllx; — yoll

forallt € T, and x4, x5, y4,y, € R™. This dual Lipschitz condition permits multi-variable
interactions to be estimated in a norm-controlled manner.

( H, )For each integer k € Z, let the mapping 1,5”: R™ — R fulfill a Lipschitz continuity
condition. For every j € {1,2, ..., n}, there exists a constant Pk(j) > 0 such that

19 @) - 190)| < PP)1x -yl

for all x, y € R™. This ensures that impulsive or discrete modifications modeled via I,Ej) remain
stable under small perturbations in state.

( Hs )There exists a positive constant N; such that the following integral inequality is satisfied:
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¢ p
f [ | Bw|ausn,
~®li=1

This condition bounds the accumulated effect of the matrix product E;;, ensuring the integral

remains finite and tractable, which is particularly vital in the context of dynamic equations on
time scales.

To investigate the solvability of system (1.1) under the framework of Theorem 2.2, we first
define the functional space:

PC(T) = {x: T = R™x| (. tpe)r € C(tks tsrr) 7, 3 limits from the left and right at ¢ }.

This denotes the space of piecewise continuous functions on T, where continuity is preserved on
subintervals between impulsive moments.

We further define the Banach space
X={xePC(T):x(t +w) =x(t)},
equipped with the supremum norm

x|| = max [x(t)|y, where |x(t)]|, = max |x;(t)|.
Il = max [x(Dl, (Ol = max ;)]

This space accommodates periodic solutions and supports the application of fixed-point
theorems due to its completeness.

The following fixed-point result, commonly attributed to Krasnoselskii, provides a robust
method for proving the existence of solutions in Banach spaces:

Theorem 2.1. Let M be a nonempty, closed, and convex subset of a Banach space ( B, || - || )-
Suppose there exist two operators R and Z mapping M into B such that:

e Forall x,y € M, the combination Rx + Zy € M,

e R iscompact;

e 7 isacontraction, i.e., there exists 0 < A < 1 such that ||Zx — Zy|| < Allx — ||

Then there exists at least one point p € M such that
p=Rp+7Zp

This theorem plays a pivotal role in demonstrating the existence of periodic or bounded
solutions to complex dynamic systems, especially in the presence of nonlinearity and
discontinuities.

Lemma 2.2. A function x qualifies as an w-periodic solution to Equation (1.2) if and only if it
also satisfies the alternative equation as an w-periodic solution.
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p t+w T p
x(t) = Z Wi(t, x(t — £()) +f G(t,7) [f (1_[ E,(s,w)h(x(w)) + g(u)) Au
i=1 ¢ % \i=1

As + Z G(t,tj)1j<x(tj))

jti€tt+w]

p
D(s, x(5),%(s = O()) = Y BEIW(5,x(5 = £()))
j=1

where

-1
p

G(t,s) = diag (G;(t, $))nxn Gi(t,s) = <1 —eg 1_[ bi(w, 0)) eomr., b;(t + @5)
i=1

14
. 1
B(t) = diag (1_1[ bl(t)> ,eel—[?:1 bi(t' s) = W,
o ﬁ bu(e) = - —Lli= 2O i WY (&2t~ F(0)) =i Wi(o(), 27 (t ~ (1)
L 4 l 1 + [J_(t) l—[?:l bl(t) Y L 1 ) £ l ) .

Proof. Suppose that x is an w-periodic solution of (1.1). Then, for every t € T, there exists an
integer j € Z such that t; denotes the first impulsive moment occurring after ¢t. Under this
construction, and for each index j = 1,2, ...,n, the corresponding segment x; inherits the w-
periodicity and satisfies the associated equation

p p ¢ 14
xA(6) + 1_[ by (X (£) = Z WA (t,x;(t = F(£))) + f (H Ey; (6, w)h; (x(w)) + g(w) | Au
i=1 i=1 —2o\e =1, .
+D; (¢, x;(t), x; (t — O(t)))

To proceed with the derivation, we multiply both sides of Equation (1.2) by the exponential
function ebl.j(t, 0), and subsequently perform integration over the interval [t,s]y, where s €

[t, ti ]7. We obtain

J;S I:el_[?=1 bij (7, 0)x; (T)]A At

S
- J; eH?=1 bi; (. 0)

+D; (T, xj (1), x; (T — O(T)))]AT, teT

14 - 14
Z WA (z,x,(t — F(1))) + f <1_[ Ey; (1, )y (x,(w)) + g(u)) A+ G, (z, % (7)
i=1 —® \i=1

or

s P
e, bi,-(s' 0)x;(s) = ey, bij(t' 0)x;(t) + f ey, bi,-(T’ 0) z WL-?(T, x(t — f(1)))
t

i=1

AT

- p
+ f (ﬂ E;j(t,whi(xw) + g(u)) Au + D;j(7, % (1), x; (t — O(1)))
% \i=1
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then

14
> Wi (- F0)
i=1

14
S
x(s) = eel_[ by (s, D)x; (£) + ft eor. by (50
i=1

. P
+ J. (1_[ Ei;(z, u)hj(xj(u)) + g(u)) Au + Dj(r, xi (1), xj (T — B(T)))] At,j=12,..,n,
% \i=1

hence

tk

p
(50 = e, g OO + | ooy b, DY Wi (w3~ F)
i=1

. P
+f <1_[ Ei;(z, u)hj(xj(u)) + g(u)) Au + Dj(r, xj (1), xj (T — 0(1)))] At,j=12,..,n, (22)
~® \i=1

Similarly, for s € (i, ty+1], we have

14
> Wi (= F@)
i=1

P S
xi(s) = eg 1:1[ bij (s, ti)x; (tF) + jtk eI, bij(s, 7)
¥ P
+f <1_[ Ei;(z, u)hj(x]-(u)) + g(u)) Au + D]-(T, x;(7), xj (T — 9(1)))] At,i=1,2,..,n,

p

z WA (z, % (z — h(z)))

=1

P
S
=eg 1_[ bij (s, tk)xj(t]:) + J;k eenlp=1 by (s,7)

/P
+f_ (1_[ E;j(r wh;(x;(w)) + g(u)) Au + D; (7, x; (1), x; (T — 0(‘[)))‘ At

P s p
+eg 1_[ bj (s, ti)x; (tx) +J; eel_[ bij(ty) |,
k i=1

~
=

i=1

p 14
+ f_m (H Eyj(z, w)hy (2 (W) + g(u)> W5 (. x;(x — £(1)))

D
* 1_[ bij (s, 81 (%:(80))
i=1

Repeating the above steps for s € [¢t,t + w]r, we have

336



University of Benghazi ... Faculty of Education ... Journal of Faculty Education ... The ... The
Eighteen number...June 2025

P

eenil bij (s,7) Z VVL'?(T' Xj (- f(T)))

=1

N

xi(s) = eemz;1 bij(s, t)x;(t) + ft

- 14
+f 1_[ Eij(T, u)h](x](u)) + g(U) Au + Dj(T, Xj(T),ij(T - 9(‘[))) At
—® \i=1

* Z o, vy (56l ().

ktr€[t,t+w)

fori =1,2,...,n. Let s = t + w in the above equality, we have

t+w

14 p 14
x(t + ) = eg 1_[ by (t + w, £)x;(£) + ft eo 1_[ bt + w,7) z WA (7, %,(r — £(0)))
i=1 i=1 i=1

< 14
+f 1_[ (Eij (r, Wk (x;(w)) + g (w))du + D; (7, x;(2), x;(r — (1)) | At
—® =1
+ ) e, uy @t ol (x(8)).

I tr€[t,t+w]

j=12,..,n  Noticing that xj(t+w)=x;(t) and eg]li b;(t+w,t)=
eolli-, bij(w,0), we obtain
t+w L4
(1 — eorr., by (@ 0)) %i(t) = f eorr., by (t+®,7) Z WA (z, % (r — (1))
B - " i=1
. [P
+f 1_[ (Eij(r,whi(x W) + gw)) |Au+ D;(z,x;(7), x;(r — (1)) | AT
T\ =1

Y oo, ny(t+ 001 (5(00) (23)
k. trE[L t+w]

for j = 1,2, ...,n. Notice that

(2.4)
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t+w P
J; o, bi,-(t + w,T) z Wl-? (r, xj(r - f(r))) At

i=1
p
= egqp, b, (t+ 0.t + @) Z Wi (t + w,x;(t + 0 — f(t + w)))

ot oy (t + @ t)z W (6t — 9(8)))

t+w
= j; eorr., bi}.(t + w, 1) <1_[ bij (ﬂ) <z (T xi (T — (T)))> At

- [1 = eel_[le bi; (@, 0)] Z Wij (t' Xj (t— f(t)))
i=1

t+w p L
_ft o, bi,-(t +w, 1) (1_1[ bij(r)> <Z Wg(r, xi(t— f(‘r)))) At,j=1.2,..,n
It follows from (2.3) and (2.4) that

P t+w =
x(t) = Z Wi (t, % (t = F(D)) + J [1—eema:1 by (@) 0)] 1eema:1 oy (E+ ©,7)

p
[f <1_[ Ejj (7, u)h (x](u)) + g(u)) Au + D; (‘L’ x](r) x](r @(T)))

p P
- (1_[ b;; (‘L’)> (Z Wi‘]T(T, x(T — f(r))))} At
i=1 i=1

-1
P

1-eg 1_[ b;j(w,0) €O, bi,-(t + w, tk)I,E]) (xj (tk))
i=1

k, tke[t t+w]

Z (6%t — F(0)) +f Gi(t,7) [f (ﬂ Ey(t,uyhy (x;(w) + g(u)> Au
+0;(1,%(2), % (T — O(1))) — (H by (r)> (2 W (z, % (z — f(r))))‘ At
i=1 i=1

n Z G, )1 (xj(tk))

k. tr€t,t+w]

for j = 1,2, ..., n. Next, we prove the converse. Let
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p t+w T p
% (t) = Z Wi (t,x;(t — £(£))) + ft Gi(t,7) l f <H Ey;(s,w)h (3 (w)) + g(u)) Au
i=1 @ \i=1

P P
+D(s,x(s),x(s — O(s))) — (1_[ b; (s)> Z Wg(s, xj(s — f(s))) As

i=1 i=1

+ Z Gj(t, tk)llgj) (Xj(tk))
ktr€[t,t+w]

where

-1
14

Gi(t,s) = (1 —eo l_[ by (, 0)> eom byt +®,5),/ = 12,..,n
i=1

Thenift # t;,j € Z*, we have

If t = t;,j € Z*, we obtain
p t+w S p
xA(t) = 2 W (e,x;(t = f()) + f {Gj(t, )| f (I—[ Ej(s,whi(x(w)) + g(u)) Au
i=1 t - \'j=1
A
+D;(t, % (1), x,(t — (1)) — ( o bi]-(t)) PLwh (t, x(t— f(t)))]} As

t+w P
f (H Ey(t + 0, wh (3 w) + g(u)) Au
~® \i=1

+D;(t + w, x;(t + w), % (t + @ — A(t + w)

+Gj(t, t+ (J))

p

p
= (1_[ b (t + w)>z w5 (t +w,x(t+w—f(t+ (u)))

i=1

¢ 14
G0 f_ <n Ey (6, w)h; (x5 (w)) + g(u)>Au

+D;(t, (D), x;(t — O))) —(IT7-; byj(®)) Th_; W5(t,x;(t — F(D))]
14

¢ 14
=) WALt — () + J (H Ey (6, why (2 (w)) + g(u)) Au
~° \i=1

i=1

14 D
+0;(t, %;(6), %;(t — O(£))) — (1_[ bi,-(t)>z WA(t,x(t — £(1)))

i=1 i=1

t+w S p
+f {Gj(t, s)[J- (1_[ Ei;(s, u)hj(xj(u)) + g(u)) Au
t —® \i=1

+D,(t,%,(0), %,(¢ — O()))
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_ (ﬁ bij&))i W (t,x]-(t —f(t)))]} As

i=1 i=1

= —IIi., by (Ox7(6) + X, Wi (6, x;(t — g(8)

¢ 14
+f (ﬂ E;;(t,whi(xw) +g(u)>Au
~® \i=1

+ D;(6, %,(8), %,(t — O(2)))

x(57) = x(57) = Z G(t, )1 (00 ) - Z G (5, 6 )1 (300
k. tkE[tF t] +w] k. tk€E[ty ti +w]
= Gty & + )1 (xj(tj + w)) - G(t, )1 (xj(tj))

=19 (x(t)).j = 1.2,...m

Iterating the preceding procedure over the interval s € [¢t,t + w], the resulting expression can
be generalized accordingly. Consequently, it follows that the function x also satisfies (1.1) as an
w-periodic solution. This conclusion confirms the equivalence of the periodic solutions across
the two formulations and thereby finalizes the proof

Lemma 2.3 (16). Assume that x € X. It then follows that the norm of the shifted function x¢
exists, and moreover, satisfies the identity ||x?|| = ||x||. Importantly, we observe that the
Greens function component G;(t, s) is uniformly bounded above by the constant

(1~ con, @.0) .

which we denote as ;. To streamline the exposition, the following abbreviated notation will be
adopted in subsequent developments.

7:= maxn;y:= max b;(®)|,L: = max [V, M: = max M;
n 1sj5nn]'y 1sj5n,te[0,w]T| j( )l' ijsn /'’ 1<jsn J

N:= max Nj, P: = max PY, P: = max P,
1<jsn 1<jsn 1<k<p

Let the mapping H: X — X defining as follows
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P t+w N p
HPW) =) WitdC-fON+ [ 6s) l | AT Bt onea + g |au
i=1 t —° \i=1

p
+D(L B, Bt = 0()) ~ BG) Y. WG, —fFEM|as+ > 66 th(#E)
i=1

ktr€E[tt+w)

To invoke the conditions of Theorem 2.1, it is necessary to define two separate operators: one
that exhibits contractive properties and another that is both continuous and compact. With this
objective in mind, we decompose Equation (2.5) into an equivalent operator formulation
suitable for applying the theorem.

(Hp)(®) = (RP)(t) + (Z)(V)

where

p
RO)®) = ) W(t,$(t =~ f(©)), (26)
i=1

and
t+w S P

@ = [ ceo|[ (] Eewh@w) +ga |au+deee,oc- 6w
t —° \i=1

14
B ) WG feD|as+ Y Gey)y(x() @
i=1

Ntyj€[tjtj+w]

Lemma 2.4. Suppose that the condition (H1) is satisfied and that the constant L,, associated
with the Lipschitz behavior of the involved operator, fulfills the inequality L; < 1. Under these
assumptions, the operator R: X — X, as defined in Equation (1.8), satisfies the contraction

mapping property.

Proof. Let R: X — X. For ¢,y € X, we have

p
Il R(¢) —RW) I = te[oraffﬁﬁjanﬁzalxz | Wi (¢, @t — h())) — W;;(6,9;(t — h(D)) |
ij
<L lp-WI. 2.8)

Lemma 2.5. ] Suppose that the assumptions (H1) through (H5) are all satisfied. Then, the
operator Z: X — X, as defined in Equation (2.7), is not only continuous but also completely
continuous (i.e., compact) on the space X.

Proof. Measuring (2.7) at t + w gives
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ZP)(t+w)

t+2w

s 14
[ 6c+ros [ | (1_[ (5, 0h($(0) + g(u)) D+ D(s, $(5),9(5 — 6(5)))
t+w - \j=1
D

BE) Y W dG—fED[As+ Y G+ w,6L($(00)
i=1

ktyE[t+w,t+2w]

v+w p
f (1_[ E,(v+ w,uw)h(p(w)) + g(u)) Au

p
+Dv+w,d(v+w),dp(v+w—0 + w)) —B(v+w)z WeWv+wo(v+ow—fv+w)))|Av

i=1

t+w
=f G(t+wv+w)
t

+ Z 6(6.t,)1k (6(5,))

y.ty€[tt+w]

t+w v L4
[ 6w [ | (1_[ B, w)hy( ) + g(u)) M+ D(v, $(V), b(v ~ O®)))

p
~B) ) W, ¢ - FO))
i=1

Av + Z Gi(t, ty)Ik (¢(tJ/))

y.ty€[tt+w]
=)

Therefore, Z: X - X

We now proceed to demonstrate the continuity of the operator R. To this end, let ¢, € X be
arbitrary elements, and suppose that € > 0 is given. We then choose an appropriate
quantitydepending on € and the structure of R to establish that small variations in the input
result in correspondingly small changes in the output, thereby confirming the continuity of R.

&
5 =
Nlw(MiN + Ly) + P] + M, + M4

such that for || ¢ — ¢ lI< . By applying the Lipschitz condition, we get
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Il R9 —RY |l

~ te[o,w]r

t+w S p S p

< max f G(t,s) l f [ s wn@a) + g |u- f [T & wn@a) +ga |
t —® \ =1 % \=1

+ max D, $(), 95 — O(5)) — DS Y(s), Y5 — O

p

t+w p
+ max ft G(t,s)B(s) Z W (s, (s — f(5))) —Z We(s, (s — F(s)))|As
' i=1

te[0,w]T =
= 0

+ max Z |G(t’ te) [Ik (¢(t") - Ik(lp(tk)))“o

It €[t t+w)

w P
< ﬁf_w 1:1[ |E;(s,w)[h(¢dp(w)) — h(p(w))]loAuls
i P

M = |+ Mg =Ly [ D W90 = D) = ) W Csih(s — h(s)| s
i=1

U =

w

0

I (960 — ()|
< (MloMN+Ly) + Pl + My + M) 19— ¢ lI<e

+ﬁ1sk5p

The preceding argument establishes the continuity of the operator 1. Moving forward, it
remains to demonstrate that 1 is also a compact operator. To this end, consider a sequence of
periodic functions {¢,,} X that is uniformly bounded; that is, there exists a constant ® > 0
such that ||¢,, || < © for all n € N. Under the assumptions (H1) - ( H3), we are then able to
derive the necessary estimates that lead to the relative compactness of {1 (¢,,)}.

where a; = [W(t,0)ll,an =Il h(0) Il, ap =l D(t,0,0) I, &g =l g(0) Il and «a;, = I (0)Il
hence

W@, )l < IWe (L, x) =W (t,0)ll + W (¢, 0l

= max |Wj‘7 (t,x) = W7 (t, 0)| + ay

te[0,w]rlsjsn

<Llxl+a, (2.9)
I h(x) Il h(x) — h(0) Il +1I h(0) I

1<j<

= ]a>51|hj(x) — hi(0)| + ap

g Il gCx) —g@) I +1 g(0) Il

(2.10)
<H x| +ag
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I D(t, x(t), x(t — 7)) Il D(t, x(t), x(t — @(t))) — D(¢,0,0) | +11 D(¢,0,0) Il

< f?,%’%'D(t' x; (), x;(t — @(s))) —D(t, 0,0)| + ap

<My +M3) Nl x Il +ap

(2.11)
T CONl < Wi (x) = T (O + 11 (0) I
— ) )]
= lréljas);n L (x) =7 (0)| + a,
< Pk Il I +a1k,f0rj ezt
(2.12)

t+w N P
19, < max| [ 669 [ - ]_1[ E(5,h($n(w) + 9(¢n)0u |

p
= B(s) ) W (s,9u(s = F(&)]as| + max ID(E ¢u(), @t = OO
i=1 o
+ max Z |G(t, tk)Ik(<pn(tk))|0

tE[O,(D]T
ktrE[tt+w]

p

w S B o p
Sﬁfo f_w 1:1[ |E; (s, wh(pn()lo + 19(dn)lo AuAs+ﬁny ; WE (s, pn(s = f(s)))| As

0
14
FIDE G, b= OODNo+7 ) |(dn(t)],
k=1

o 14
< wN(Mylidnll + ap + Hlpnll + ag) + fyw(Llid,l + ar) + ﬁyf Z W (s, ul(s = F()))]| As
0 n

=1
0

p
My + MY NG 1 +ap +7 ) |l(dn(t)],
k=1
<fqw© (M;N + HN + yL) + ﬁ(a)Nah + wNay +ywas + P © +a') + (M, +M3)©S:=D

Here, a = max ap, where the constant «;, is associated with the impulse effects at discrete
sksp

points.
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" p
(RP)2 () =  —B(t)(Rpn)7(1) +f H Ei(s,u)h(pn(w)) + g(w) |Au+ D(¢,¢(1), p(t — O(1)))
—® \i=1

p
=B@®) ) ¢ (6 bult — F(E))
i=1

Therefore, it is clear from the Lemma (2.3)and the (2.9)-(2.13) that

t p t
|Re2 @), < B I ||(R¢n)0n+Hf ]_[Ei(s,u>h(¢n(u))AuH+Hj g
=1 e

p
+I D(E, ¢ (0), Pu(t — O()) + B(t)z ¢ (t, pn(t = £()))
i=1 0
<Il B Il IRl + N(Mylidnll + @ + Hlipnll + ay) + (My + M3)lipnll + ap+Il B Il (Llipnll + ar)
<IBI(D+LO +as) + N(NM; + ap) + N(M, + M3) + ap

for all n. That is, [[(R$,)%l <l B Il (D + L © +ar) + N(NM + ap) + N(M, + M3) + ap.

As a consequence, the sequence {R¢,} is uniformly bounded. With this bound
established, it now becomes straightforward to verify that the operator R maps
bounded sets into relatively compact sets, or alternatively, to demonstrate
equicontinuity of the sequence {R¢,}, depending on the specific properties under
consideration.

3. Main Results.

Theorem 3.1.

Suppose that assumptions (H1) through (H5) are satisfied, and that the Lipschitz constant L,
obeys the condition L; < 1. Furthermore, assume that there exists a non-negative constant G

such that for every solution x € X of Equation (1.1), the inequality ||x|| < G holds uniformly.
Under these conditions, the following estimate is satisfied:

ywar + wNap + «
INT = [w(L+MN)] = [L\7] =P

<H

holds. Hence (1.1) has an w-periodic solution.

Proof. Define the set M = {¢ € X:||¢|| < H}. According to Lemma 2.5, the operator R: X —» X
is both compact and continuous. Furthermore, as established in Lemma 2.4, R is a contraction
mapping on X. Meanwhile, the operator Z: X — X is also well-defined. Our goal is to
demonstrate that for any pair ¢,y € M, the inequality ||R¢ + Zy|| < H holds.

To proceed, consider arbitrary elements ¢, 1) € M such that [|¢|| < H and ||y|| < H. Using the
estimates derived from Equations (2.9)(2.11), we obtain the necessary bound on the combined
operator acting on these elements:

IR + Z3p|| < IRl + |29l
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< LG +qwG(yL + M{N) + ﬁ(ywaf + wNap + GP + a) <G.

It follows that R¢p + Zy € M, thereby demonstrating that the operator sum preserves the
bounded set M. This result, in conjunction with the established properties of the
operatorsnamely, that R is a contraction and Z is continuous and compactconfirms that all the
necessary conditions for applying Krasnoselskiis Fixed-Point Theorem are fulfilled within the
space X.

In light of Lemma 2.3, we then deduce the existence of a fixed point z € M satisfying the
relation

z=Rz+Zz.

This fixed point corresponds precisely to a solution of the original Equation (1.1), thus proving
the existence of at least one solution under the given assumptions
Theorem 3.2

Let (H;) — (Hs) be hold. If
r=nlowly++M;N+M, +M,)+P]<1
hence 1.1 has an unique w-periodic solution

Proof. for ¢, € X, we have

Il Hp — Hp 1< 7j j f r E; (s, )h($(w)) — ﬂ E,(s,wh@))| Auas
s L]

14 14
i=1 i=1

0

75 14 14
D 97— FON =) ¢t~ FEOD)| s
i=1 i=1

0

My + M5) 16— 1L+ [
0

3 B 0,

<AwoMNI ¢ =Y Il +7ywl I ¢ —P Il +7P Il p — Y |l
<N[(wyL + M;\N + M, + M3) + Pl ¢ =9l
=ylo—vl

The proof is complete .

Conclusion

In this work, we investigated the existence and uniqueness of periodic solutions for
impulsive neutral dynamic equations with infinite delay on time scales.We proved that
under some conditions these equations have periodic solutions by using Krasnoselskii's
fixed point theorem and the contraction mapping concept.

We prove that impulsive neutral dynamic equations with infinite delay on periodic time
scales admit periodic solutions.This was obtained by applying Krasnoselskii's fixed
point theorem and turning the system into an integral equation.

We proved that the periodic solution is unique under more strict conditions—more
especially, involving Lipschitz continuity and limitedness of the associated functions.
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This was accomplished by applying the contraction mapping concept, therefore
guaranteeing that the lone solution under the specified constraints is likewise periodic.

Our method presented a strong foundation for investigating dynamic equations on time
scales by combining analytical methods with fixed-point theory. This approach can be
expanded to many kinds of dynamic systems having comparable structures.

The findings have important ramifications for systems with memory effects—such as
those driven by delay differential equations. Crucially in disciplines including control
theory, economics, and biological modeling, the periodic character of the solutions can
reveal understanding of the long-term behavior of such systems.

Further research could explore the stability of these periodic solutions and their
sensitivity to initial conditions or parameter changes.

Extending the analysis to stochastic dynamic equations on time scales could provide
additional insights into real-world systems subject to random fluctuations.

This work contributes to the broader understanding of dynamic equations on time
scales, offering both theoretical insights and practical tools for analyzing complex
systems with delay and impulsive effects.
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