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The generalized Gamma Matrix Function via Jordan Canonical Form and its
Approximations

Abstract

The generalized Gamma matrix function via Jordan canonical form are provided. A more
general case of Beta matrix functions with two positive stable matrices are also obtained.
Asymptotic approximations are derived for the Gamma matrix function with two positive
stable matrices.

Keywords: Special functions; Asymptotic Approximations; Matrix; Gamma function of
Matrices; Jordan Canonical Form.
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I. introduction

The Gamma function , which is defined by the convergent improper integral
r()=[f"t""'e*dt Re(}) =0 (1.2)

see e.g. E. F. Rainville [22], G. Andrews et al [2] and F. W. J. Olver [21], has been an
important tool in numerous branches of mathematical analysis and applications. In the past
two decades generalization and extensions of scalar special functions to Matrix special
functions have been developed. The Gamma matrix function, whose eigenvalues are all in the
right open half- plane isintroduced and studied in L. J_odar, J. Cort_es [13] for matrices in
™", Hermite matrix polynomials are introduced by L. J_odar et al [12] and some of their
properties are given in E. Defez, L. J odar [4]. Other classical orthogonal polynomials as
Laguerre and Chebyshev have been extended to orthogonal matrix polynomials, and some
results have been investigated in L. J odar, J. Sastre [15] and E. Defez, L. J_odar [5].
Relations between the Beta, Gamma and the Hypergeometric matrix function are given in L.
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J_odar, J. G. Cort_es [14] and R. S. Batahan [3]. The gamma function, the extended gamma

function, the beta function, the extended beta function, the gamma distribution, the beta
distribution and the extended beta distribution have been generalized to the matrix case in
various ways. These generalizations and some of their properties can be found in Gupta and
Nagar [9]Nagar, Gupta, and Sanchez [16], Nagar, Roldan-Correa and Gupta [17], Nagar and
Roldan- Correa [18], and Nagar, Moran-Vasquez and Gupta [19]. For some recent advances
the reader is refereed to Hassairi and Regaig [10].Some integrals involving zonal polynomials
and generalized extended matrix variate beta function are evaluated see [20]. These special
functions of matrices have become an important tool in both theory and applications. The
order of presentation in this article is as follows. In section 2 we provide basic necessary
notation, definitions and auxiliary theorems that need to be cited in the sequel. In section 3
We consider a more general case of Gamma and Beta matrix functions with two positive
stable matrices.
Il1. Preliminaries

In this section we elaborate on some necessary language that is adopted from L. Jodar, J.
Sastre [13] and N. J. Higham [11]. We also record some basic theorems from asymptotic
analysis that can be found in e.g. W. Wasow [23] and A. Erdelyi [7] and that will be needed
in proving our main results.

Denote by 4,,---4, the distinct eigenvalues of a matrix P € Z™". The spectrum & (P)
ofP € 27", denotes the set of all the eigenvalues of P. The 2-norm of P will be denoted by

Sup ||, ll,
x #=1 .’

lP|| and it is defned by ||P|| = where for a y in €7 | [lyll, = {(¥¥, v}z is the

Euclidean norm of v, and ¥* denotes the Hermitian adjoint of v. We put {(P) and g(P) the
real numbers

¥(P) = max{Re(1): A € a(P)}, o(P) = min{Re(1): A € a(P)} (2.1)
A holomorphic function f(4) at a point was defined as a regular analytic function in a
neighborhood of the point, see e.g. W. Wasow [23]. It is called holomorphic in a set if it is
holomorphic at every point of the set. A matrix is called holomorphic if every entry of it is a

holomorphic function.
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We now give a definition and elementary properties of asymptotic series see e.g. W. Wasow

[23] and A. Erdelyi [7]. If f(4) and g(A) are homomorphic functions of the complex variable
A, which are defined in an open set of the complex plane, and P is matrix in €™*" with
ag(P) c Q, then from the properties of the matrix functional calculus, see N. Dunford, J.
Schwartz [6], it follows that
f(P)g(P) = g(P)f(P) (2.2).

Definition 2.1
A set of complex numbers is called positive stable if all the elements of the set have positive
real part and a square matrix P is called positive stable if o(P) is positive stable.
If P is a positive stable matrix in €™, than T'(P) is well defined, see L. Jodar, J. G. Cortes
[13]

I'(p) = fﬂme_rtp_*rdt, = exp[[P — I)Int) (2.3)

The reciprocal Gamma function denoted by I™* = 1% is an entire function of the complex

variable A. Then the image of T™*(4), for any P in ©™", the Riesz Dunford functional
calculus shows that the image of I'"* (A1) acting on P, denoted by I'"* (P) is well defined. See
N. Dunford, J. Schwartz [6].
Furthermore, if
P + nl is invertible for every integer n = 0 (2.4)
then T'(P) is invertible, its inverse coincides with T~* (1), and one gets the formula
PP+1)..(P+(n—DUI(P+n) =T (P),n=1 (2.5)
Under condition( 2.4), by (2.2), equation (2.5) can be written in the form
PP+D..(P+(n— 1)) =T(P+n)r*(P),n=1 (2.6)
If we take into account the scalar factorial function denoted by (4),, and defined by
(), =AA+1)..(A+n—-1),n=1,(1),=1; then by application of the matrix

functional calculus to this function, for any matrix P in C™*" on gets

(P),=P(P+D..(P+tn—Inz=1P =1 (2.7)
If F(P) is well defined and T is an invertible matrix in €™, then
frer Y =rf(P)T? (2.8)
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1y K
, _ (”P“?El
le™l < e7® Erf-—o t=0 (2.9)
In particular, if t = 1,t® = "2 satisfies
\ K

(upn rilnt

, |
Ie? |l < ¥ @ Frt . Eao (2.10)

k!
It is a standard result that for any matrix P € Z™" there exist a nonsingular matrix T € Z™"

( T dependent on eigenvalues or it is a constant matrix) such that

T'PT =] = diag(J,,J, - J;) (2.11)
Where
A, 1 0 0
0 A, 1 -
L=ILAJ)=|: =~ = =~ 0|eCm™" ™ (2.12)
: oA 1
0 0 A1,
or

T () = [*;Lk] e ct?

where m, +m, + -+ m_ = r. We can write a Jordan block [, (4) as

LAy =241, +H, (2.13)
where I, is an identity matrix of size m,. x m, and,
o 1 0 - O
e
H i | : = 0|, ofsize my X my (2.14)
E o, il
0 -+ .« - 0

Definition 2.2
The function £ is said to be defined on o (P) if the values
f92), 0<j<r—-1,1<i<n
exist. These are called the values of the function f on o (P).
The following of f(P) requires only the values of f on (P}, it does not require any other
information about f see N. J. Higham [11]. Ti is well knows that if f(P) is well defined and T

is an invertible matrix in €™", then
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f(TiPT) =T 1f(P)T (2.15)

The symbols @, ¢ and ~, due to Bachmann and Landau (1927), which are also used by e.g. F.
W. J. Olver [21] and A. Erd"elyi [7]. Concerning the definition and elementary properties of
asymptotic series we refer to W. Wasow [23] and A. Erd"elyi [7].
Lemma 2.1 (matrix function via Jordan canonical form). Let f be defined on o(P) ,P € Z7°"
and let P have the Jordan canonical form (2.11) subject to (2.12). Then

f(P) =TF(NT™* = Tdiag(fU,).f Ga)+, FU)T ™" (2.16)

where

) FP@) .. Amow

.-1 ':m;{—l}ll
kaj — 0 f( k] . : :\_m;{x:ln;{ (217)
: ", fLJ.]' (Akj
: 0 fl4.)

Proof See [11].

I11. More general case of Gamma and Beta matrix functions with two positive stable
matrices.

It is possible to extend the classical Gamma function in many ways, some of these extensions
could be useful in certain types of problems. In their work on the subject, M. Abul-Dahab and

A. Bakher see [1] define the Gamma matrix functions as follows.

rA4p)=[" £P~T et dt (3.1)
where A and B are a positive stable matrices and | ia an identity. In this paper we define the
Gamma matrix function with two positive stable matrices as follows.
Definition 3.1 Let P and @ be two positive stable matrices inC™", then the generalized

Gamma matrix functions denoted by I'(@, P) and define as
T(Q.P) = [ e ™ tP " dt (3.2)

The definition of generalized Gamma function, I'(@, P) is claimed well defined, indeed,

IT(Q.P)II =

oo
J e FeEP T g
o

< [Pl 1P llde (33)
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using equations (2.9) and( 2.10) we have

r—1r-1 ) Itk o
Pl + 1) L ) o )
|IT(Q, Pj” E ZZ [ll |I ]II E‘:"IQ”] r J. e—runrr‘hok@]‘t}‘LP:‘—ljﬂ[:tj_i' (tjkdt
=0 k=0 I b
r=lr-1 ) Itk =
P|| + 1)/ Ky 2 . . .
< Z (” |I ]IEJIIQ"] r f e_r‘?"@}t}r"P}_lfﬂ[tj} (tjkdt
i=0k=0 LE- o
r—1r—1 . k -:'.:l:k =
<SS UAL DAY [ rirmnccig
- jlk!
j=0k=0 0
let T = to(Q),dt = T therefore,
gla)
5 (11 + 7 (i s [
T = —y(P)—j— r . .
ZZ jlk! [:Q(Qj) . kfe_rr}’"PH-Hk_ldr:
=0 k=0 b ]
r—1r—1 _ jtk
(el + D (lelD*r = —y(P)—j—k .
) ) i (@) "7 TO @ - -0 <
F=0 k=0
That is
IT(Q. Pl < oo
From the definition (5.1) we see that
Ir(Q.Pp+1)= J e 9t tP dt
o
=—Q te ¥R+ Q7P J. e 2Pt
o

=0+ Q'PI(Q,P)
Thus we have
I(Q.P+1)=Q 'PI(Q.P)
In addition T'(@, 1) = @~* which is easily derived from the definition.
We then have the identity
I@P+n)=Q P+ (n—1NI(QP+ (n—1)I)
=(@D¥P+(n—1NP+ (n—2)DI(Q,P+ (n—2)I)
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=@ "(P+ (n—1)DP+ (n—2)1)--T(QP)
= (@ H"(P),I(eP)
where (P), = (P+ (n—1)I)(P+ (n— 2)I)---P.
Lemma 3.1 Let P and @ be two positive stable matrices in C™*" and suppose also that P and

@ commute and there exist a nonsingular matrix T satisfying

T™PT =],
and
T™QT =],
where J, and J, are Jordan matrices
Ji, 0 = e 0]
0 Jj, O
h=1: D :
: - 0
L 0 0 .
PO - - 0]
0 0 :
E=% W :
: » .0
o ™ 0 L)

such that J,. has the same size as the size of J,. forall i =, 1 <1i,j = s, then we can define
the generalized Gamma function I'(Q, P) as
RE@YP) = 7T (1. 1.)T (34)
Proof:
I(Q.P) = [ e~ tP dt,
by equation (2.15) we have,

o

(@, P) =JT"1E_”5T T tth=ird:
o

oo

=71 J. et lgr T
o
=T7'r(J,,J)T. ©
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Lemma 3.2 (generalized Gamma Matrix Function via Jordan Canonical Form)

Let P and @ have the Jordan canonical forms
TTPT =], =diag(Jy J1, ' ]1.)

Ta'PT == dmﬁ(f:.f; "'f:_‘)
J,. have the same size asthe sizeof J,. foralli = j,1 <i,j < =

A, 1 0 01
0 A4, 1 :
=i o -~ 0 |e CTF*x
: w1
LD 0 4,
i, 1 0 0
0 p 1 :
L,=|: 0 0|eCxx
: -~ 1
0 0 p,-
Py to,) = fy €75 ™ dt (3.5)
12y o :
re—1 g . .
1 T (A, ) . ar (A, i) 811 2
r( k::le) oA, PR Z WF( o blic)
= T (A ptye) 70 K :
Ol (A, iy ) +5F(ikrﬂk]
94, dpy,
0 0 T(A, )

where

r[jlkrff;{) r f:e_hkrt};k_fdt (3.6)

Proof: Since the functions e®* and t”(a, b € C) are defined on o (@) and o (P) respectively,
then by definition (2.1) we have,

re—1
E_H;;f' —d e_l'-’!kr d™
0 dp:k dF?T{_l
o Tt — e Mkt . :
d
—— e Mt
d i,
0 0 e Mt
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and,
PR itik_l dnt A1)
d;‘l,’}_l
Ap—1 -
t-'r'_;{_-{ = 0 th=
E itﬂ.k—l
0 dA
0 et
SO,
E_.lrzkrt.lr'_k_-{ —
r -1 9. g
e ~Hit die—mfr = n P e Y T d 1 7y |
Hy dﬂr‘k_ dAre—1
O e : 0o thl :
. ie_l'-‘!?{r : %ti;{—l
dpty 0
Ll 0 0 e—mxt AL 0 =1
“ =1 A a
8. e Mktph—1  gg—wktpdr—l s 8i glrx—L—j B
e _— 4 k
9 Opty, s ™ Vg
0 e Hifp el . i
, de Prtth—l  geHrftdx—1
'5. . dd; gy
L 0 A :

The result follows directly by the integration from 0 to = the matrix abovec.

Theorem 3.3 Given positive stable matrices P and @ with eigenvalues 4 and p respectively,

then when Re u — == and A is fixed then

gPair(Auw)  _j-1p(g-1)
T N e ™

Proof

APAT(A) _ 8PaT
AuF 4% AuPais

r(d)
=57 T ()17 (Clogi T @)

ar q - e |
=53, ;) p (—log) TP ()

—_F q
r=0 &1=0

l S aufT L AT

(q} [p) aF Tt d-'u:-:ofm:'fl-.:q-::. (A

(3.7)

(3.8)
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To complete the prove, we need to find the leading term of equation (3.9) which we get when
r=pandl=1Iis

-(DE)w e

Thus
araIT(a, .
Mp—a;m = —qu el +
q P ar -4 ar (—1lo :| }
2y () ()50 e T (@) (3.9)
. —A—irliq—:}u]
q p ar~ a’ 1 (g-1)
[1+ —qu=A-2 1'4 T Ze=o 2o (g}( )a Pl (Flogn) | (AJ] (3.10)
= (@)(—u )" :'[A) [1+0{=2]] (3.11)
when R;p — 2= we have
aF

a1 T
Pl A LG TR N ©

Definition 3.2 Given P, P, to be two matrices inC™" and P, P, = P,P,, then the Beta
function B(P,,P,) of P, P, is defined as

B(P,,P,) = _I’Dltl ) R ' Y (3.12)
The definition of B(P,,B,) is well defined see L,Jodar and J. G. Cortes [13]. m
Now we are ready to obtain a more general case for beta matrix functions.
Theorem 3.4 :LetT'(P,,Q) and T'(P,,@) be such that, P,,P, and @ are three positive stable
matrices and P,, P, and @ commutes. Then

I'(PLQIT(P,,Q) = B(P,P)I(P + P,,Q) (3.13)
Proof

oo

I'(P.Q)T(P,.Q) = f g w0 Pl g f e~ Pl gy
o

=Jje—lx+}}t2 B, ..r yPe Idvdx
o

o
Let x + v = u and v = uv. So we have
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T(P,Q)(P,,Q) = J- J- e "9 [u(1 — v)" N uw)P=" ududv

1 @

= J(l —v)R P gy J e U@ yPrth—lg,,

=B (P, P, )T (P, +P,,Q)

Conclusion
Matrix functions have a major role in science and engineering. One of the fundamental
matrix functions, which is particularly important due to its connections with certain matrix
differential equations and other special matrix functions, is the matrix Gamma function. This
research article we concluded that,

1. The generalized gamma matrix function via Jordan canonical form.

2. Asymptotic approximation for the gamma matrix function with two positive stable

matrices.

3. A more general case of beta matrix functions with two positive stable matrices.
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