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Use Of Factor Analysis And Discriminant Analysis To Determine The Factors 

Affecting Climate Type And Building Shape In Libya 

Abstract 

  Climate in simple concept commonly known as the rate of the weather , there are many 

observed elements of the atmosphere that are subject to constant change. These elements 

generally are: Maximum temperature(X1), Minimum temperature (X2), Relative humidity(X3), 

Wind speed(X4), Wind direction(X5), Duration of sun shine(X6), Clouds amount(X7) and 

Rainfall amount(X8).The main objectives of the study are: (i) To define the factors 

influencing the Climate, and to determine the most important factors of the climatic 

variables.(ii) To discriminate the Climate by region and define the factors which responsible 

for that discrimination. (iii) To determine the  factors that influencing in the building form. 

To achieve these goals, a simple random sample of ten cities were selected from the Libyan 

Meteorological Department in Tripoli. These cities are divided into (6) cities as a coastal 

climate and (4) cities as a desert climate. The data of this study were collected as a series from 

each city from January of the first year 1970 to December of the last year 2000.  Each series 

consists of 12×30×30×10 monthly observations, and the total data points in the study will be 

(108,000) from Derna, Benghazi, Jalu, Agedabia, Tripoli, Misurata, Sebha, EL-Kufra, 

Ghadames and Shahat. To study the variability of climate system of these places needs to 

explain  the  observed  correlations  between the elements and the regions. 

Two different statistical techniques are used in this study to analyze the data to study the first 

objective, factor analysis is used to determine the importance of the variables and their effect 

on the climate in both coastal and desert climate in general, and for each city separately. To 

study the second and third objectives discriminant analysis is used. This study provides a 

number of variables with significant positive effect on the Type of Climate variable(X9), in 

the coastal cities, (Derna, Benghazi, Agedabia, Tripoli, Misurata, Shahat) Maximum 

Temperature(X1), Duration Of Sun Shine(X6),Clouds Amount(X7) and Rainfall Amount (X8) 

are good representative for all eight original variables. But in the desert cities (Sebha, Jalu, 

EL-Kufra, Ghadames) the variables Maximum temperature(X1), Minimum temperature(X2), 

Relative humidity(X3), Wind speed(X4), Duration of sun shine(X6), Clouds amount(X7) and 



 

 
 

Rainfall amount(X8) all these variables have significant positive effect on the Type of Climate 

variable(X9). 

 The results from discriminant and classification analysis for the dependent variable Type of 

Climate (X9) show that: There is significant difference between the climate of ten regions. 

Where, Maximum Temperature(X1), Relative humidity(X3), Duration of Sun Shine(X6), 

Clouds Amount(X7) and Rainfall Amount(X8) are significant and important, and the Relative 

humidity(X3) have high correlation with the discriminant function. The results from 

discriminant and classification analysis for the dependent variable Type of Building(X10) 

show that: There is significant difference between the building form of the ten regions. 

Where, Maximum Temperature(X1),Relative humidity(X3), Duration of Sun Shine(X6) and 

Clouds Amount(X7) have high correlation with the discriminant function or these variables 

are important and significant and have an effect on the building form in each city.  

Key words : Discriminate Analysis, Classification, Climate, Factor Analysis. 

 ة في نوع المناخ و شكل المبنى في ليبياالتصنيفي لتحديد العوامل المؤثر والتحليل  استخدام التحليل العاملي
 ياسمينة بوزيد الفقيه                           نعيمة علي عبدالنبي                                 

  كلية العلوم   -قسم الإحصاء               كلية الآداب و العلوم  -قسم الحاسوب                       
 جامعة بنغازي                              قو جامعة بنغازي فرع سل                             

 

 لخ   الم
المناخ بمفهوم بسيط يعرف عادة باسم معدل الطقس ، هناك العديد من العناصر الملحوظة في الغلاف الجوي والتي تخضع لتغير  

، وسرعة X3، والرطوبة النسبية X2الحرارة الدنيا  ، ودرجةX1مستمر. هذه العناصر بشكل عام هي: درجة الحرارة القصوى 
الأهداف الرئيسية X8. وهطول الأمطار الكمية X7، وكمية السحب X6، ومدة سطوع الشمس X5، واتجاه الرياح X4الرياح 

اخ حسب المنطقة ( تصنيف المن2( تحديد العوامل التي تؤثر على المناخ ، وتحديد أهم عوامل المتغيرات المناخية. )1للدراسة هي: )
 ( تحديد العوامل التي تؤثر على شكل المبنى.3وتحديد العوامل المسئولة عن هذا التصنيف. )

ولتحقيق هذه الأهداف ، تم اختيار عينة عشوائية بسيطة من عشر مدن من دائرة الأرصاد الليبية بطرابلس. هذه المدن مقسمة 
صحراوي. جمعت بيانات هذه الدراسة كسلسلة من كل مدينة من يناير  ( مدن ذات مناخ4( مدن ذات مناخ ساحلي و )6إلى )

ملاحظة شهرية ، على مدى  12×30 . تتكون كل سلسلة من2000إلى ديسمبر من العام الأخير  1970من العام الأول
بيا ، طرابلس ( من : درنة ، بنغازي ، جالو ، أجدا108,000عام لعشر مدن وسيكون مجموع نقاط البيانات في الدراسة ) 30



 

 
 

، مصراته ، سبها ، الكفرة ، غدامس ، شحات. لدراسة التغير في النظام المناخي لهذه المناطق ، نحتاج توضيح الارتباطات 
 الملحوظة بين العناصر والمناطق.

التحليل العاملي تم استخدام طريقتين إحصائيتين مختلفتين في هذه الدراسة لتحليل البيانات : لدراسة الهدف الأول تم استخدام 
لتحديد أهمية المتغيرات وتأثيرها على المناخ في كل من المناخ الساحلي والصحراوي بشكل عام ، ولكل مدينة على حدة. لدراسة 

تقدم هذه الدراسة عددا من المتغيرات ذات التأثير الإيجابي المعنوي على نوع  .الهدف الثاني والثالث تم استخدام التحليل التمييزي
في المدن الساحلية )درنة ، بنغازي ، أجدابيا ، طرابلس ، مصراتة ، شحات( حيث أظهرت نتائج التحليل  X9ناخ المتغير الم

تمثل جيدًا المتغيرات X8 و كمية الأمطار X7 كمية السحب X6، مدة سطوع الشمس X1العاملي أن: درجة الحرارة القصوى 
، درجة الحرارة X1سبها ، جالو ، الكفرة ، غدامس( متغيرات : درجة الحرارة العظمى الثمانية الأصلية. أما في المدن الصحراوية )

كل X8 وكمية الأمطار  X7، كمية السحب X6، مدة سطوع الشمس X4، سرعة الرياح X3، الرطوبة النسبية X2الصغرى 
  . X9هذه المتغيرات لها تأثير إيجابي كبير على نوع المناخ المتغير

أن: هناك فرق كبير بين مناخ العشرة مناطق. حيث تكون X9 ليل التمييزي والتصنيفي للمتغير التابع نوع المناخ تظهر نتائج التح
ومقدار هطول الأمطار  X7 ، و كمية السحب X6، ومدة سطوع الشمس X3، والرطوبة النسبية X1درجة الحرارة القصوى 

X8  معنوية ومهمة ، والرطوبة النسبية ذات دلالةX3  ارتباط كبير مع دالة التمييز. تظهر نتائج التحليل التمييزي والتصنيفي لها
 أن: هناك فرق معنوي بين شكل المبنى للعشر مناطق. حيث أن درجة الحرارة القصوى  X10للمتغير التابع نوع المبنى 

X1 والرطوبة النسبية X3 ومدة سطوع الشمس X6 وكمية السحب X7ييزية أي أن هذه المتغيرات لها ارتباط كبير بالدالة التم
 مهمة وذات دلالة معنوية ولها تأثير على شكل المبنى في كل مدينة.

 التحليل التمييزي ، التصنيف ، المناخ ، التحليل العاملي. الكلمات المفتاحية 
 
 
 
 
 
 
 
 
 



 

 
 

INTRODUCTION 

   The climates prevailing around the globe vary greatly, ranging from the polar extreme to 

tropical climates. These are primarily influenced by the sun’s energy heating up the land and 

water masses. At the regional level,  the climate is influenced by altitude, topography, 

patterns of wind and ocean currents, the relation of land to water masses, the geomorphology, 

and by the vegetation pattern. Accordingly, the tropical and subtropical regions can be 

divided into many different climatic zones, but for practical reasons, in this publication three 

main climate zones are  considered: 

1. The hot-arid zone, including the desert or semi desert climate and the hot-dry maritime  

climate. 

2. The warm-humid zone, including the equatorial climate and the warm-humid island 

climate. 

3. The temperate zone, including the monsoon climate and the tropical upland zone. 

  The main climatic factors relevant to construction are those affecting human comfort: 

1. Air temperature, its extremes and the difference between day and night, and between  

summer and winter  temperatures. 

2. Humidity and precipitation. 

3. Incoming and outgoing radiation and the influence of the sky condition. 

4. Air movements and winds.[1] 

The architecture started since ancient times to comply one of the basic needs of the human 

being, it represented the shelter for him, was spontaneous constantly changing in order to 

provide space appropriate to exercise its activity where away from what could be 

troublesome or harmful than surrounded by the environment; therefore inherent in the 

development rights of vacuum which adapts him to exercise the activity with dealing with the 

environmental conditions surrounding access to the most comfort-able space.From here 

began architecture, which was carrying apart styles according to the region in which they 

appear (depending on the privacy environmental of the area). Then began the circumstances 

and social needs, ideas, and ideological and cultural needs of human. After the evolution of 

architecture methods ; became what simulates human nature and respect his conditions, 



 

 
 

thoughts and beliefs, and conformity with what surrounded environmental conditions provide 

a more comfortable vacuum.[2] 

Climate is the long-term weather zone or region for more than 30 years  old or so,  quite 

simply is the average temperature and precipitation for a period of  time, and  this includes  

the  amount of  sun in the region, and  the  rate  of  wind  speed, amount of  rainfall  each 

year,  and the state of extreme weather with,  and  local geography of  the  region. 

  Climate simple concept commonly known  as "the rate  of  the  weather," or more precisely 

that the statistical description for the average and  fluctuation appropriate amounts through a 

period of time ranging from months to thousands or millions of years The traditional term is 

30years old, as  defined  by the World Meteorological Organization (WMO), that  these 

statistics are often in a superficial variables such as the degree of  heat and rain and wind. A 

wider  range  of  climate  is  a case  containing  a description  of  the  statistical  system  of  

the  climate. 

 The building must be adapted with the climate and its different components, in the moment 

that ends the construction becomes part of the environment, like a tree or a stone, and it 

becomes an exposed to the same effects of the sun or rain or wind like any something in the 

environment, if  the building be able to face the climate problems and at the same time using 

all climatic and natural resources available in order that to achieve human comfort inside the 

building, this building can be called " a climatic balanced building " . 

Many contemporary buildings ignored climate and its factors and dominated crust glass on 

this buildings, and the home to go to the outside instead of inside and exposed openings to 

direct sunlight, the glass openings and surfaces regard as the main source to entry of the heat 

into the building, thus glass increases the force of the heat to the interior by far exceeds the 

force that occurs during the dark surfaces , Libya, generally considered a country with a 

desert climate and sun protection inside and outside of the building is desirable all the year. 

The expected population increases calls for architects and construction workers to interest by 

application of the process of designing buildings in a manner consistent with the prevailing 

climate in each area and taking into account to reduce the consumption of energy , with 

minimizing the effects of the construction and the use on the environment and maximizing 



 

 
 

the harmony with nature. This study try to introduce the factors which have a significance 

effect on the climate and on the managed of the building design in general or the factors that 

influencing the building form. 

Objectives  of  The Study  

The main objectives of this study are : 

1- To define the factors influencing the Climate and to determine the most important factors 

of  the climatic variables. 

2- To discriminate the Climate by region and define the factors which responsible for that  

discrimination. 

3- To determine the factors that influencing the building form. 

Hypotheses of  The Study 

The main hypotheses of this study are :  

i. There is two nonsingular groups covariance matrices    ∑1  ≠  ∑2  . 

ii. There is no relationship between the Climatic Factors and the Type of Climate . 

iii. There is no relationship between the Climatic Factors and the Type of Building . 

Source  Of  Data and Sample Selection 

  The data of this study selected from the Libyan Meteorological Department, Tripoli(1970-

2000), National Geophysical Data Center(2004), and World Meteorological Organization 

(2005). [3] 

A simple random sample of ten Libyan cities has been selected. These cities are : Derna, 

Benghazi, Jalu, Agedabia, Tripoli, Misurata, Sebha, EL-Kufra, Ghadames and Shahat. The 

data of this study collected series of each city from January of the first year1970 to December 

of the last year2000. Each series consists of 12×30×30×10 monthly observations, and the 

total data points in the study will be (108,000). 

Description Of  Variables  

   The number of variables in this study is 10 [Maximum temperature(X1), Minimum 

Temperature (X2), Relative Humidity (X3), Wind Speed (X4), Wind Direction (X5), Duration 



 

 
 

Of Sun Shine (X6), Clouds Amount (X7)  and  Rainfall Amount (X8), Type of Climate(X9), 

Type of  Building (X10)]. Some of these variables are qualitative and most of them are 

quantitative. These variables are descript in brief below :  

Maximum temperature(X1), Minimum temperature(X2), Relative humidity (X3), Wind 

speed(X4), Duration of Sunshine (X6), Clouds Amount (X7), Rainfall Amount(X8): These 

variables are quantitative so they are included in the analysis directly . 

Wind direction(X5 ):This variable is qualitative and has been included in  the analysis by 

coding, one for north, and two for east, and three for south, and four for west, and fife for 

northeast, and six for northwest, and seven for southeast, and eight for southwest . 

Type of Climate(X9):This variable is qualitative and has been included in the analysis by 

coding, zero for Desert Climate, and one for otherwise . 

Type of Building(X10):This variable is qualitative and has been included in the analysis by 

coding , zero for Prevalent Building, and one for Distinctive Building. 

METHODOLOGY 

To achieve the objectives of the study, two different statistical techniques were used, namely, 

factor analysis " data or variables reduction ", and discriminant analysis "classification of  

variables ".   

In factor analysis the dependent variables represented as linear combinations of a few 

independent random variables called factors, where the  number of the factors to be less than 

from the number of independent  variables. The factors are underlying Constructs or Latent 

variables that “generate” the dependent variables. Like the original variables, the factors vary 

from individual to individual; but unlike the variables, the factors cannot be measured or 

observed. The existence of these hypothetical variables is therefore open to question. [4] 

Discriminant analysis is used to identify: 1) the factors which have effect on the Type of 

Climate, ( i.e., classifying Climate as to determined region ) ,  2)  the factors which have 

effect on the Type of  buildings, (i.e.,  classifying building as to climate of determined 

region). 



 

 
 

Discriminant analysis involves deriving a variate, the discriminant variate is the linear 

combination of the two (or more) independent variables that will discriminant best between 

the variables(climatic factors) in the groups defined a priori Discrimination is achieved by 

calculating the variety's weights for each independent variable to maximize the differences 

between the groups (i.e., the between– group variance relative to the within – group 

variance). The variate for a discriminant analysis,  also known as the discriminant function. 

[5] 

1. Factor  Analysis 

   Factor analysis is a multivariate technique which attempts to account for the correlation 

pattern present in the distribution of an observable random vector in terms 
T

1 pX = (X ,..., X ) of 

a minimal number of unobservable random variables, called factors. In this approach each 

component X is examined to see if it could be generated by a linear function involving a 

mini-mum number of unobservable random variables, called common factor  variates, and a 

single variable, called the specific factor variate.[6] 

   A frequently applied paradigm in analyzing data from multivariate observations is to model 

the relevant information (represented in a multivariate variable X ) as coming from a limited 

number of latent factors. we assume that there is a model (it will be called the "Factor 

Model") stating that most  of the covariance's between the P elements of  X can be explained 

by a limited number of latent factors. Factor analysis is interest in many fields such as 

psychology,  marketing, economics , politic sciences, etc . 

  The aim of factor analysis is to explain the outcome of  p variables in the data matrix  X  

using fewer variables, the  so-called  factors. Ideally all the  information in  X  can be 

reproduced by a smaller number of factors. These  factors are interpreted as latent 

(unobserved) common characteristics of  the observed 
pX R . The case just described 

occurs when every observed  
T

1 pX = (X ,..., X )   can  be  written  as 

m

i ij j i

j=1

X =  f + μ                ,  i = 1,...,p                                    (1.1) 



 

 
 

  Here  fj  , j = 1,...,p  denotes the factors. The number of  factors, m should  always be much 

smaller than  p . For instance, in psychology X may represent p results of a test measuring 

intelligence scores. One common latent factor explaining  
pX R    could be the overall 

level of “intelligence”. [7]  

1.1. The Orthogonal Factor Model 

   The observable random vector  X ; with  p components  has  mean µ and covariance matrix  

   the factor model postulates that X is linearly  dependent upon a few unobservable 

random variables 1 mF ,...,F  , called  common factors and p additional sources of variation  

1 pε ,...,ε , called   errors ,  the  factor  analysis  model  is 

1 1 11 1 12 2 1m m 1

2 2 21 1 22 2 2m m 2

p p p1

-μ = F + F +...+ F + ε

-μ = F + F +...+ F + ε           (1.2)

                                      

                                                                           -μ = F

X

X

X 1 p2 2 Pm m p+ F +...+ F + ε

 

   Or in matrix notation   

(p×1) (p×m)(m×1)        (p×1)

X - μ =   L   F   +   ε                       (1.3)
       

   The coefficient ij  is called the loading of the i-th variable on the j-th  factor, so the 

matrix  L is the matrix of factor loadings. Note that the i-th  specific factor  i  is associated 

only with the i-th response Xi . The p  deviations 1 1 2 2 p pX -μ ,X -μ ,...,X -μ  are 

expressed in terms of p+m random variables 1 2 m 1 2 pF ,F ,...,F ,ε ,ε ,...,ε which are 

unobservable. This  distinguishes the factor model of (1.3) in which the independent variables  

[whose position is occupied by   F  in (1.3)]  can be observed. 

   With so many unobservable quantities, a direct verification of the factor model from 

observations on X1 , X2 ,...,Xp is hopeless. However, with some additional assumptions about 

the random vectors  F and ɛ , the model in (1.3) implies certain covariance relationships, can 

be checked. Assume  that 



 

 
 

E(F) = 0,    E(ε) = 0,   
T

(m×m)cov(F) = E[FF ] = I  

       And 

1

2T

(p×p)

p

ψ   0  …  0

0   ψ   …  0
cov(ε) = E[εε ] = ψ =                         (1.4)

           

0   0  …  ψ

 
 
 
 
 
  

 

These assumptions and the relation in (1.3) constitute the orthogonal factor   model, the 

orthogonal factor model implies a covariance structure for  X  from  the  model  in  (1.3)  

T T

T T

T T T T

(X -μ)(X -μ) = (LF + ε)(LF + ε)

                         = (LF + ε)((LF) + ε )

                         = LF(LF) + ε(LF) + LFε + εε

  

Also 

             

T

T T T T T T

T

Σ = cov(X) = E(X -μ)(X -μ)

                  = LE(FF )L + E(εF )L + LE(Fε ) + E(εε )

                  = LL + ψ

 

According to (1.4). Also by independence  
Tcov(ε,F) = E(ε,F ) = 0   then   

T T T T

T T T

(X -μ)F = (LF + ε)F = LFF + εF

cov(X,F) = E(X -μ)F = LE(FF ) + E(εF ) = L
 

1.2.  Covariance Structure for  the Orthogonal Factor  Model 

T

2 2

i i1 im i

i k i1 k1 im km

1.  cov(X) = LL + ψ

                           or       var(X ) = +...+ + ψ

                                    cov(X ,X ) = +...+                 (1.5)

 

i j ij

2.  cov(X,F) = L

                          or      cov(X , F ) =  



 

 
 

  That portion of the variance of the i-th variable contributed by the m    common factors is 

called the i-th communality. That portion of  i iivar(X ) = σ  due to the specific factor is 

often called the specific variance.  Denoting  the  i-th  communality  by  
2

ih  , from  (1.5)     

i

2 2 2

ii i1 i2 im i

var(X ) specific variancecommunality

σ = + +...+ + ψ
 

    or                              
2 2 2 2

i i1 i2 imh = + +...+                                   (1.6) 

   and 

2

ii i iσ = h + ψ           , i =1,2,..., p  

  The i-th communality is the sum of squares of the loadings of the i-th variable  on the  m  

common factors.  [8]   

1.3. Oblique Factor Model 

  This is obtained from the orthogonal factor model by replacing cov(F) = I  by 

cov(F) = R , where R is a positive definite correlation matrix; that is, all  its diagonal 

elements are equal to unity. In other words, all factors in the  oblique factor model are 

assumed to have mean 0 and variance 1 but are correlated,  in this case  

T= LRL + ψ.  [6] 

   To choosing the number of factors (m), several criteria have been proposed. consider four 

criteria for choosing the number of principal components to retain. 

1. Choose  m  equal to the number of factors necessary for the variance accounted for to 

achieve a predetermined percentage, say 80%, of the  total variance  tr(S)  or  tr(R). 

2. Choose m equal to the number of eigenvalues greater than the average  For  R  the  

average  is  1 ;  for  S  it  is   

2

1

/
p

i

j

h p


 . 



 

 
 

3. Use the scree test based on a plot of the eigenvalues of S or  R. If the graph drops sharply, 

followed by a straight line with much smaller slope, choose m equal to the number of 

eigenvalues before the straight line begins. 

4. Test the hypothesis that m is the correct number of factors, 
T

0H : = LL + Ψ    

where   L  is   ( p×m).  [4] 

1.3.1. Test Of Hypothesis In Factor Models 

   Let 
α T

α1 αpX = (X ,..., X )  , α = 1,..., N  be a sample of size N from a p-variate  

normal population with positive definite covariance matrix  . On the  basis of these 

observations we are interested in testing, with the orthogonal  factor model. The null 

hypothesis 
T

0H : = LL + ψ   against the alternatives H1 that  is a symmetric 

positive definite matrix (The corresponding hypothesis in the oblique factor model is 

T

0H : = LRL + ψ  ).  Rejects  H0   whenever ,  with   N – 1 = n 

-n/2

T
-1

T

det(s / N) 1 1
λ = exp tr(LL + ψ) s - np C      (1.7)

2 2det(LL + ψ)

   
   

   
 

Where 
    

T s
dig(LL + ψ) = dig( )  ,

N
 

N
α α T

α=1

s
( ) = = (X - X)(X - X) N
N

   

and  C  depends on the level of significance  α  of  the test. In large samples under   H0 ,  

using  

   2

f                 P -2logλ = P

where

1 1
             f = p(p +1) -[mp + p - m(m +1) + m]              (1.8)

2 2

Z X Z 

 

The modification needed for the oblique factor model is obvious and the value of degrees of 

freedom f for the chi-square approximation in this case is     

1
f = p(p - 2m +1)                                     (1.9)

2
 



 

 
 

 has pointed out that if  N-1= n  is replaced by n0 , where 

0

1 2
n = n - (2p + 5) - m                         (1.10)

6 3
 

then under  H0 , the convergence of  -2logλ  to chi-square distribution is more  rapid. [6] 

1.3.2. Method of Estimation 

    Let ∑  have eigenvalue-eigenvector pairs (λi,ei) with  1 2 0p      .   

  Then 
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  This approximate assumes that the specific factors ɛ in (1.3) are of minor importance and 

can also be ignored in the factoring of  ∑ , If specific  factors are included in the model, their 

variances may be taken to be the  diagonal elements,  so we  find this  approximation  

becomes  
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Where  
2

1

m

i ii ij

j

 


   for 1,2,..., .i p
  [8]   

1.3.3.  Estimation Of Loadings And Communalities   

  By  use  an  initial  estimate ψ   and  factors  s - ψ or R - ψ   to  obtain  

T

T

S- ψ LL                                   (1.11) 

R - ψ LL                                  (1.12)




 

   Where L   is  (p×m)   and  is  calculated  as  

1 2 p1 2 pL = ( λ e , λ e , , λ e )                  (1.13)  

 Therefore ( , ), 1,2,...,i ie i p   define as the (largest) eigenvalue eigenvector pairs  

determined from R. The  i-th diagonal element of  S - ψ  is given by ii i
s - ψ , which is the 

 i-th communality 
2

i ii ih = s - ψ . Likewise, the diagonal elements of R - ψ  are the 

Communalities 
2

i ih =1- ψ  ( clearly , i
ψ  and  

2

ih  have different values for S than for R). 

With these diagonal  values,   S - ψ   and  R - ψ   have  the  form   
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A popular  initial estimate  for a communality  in  R - ψ   is 
2

2
i ih = R  the squared  multiple  

correlation  between Fi  and the  other  p-1 variables.  This  can  be  found  as 

2
2

i i ii

1
h = R = 1-                         (1.15)

r
 



 

 
 

Where   r
ii
   is  the  i-th  diagonal  element  of   

-1R  . 

For  S - ψ   ,  an  initial  estimate   of   communality  analogous  to  (1.15)  is  

2

i ii ii

1
h = s -                                   (1.16)

s
 

Where Sii is the i-th diagonal element of  S and S
ii 

 is  the i-th  diagonal element  of   S
-1

  .  It 

can be shown  that (1.16) is equivalent to  

2
2

i ii ii iii

1
h = s - = s R                           (1.17)

s
 

which is a reasonable estimate of the amount of variance that Fi has in common with  the  

other  
,F s  . 

  To use  (1.15) or (1.16) , R  or  S  must be nonsingular. If  R  is singular, we can use the 

absolute value or the square of the largest correlation in the  i-th  row of  R as an estimate of 

communality. After obtaining communality estimates, we calculate eigenvalues and 

eigenvectors of S - ψ   or  R - ψ   and use (1.13) to obtain estimates of  factor loadings L . 

Then the columns and rows of  L  can be used to obtain  new eigenvalues (variance 

explained) and communalities, respectively. The sum of squares of the  j-th column of L   is 

the j-th eigenvalue of  S - ψ   or  R - ψ  and  the  sum of squares of  the  i-th  row  of  L   is  

the  communality of  Fi  . The  proportion  of  variance  explained  by  the  j-th  factor  is  

j j j

p

i

i=1

λ λ λ
 = =
tr(S- ψ) tr(R - ψ)

λ
 

 Where λj  is the j-th eigenvalue of  S - ψ  or R - ψ . The matrices  S - ψ   and R - ψ   are not 

necessarily positive semi definite and will often have some small negative eigenvalues. In 

such a case, the cumulative proportion of variance will exceed 1 , and then decline to 1 as the  

negative  eigenvalues are added. (Note that loadings cannot be obtained by(1.13) for the 

negative  eigenvalues). [4] 



 

 
 

2. Discriminant Analysis 

1- The basic idea of discriminant analysis consists of assigning an individual or a group of 

individuals to one of several known or unknown distinct populations, on the basis of 

observations on several characters of the individual or the group and a sample of  

observations on these  characters from the populations if these are unknown. In scientific 

literature, discriminant analysis has many synonyms, such as classification, pattern 

recognition, character recognition, identification, prediction, and selection, depending on the 

type of scientific area in which it is used. [6] 

2- Discriminant analysis is used in situations where the clusters are known a priori. The aim 

of discriminant analysis is to classify an  observation, or  several  observations,  into  these  

known  groups. [7] 

2.1. Some Applications Of  Discriminant Analysis 

I. On a patient  with  a diagnosis of  myocardial infarction, Observations  on his systolic 

blood pressure (X1), diastolic blood pressure
 
(X2), heart  rate, (X3) stroke index

 
(X4), and 

mean arterial pressure
 
 (X5) are taken. On the  basis of  these observations it is possible to 

predict whether or not the patient will  survive. 

II. In developing a certain rural area a question arises regarding the best strategy for this area 

to follow in its development. This problem can be considered as one of the problems of 

discriminant analysis. For example, the area can be grouped as catering to recreation users or 

attractive to industry by means of variables such as distance to the nearest city
 
(X1), distance 

to the nearest major airport
 
(X2), percentage of land under lakes

 
(X3) , and percentage of  land 

under  forests
 
(X4) . 

III. Admission of students to the state-supported medical program on the basis of examination 

marks in mathematics
 
(X1), physics

 
(X2), Chemistry

 
(X3), English

 
(X4), and bioscience

 
(X5)is 

another example of  discriminant  analysis. [6] 

2.2. Fisher’s Linear Discriminante Function 

   Fisher's idea was to base the discriminant rule on a projection 
Ta X  such that a good 

separation was achieved. This Linear Discrimination  analysis projection method is called 

Fisher’s Linear Discrimination  Function  if    Y = X a 



 

 
 

denotes a linear combination of observations, then the total sum of squares of   

n 2

i=1 iY, (Y - Y)  ,  is equal  to 

                                                  Y
T
 Y  = a

T 
X X a = a

T
 Ta           (2.1) 

                                          and          T = X
T 

X 

Suppose  there  are  samples    Xj  ,   j = 1 , ... , J   from   J   populations.  

  Fisher's suggestion was to find the linear combination  a
T
X  which maximizes the ratio of 

the between-group-sum of squares to the within-group-sum of squares. The  within-group-

sum  of  squares  is  given  by 

                           

J J
T T T T

j j j j

j=1 j=1

Y Y  = a X X a = a Wa               (2.2) 

Where Yj denotes the j-th sub-matrix of  Y corresponding  to observations of group  j  and 

the coefficient vector  
-1

pooled 1 2a = S (X - X ) . The within-group-sum of squares measures 

the sum of variations within each group. The between-group-sum of squares is  

J J
2 T 2 T

j j j j

j=1 j=1

n (Y - Y) = n {a (X - X)} = a Ba       (2.3)   

 Where  jY  , jX  denote the means of  j jY and X  and Y , X  denote the  sample means 

of  X and Y . The between-group-sum of squares measures  the  variation  of  the means 

across groups. The total sum  of  squares (2.1) is the sum of the within-group-sum of  squares  

and the between-group-sum  of  squares, i.e., 

T T Ta Ta = a Wa +a Ba  

  Fisher's idea was to select a projection  vector  a  that  maximizes the ratio 

T

T

a Ba
                                   (2.4)

a Wa
 

 The vector a that maximizes (2.4) is the eigenvector of W−1B that corresponds to the largest 

eigenvalue. Now a discrimination rule is easy to  obtain: 

Classify  X  into group  j  where   
T

j
a X   is  closest  to   a

T
X   , i.e., 



 

 
 

                        jX       where    
T

j
j

j = min a (X - X )  

When   J = 2  groups ,  the  discriminant  rule  is  easy  to  compute.  

 Suppose that group 1 has  1n  elements and group  2  has 2n  elements. In  this  case  

T1 2

1

n n
B = dd ,

n

 
 
 

 1 2d = (x - x ).  

W
-1

B   has  only  one  eigenvalue  which  equals 

 -1 T -11 2

1

n n
tr W B = d W d

n

 
 
 

 

and the corresponding eigenvector is 
-1a = W d.The corresponding discriminant  rule  is  

T

1 1 2

1
X          if   a {X - (X + X )} > 0

2
  

                                                                                                                (2.5) 

T

2 1 2

1
X          if   a {X - (X + X )} 0

2
   

2.3. Allocation  Rule  for  Known  Distributions 

   In general we have populations  Πj , j = 1, 2, ..., J and we have to allocate an observation X 

to one of these groups. A discriminant rule is a separation  of  the sample  space (in general 

R
p
)  into  sets  Rj such that  if  X ϵ Rj ,  it  is identified as a member of population Πj . The 

main task of  discriminant analysis is to  find “good” regions Rj such that the error of 

misclassification is small, suppose the densities of each population Πj  by fj(x). Then to 

allocating   X  to  Πj  maximizing    Lj(x) = fj(x) = maxi fi(x). 

   If several fi  give the same maximum then any of them may be selected.  Mathematically ,   

the  sets  Rj   are  defined   as : 

j j iR = {x : L (x) > L (x)  for  i =1,..., J,i j}.    (2.6)  

  By classifying the observation into a certain  group we may encounter a misclassification  

error. 



 

 
 

  For J=2 groups the probability of putting X into group 2 although it is from  population 1 

can be calculated  as 

2

21 2 1 1

R

p = P(X R \  ) = f (x)dx.                   (2.7)    

  Similarly the conditional probability of classifying an object as belonging  to  the  first  

population  1   although  it  actually  comes from  2  is  

1

12 1 2 2

R

p = P(X R \ ) = f (x)dx.               (2.8)    

   The misclassified observations create a cost ( / )C i j  when a Πj observation  is assigned to 

Ri . The cost structure can be pinned down in  a cost  matrix: 

                                                        Classified       Population  

                                                                                             Π1              Π2 

1

2

0 (2|1)
True population  

(1|2) 0

C

C




 

   Let πj  be the prior probability of population  j , where “prior”means  the a prior 

probability that an individual selected at random belongs to  j  ( i.e., before  looking  to the  

value  X ).  

  The  Expected  Cost  of  Misclassification  (ECM)  is  given by 

21 1 12 2ECM = C(2 \1)p π +C(1\ 2)p π .                    (2.9)  

  For two given populations,  the rule minimizing  the  ECM  is given by 

1 2
1

2 1

f (x) πC(1\ 2)
R =  x :

f (x) C(2 \1) π

    
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    
 

                                                                                                               (2.10) 

1 2
2

2 1

f (x) πC(1\ 2)
R =  x : <

f (x) C(2 \1) π
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   
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  Thus a special case of the  ECM rule for equal misclassification costs and  equal prior 

probabilities. For simplicity the unity cost case, C(1|2) = C(2|1) = 1  ,  and equal prior 

probabilities ,    π1 = π2  

1
1

2

f (x)
R = x :   1

f (x)

 
 

 
        ,         

1
2

2

f (x)
R = x :  < 1

f (x)

 
 
 

               . [7] 

 

  Now  Estimate  the  Actual  Error  Rate :  

 

 Π1 Π2  

Π1 n1c n1m=n1-n1c n1 

Π2 n2m=n2-n2c n2c n2 

(2.11) 

  Where  

        n1c = number of   1   items  correctly  classified  as  1   items. 

       n1m = number of  1  items  misclassified  as  2  items. 

       n2c = number  of  2  items  correctly  classified  as  2   items. 

       n2m = number of  2  items  misclassified  as  1   items. 

  The  Actual  Error  Rate  is                
1 2

1 2

n m n m
AER

n n





 

  Which is recognized as the proportion of items in the training set that are misclassified. and 

can be Estimates of the conditional misclassification probabilities as: 

1
(2/1)

1

n m
p

n
           ,             2

(1/ 2)

2

n m
p

n
  

Where  

(2/1)
p  =  probability  of   1  items  misclassified  as  2  items. 



 

 
 

(1/2)
p

 
=  probability  of    2  items  misclassified  as  1   items.  [8] 

 Assumptions Underlying The Discriminant Function  

i. The p independent variable must have multivariate normal distribution. 

ii. The p×p  variance - covariance matrix of the independent variables in  each of the two 

groups  must be the same . 

2.3.1. Classification For Two Normal Populations 

    Assume that 1f (x)  is p 1 1N (μ ,Σ ) , and 2f (x)  is p 2 2N (μ ,Σ )  if   1 2        then   

the classification   rule   is   allocate   X   to  
 1    if 

T -1 T -1 2
1 2 1 2 1 2

1

c(1\ 2)π1
(μ -μ ) Σ X - (μ -μ ) Σ (μ +μ ) log          (2.12)

2 c(2 \1)π

 
  
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and  allocate   X    to  2  otherwise . 

In most practical situations, 1 2μ ,μ & Σ  are unknown, suppose n1 measurements of 

1 2 pX = (X ,X ,...,X )  from 1  and n2 measurements of  X from  2  . Then can be 

estimate  1 2μ ,μ & Σ  by   

1n

1 1j

j=11

1
X = X

n
     ;        

2n

2 2j

j=12

1
X = X

n
  

1n
T

1 1j 1 1j 1

j=11

1
S = (X - X )(X - X )

n -1
   ;  

2n
T

2 2j 2 2j 2

j=12

1
S = (X - X )(X - X )

n -1
      (2.13) 

 

           Where                       

1 1 2 2
P

1 2

(n -1)S + (n -1)S
S =                       (2.14)

n + n - 2
 

So the classification rule given by (2.10) can be reduced as allocate  X to 1   if   



 

 
 

T -1 T -1 2
1 2 p 1 2 p 1 2

1

c(1\ 2)π1
(X - X ) S X - (X - X ) S (X + X ) log          (2.15) 

2 c(2 \1)π
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 And  allocate   X   to  2  otherwise .  If   1 2     then  allocate   X   to   1    if   

   T -1 -1 T -1 T -1 2
1 2 1 1 2 2

1

c(1\ 2)π1
- X - X + μ + μ X - K    log          (2.16) 

2 c(2 \1)π

 
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  And  allocate   X   to  2  otherwise .  Where   K  is given  by  

 1 T 1 T 1

1 1 1 2 2 2

2

1 1
K = log + μ μ -μ μ

2 2

 
 
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  The  corresponding  sample  version  is  allocate    X    to   1   if   

T -1 -1 T -1 T -1 2
1 2 1 1 2 2

1

c(1\ 2)π1
- X (S -S )X + (X S + X S )X - K    log          (2.17)   

2 c(2 \1)π

 
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  And allocate X to 2 otherwise. This classification regions are known as quadratic 

functions. [9] 

2.3.2. Test Of Assumption 

   An assumption of discriminant analysis is the null hypothesis that the covariances for  i-th 

group (i = 1,2) do not differ between groups formed by  the  dependent . 

0 1 2 1 1 2H : =        vs       H :      

 The  statistical  test  for  H0  is  ( Box's  M-test  statistical ) . 

k

i i

i=1

M = N log S -  log S  

This test statistic asymptotically distributed as X2
 with degrees of freedom      

1

1
f = (k -1)p(p +1)

2
.  The adjusted test is            

1

2

(f ) 1M  / (1- D )X  

 

 

2 k

1

i=1

2p + 3p -1 1 1
Where          D = -

6(p +1)(k -1) Ni

 
 
 
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 Amor  accurate  approximation  is  given by           
1 2α,(f ,f )M bF  

1
1 2 2

2 1

f + 21
And           f = p(p +1)(k -1) ,       f =

2 D - D
 

k
1

2 2 2
i=1 i 1 1 2

f(p -1)(p + 2) 1 1
D = -  ,     b =

6(k -1) N 1- D - f / f

 
 
 
  

Where  

k :  number of  groups  which is equal to  2. 

S :  pooled  sample dispersion matrix . 

iS :  the dispersion matrix for the  i-th  sample drawn from the i-th  group. 

in :  the number of data points drawn from  i-th  group . 

2

1

i

i

N v


  is  the  total  number  of  observations ,  1.i iv n   

p : the number of independent variable considered for discriminant analysis. 

This statistic test is very sensitive to lack of  normality. the hypothesis H0  maybe  rejected  

due  to lack of  normality  rather  than   non-homogeneity . 

2.3.3. Test Of  Significance 

         To  test  significance  of  the  discriminant  function  where  

0 1 2 1 1 2H :μ = μ           vs          H :μ μ  

1 2μ ,μ  are  the  means  vectors  of  the  groups from  which  the i-th  sample  is  drawn , this  

hypothesis was  tested by using  the univariate  analysis of variance Willk's lambda( ) ,  also 

called  U-statistic .  When variable  are  considered individually , Where 

BSS
Λ =

WSS
 

BSS and WSS are the between and within groups sum of squares respectively.  In this 

situations the smaller value for     greater the probability that the null hypothesis will be 



 

 
 

rejected vice versa thus, small value of     indicate that groups means do appear to be 

different,  while large value of     indicate that groups means do appear to be equally. To 

assess the statistical significance of the Willk's lambda, it can converted into an F-ratio by 

using the following transformation : 

1 2 11
F =  

n n p

p

    
  

  

,     
1 2, , 1p n n pf       

Bartlett has shown that if  H0  is true and   i 1 2
n = n + n = n   is  large, H0  rejected  at  

significance  level  α   if  

 
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p(g-1)

p + g W
- n -1-  ln > , α

2 B + W

  
     

   

X       . [8] 

2.3.4. Summary Of  Canonical Discriminant function 

I. The Eigen value of each discriminant function reflects the ratio of importance of the 

discriminant classify cases of the dependent variable .  

II. Standardized canonical discriminant function coefficients are  used to compare the 

relative  importance  of  independent  variables . 

Structure matrix it is shows the correlations of each variable with each discriminant 

function . 

ANALYSIS  AND  RESULTS 

Estimated Factor Analysis Model   

    In this study requiring  to determine the relationship between the type of climate (X9 ), 

where X9 represent the model dependent variable which  takes two values  X9=0 for desert 

climate ,  and  X9=1 for costal climate, and the remaining variables (X1, X2, X3, X4, X5, X6, 

X7 and X8) as  independent variables.  On the other hand, the purpose of data reduction is to 

remove highly correlated variables from the data file , and  replacing  the  entire data file with 

a smaller number of uncorrelated factors. The estimation of  factor analysis model for each 

city in coastal or desert climate are shown as follows : 

 



 

 
 

Table(1) Comparison Between Factor Analysis Results 

Cities  

Variables have high correlation with the factors 

Max. T. 

(X1) 

Min. 

T. 

(X2) 

R. H. 

(X3) 

W. S. 

(X4) 

W. D. 

(X5) 

D. S. 

S. (X6) 

C. A. 

(X7) 

R. A. 

(X8) 

Derna F -0.917    0.870 -0.986 0.952 0.956 

Benghazi F 0.978 0.947  0.575 -0.947 0.986 -0.961 -0.952 

Agedabia F -0.976 -0.957 0.737  0.833 -0.956 0.907 0.952 

Tripoli F 0.977 0.938 -0.907   0.982 -0.894 -0.954 

Misurata 

'

1F  -0.728 -0.730   0.894 -0.883 0.746 0.966 

'

2F     -0.993     

Shahat F 0.975 0.942  -0.968  0.959 -0.935 -0.889 

Sebha 

'

1F  0.774 0.747 -0.903 0.976     

'

2F       -0.888 0.980 0.775 

Jalu 

'

1F  -0.960 -0.976 0.733  0.709 -0.939 0.954 0.895 

'

2F     0.959     

El-Kufra F 0.983 0.983 -0.912 0.853 -0.614 0.951 -0.856 -0.459 

Ghadames 

'

1F  0.881 0.834 -0.728   0.918 -0.914 -0.877 

'

2F     0.877 -0.765    

Discriminant Analysis Results For The Dependent Variable Type Of Climate (X9)  

The second aim in this study is to classify cases into the value of a categorical dependent 

variable Type Of Climate(X9). The set of independent variables are Maximum 

Temperature(X1), Minimum Temperature(X2), Relative Humidity(X3), Wind Speed(X4), 

Wind Direction(X5), Duration Of Sun Shine(X6), Clouds Amount(X7) and  Rainfall  

Amount(X8) . 

 

  



 

 
 

Test  Of  Assumptions 

The  first group [ population  π1 ] is Desert Climate and the second  group [ population  π2  ] is  

Coastal Climate . Box's M  to  test  the  null hypothesis of  equal population  covariance  

matrixes. Table  (2) shows  Box's M test. 

Table  (2) The  Test  Results 

Box's M 396.297 

F approx. 10.169 

p- value 0.000 

   From  table (2)  that  is   ∑1  ≠  ∑2  . 

Tests of Equality of Group Means  

 The tests of equality of group means measure each independent variable's potential before 

the  model is created. Table (3) shows that 

Table (3) The  Test  Results 

Variables  Wilks' Lambda F p- value 

Maximum Temperature (X1) 0.865 18.470 0.000 

Minimum Temperature (X2) 1.000 0.005 0.943 

Relative Humidity (X3) 0.242 369.900 0.000 

Wind Speed (X4) 0.987 1.533 0.218 

Wind Direction (X5) 0.970 3.683 0.057 

Duration Of  Sun Shine (X6) 0.928 9.146 0.003 

Clouds Amount (X7) 0.661 60.514 0.000 

Rainfall Amount (X8) 0.782 32.910 0.000 

Table (3) shows that Maximum temperature (X1), Relative Humidity (X3), Hours Of Sun 

Shine (X6), Clouds Amount (X7) and Rainfall Amount (X8) are significant. But Minimum 

Temperature (X2), Wind Speed (X4), Wind Direction (X5) are not significant. 



 

 
 

Wilk's  Lambda  is used to test the significant of the discriminant function as a whole . 

Table (4)  shows  wilk's  lambda  

Table (4) Wilks' Lambda 

Test of Function Wilks' Lambda Chi-square df p- value 

1 0.119 243.055 8 0.000 

   The discriminant function is significant, wilk's lambda  is 0.119 and chi-square is  243.055 

with  degree of  freedom  8 . Then  H0  will be rejected, and  H1   accepted  or    H1 : µ0   ≠  µ1 . 

Standardized Canonical Discriminant function Coefficients are used to compare the 

relative importance of the independent variables : 

Table(5) Standardized Canonical Discriminant Function Coefficients . 

Variables Function 

Maximum Temperature (X1) 1.658 

Minimum Temperature (X2) -0.711 

Relative Humidity (X3) 1.473 

Wind Speed (X4) 0.034 

Wind Direction (X5) 0.140 

Duration Of  Sun Shine (X6) 1.458 

Clouds Amount (X7) 1.482 

Rainfall Amount (X8) 0.180 

  From  table (5) it is see that Maximum Temperature (X1) , Relative Humidity (X3) , 

Duration Of  Sun Shine (X6) and Clouds Amount (X7)  are most important variables. 

Structure matrix shows the correlations of each variable  with the discriminant function  

 

 

 



 

 
 

Table (6) Structure  Matrix 

Variables  Function 

Relative Humidity (X3) 0.649 

Clouds Amount (X7) 0.263 

Rainfall Amount (X8) 0.194 

Maximum Temperature (X1) -0.145 

Duration Of Sun Shine (X6) -0.102 

Wind Direction (X5) 0.065 

Wind Speed (X4) 0.042 

Minimum Temperature (X2) 0.002 

 Table (6), it can be observed that the Relative Humidity (X3) have highest correlation with   

discriminant function.  

Classification  Statistics   

 Fisher's linear discriminant  function. The classification method of discriminant 

classification is  show in table (7) : 

Table (7) Classification  Function  Coefficients 

Variables 
Type  Of  Climate (X9) 

Desert   Coastal 

Maximum Temperature (X1) 16.331 17.701 

Minimum Temperature (X2) -14.336 -15.024 

Relative Humidity (X3) 4.975 5.897 

Wind Speed (X4) 4.087 4.176 

Wind Direction (X5) 5.624 5.976 

Duration Of  Sun Shine (X6) 31.139 35.444 

Clouds Amount (X7) 48.038 56.515 



 

 
 

Rainfall Amount (X8) 0.396 0.441 

(Constant) -438.364 -572.539 

The Classification table is shown in table (8) : 

Table (8) The Classification Table 

Total 
Predicted  group  membership Type  Of  Climate 

(X9) Coastal  Climate Desert  Climate 

48 0 48 Desert  Climate 

Count 

Coastal  Climate 
72 72 0 

100.0 0 100.0 Desert  Climate 

Percent 

Coastal  Climate 
100.0 100.0 0 

100.0  %  of  original  grouped  cases  correctly  classified 

 From classification table (8)which shows that 48 Desert Climate cases are correctly 

predicted  by the function which formed 100.0 % ,  and 72 Coastal Climate cases are 

correctly predicted by  the function which formed 100.0 % . Where 100.0  %  of original 

grouped cases correctly  classified. so can say that the discriminant and classification analysis 

has good predictive validity.  

The Apparent Error Rate 

 
0 + 0

APER = ×100 = 0.00 %
120 

Which  is  recognized  as  the  proportion  of  items  in  the  training  set  that  are  

misclassified . 

MANOVA Table  

       The   F  test   for  comparing   k= 2  means   

H0 :  [µi1  µi2   ...   µi8] = [ µj1   µj2   ...   µj8 ]Against    H1 :  [µi1   µi2   ...   µi8] ≠ [ µj1  µj2   ...   

µj8 ]  

Where  i=1,2,...,72  ,  j=1,2,...,48  for  first  and  second  group respectively.  



 

 
 

Table (9)  MANOVA Table 

Effect 
Value 

Wilk's Lambda 
F 

Hypothesis 

d.f 
p- value 

Intercept 0.001 13571.560 8.000 0.000 

Type  Of  Climate(X9) 0.119 103.122 8.000 0.000 

 From table (9)  F= 103.122 and p- value = 0.000 then H0  will be rejected [the means of tow 

group are not equally], and the value of Wilk's Lambda (0.119) it's  very good result. 

Discriminant Analysis Results For The Dependent Variable Type Of Building (X10) 

 Where the Type Of Building variable is categorical dependent variable(X10). The set of data 

defined by Maximum Temperature(X1), Minimum Temperature (X2), Relative Humidity 

(X3), Wind Speed (X4), Wind Direction (X5), Duration Of  Sun Shine (X6), Clouds Amount 

(X7),  Rainfall  Amount(X8). 

Test  Of  Assumption  

 The first group [population  π1] is Distinctive Building and the second  group [population π2] 

is Prevalent Building. Box's M test the null hypothesis of  equal population  covariance  

matrixes. Table  (10) shows  Box's  M test.  

Table  (10) The  Test  Results 

305.529 Box's 

7.706 F  approx. 

0.000 p- value 

From  table (10)  that  is   ∑1  ≠  ∑2  . 

Tests of Equality of Group Means  

The tests of equality of group means measure each independent variable's  potential  before  

the  model  is  created. Table (11) shows  that 

Table (11) The Test Results 

Variables  Wilks' Lambda F p- value 

Maximum Temperature (X1) 0.915 10.939 0.001 



 

 
 

Minimum Temperature (X2) 1.000 0.049 0.825 

Relative Humidity (X3) 0.533 103.196 0.000 

Wind Speed (X4) 0.944 7.018 0.009 

Wind Direction (X5) 0.955 5.525 0.020 

Duration Of  Sun Shine (X6) 0.945 6.862 0.010 

Clouds Amount (X7) 0.769 35.466 0.000 

Rainfall Amount (X8) 0.862 18.829 0.000 

   Table (11) shows that just Minimum Temperature (X2)  is not significant, and all the 

remaining variables are significant.  

Wilk's Lambda is used to test the significant of the discriminant function as a whole.  Table 

(12)  shows  wilk's  lambda  

Table (12) Wilks' Lambda 

Test of  Function Wilks' Lambda Chi-square df p- value 

1 0.427 97.094 8 0.000 

  The discriminant function is significant , wilk's lambda  is  0.427 and  chi-square is 97.094  

with degree of freedom 8 . Then H0 will be rejected, and that is   H1 : µ0   ≠  µ1  and   H1  is  

accepted . 

Standardized Canonical Discriminant function Coefficients are used to compare the 

relative importance of the independent variable which shows in table (13). 

Table(13) Standardized Canonical Discriminant Function Coefficients  

variables Function 

Maximum Temperature (X1) 1.142 

Minimum Temperature (X2) -0.559 

Relative Humidity (X3) 1.256 

Wind Speed (X4) 0.353 



 

 
 

Wind Direction (X5) 0.154 

Duration Of  Sun Shine (X6) 0.513 

Clouds Amount (X7) 0.618 

Rainfall Amount (X8) 0.024 

 From above table (13) Maximum Temperature (X1) and Relative Humidity (X3)  are  

important.  

Structure matrix  shows  the correlations of  the variable with discriminant function.  

Table (14) Structure Matrix 

Variables Function 

Relative Humidity (X3) 0.807 

Clouds Amount (X7) 0.473 

Rainfall Amount (X8) 0.345 

Maximum Temperature (X1) -0.263 

Wind Speed (X4) 0.210 

Duration Of  Sun Shine (X6) -0.208 

Wind Direction (X5) 0.187 

Minimum Temperature (X2) 0.018 

  From table (14) note that Relative Humidity (X3) have highly correlation  with  discriminant  

function. 

Classification  Statistics   

Fisher's linear discriminant function. The classification method of discriminant classification   

in table (15). 

 

 



 

 
 

Table (15) Classification Function Coefficients 

Type  Of  Building (X10) 

Variables 
Distinctive  Prevalent  

12.727 13.144 Maximum Temperature (X1) 

-12.614 -12.860 Minimum Temperature (X2) 

2.451 2.692 Relative Humidity (X3) 

4.826 5.254 Wind Speed (X4) 

4.867 5.044 Wind Direction (X5) 

18.282 18.965 Duration Of  Sun Shine (X6) 

23.073 24.562 Clouds Amount (X7) 

0.252 0.255 Rainfall Amount (X8) 

-273.980 -307.077 (Constant) 

 

The Classification table is shown in table (16)  

Table (16) The Classification Table 

Total 
Predicted  group  membership Type  Of  Building 

(X10) Distinctive Building Prevalent Building 

84 12 72 Prevalent  Building Count 

Distinctive  Building 36 35 1 

100.0 14.3 85.7 Prevalent  Building Percent 

Distinctive  Building 100.0 97.2 2.8 

89.2%  of  original  grouped  cases  correctly  classified 

   From classification table (16) which shows that 35 Distinctive Building cases are correctly 

predicted by the function which formed 100.0 percent , and 27 Prevalent Building cases are  

correctly formed 100.0 percent . Where 89.2%  of  original grouped cases correctly classified. 

So we can say that the discriminant and classification analysis has good predictive validity.  

 



 

 
 

The Apparent Error Rate 

 
1+12

APER = ×100 = 10.83%
120  

  Which is recognized as the proportion of items in the training set that are misclassified . 

MANOVA Table  

  The    F  test   for  comparing   k= 2  means   

H0 :  [µi1  µi2   ...   µi8] = [ µj1   µj2   ...   µj8 ]Against  H1 :  [µi1   µi2   ...   µi8] ≠ [ µj1  µj2   ...   

µj8] 

Where   i=1,2,...,84  ,  j=1,2,...,36  for first and second group respectively. 

Table (17)  MANOVA Table 

Effect 
Value 

Wilk's Lambda 
F 

Hypothesis 

d.f 
p- value 

Intercept 0.002 6851.928 8.000 0.000 

Type  Of  Building (X10) 0.427 18.643 8.000 0.000 

 

  From table (17)  F= 18.643 and  p- value = 0.000  then  H0  will be rejected [the means of 

tow group are not equally], and the value of Wilk's Lambda  (0.427) it's very good result. 

Summary And Conclusions 

  This study is to investigate the climatic elements that affect the design of buildings in ten 

Libyan cities , and that to try to adapt to human comfort inside the building , where one of the 

most important design goals.  

The main objectives of the study are (i) To define the factors influencing  the Climate and to 

determine the most important factors of the climatic  variables. (ii) To discriminate the 

Climate by region and define the factors which  responsible for that discrimination. (iii) To 

determine the  factors that influencing the building form. 

 A sample consist of 10 Libyan cities(Derna, Benghazi, Jalu, Agedabia, Tripoli, Misurata, 

Sebha, EL-Kufra, Ghadames  and  Shahat), and the total number of variables in this study 



 

 
 

was 10, some of these variables are qualitative and most of them were quantitative ,the 

qualitative variables included in the analysis as dummy variables while the quantitative 

variables included in the analysis directly, and the data of this study collected as average 

monthly  values  for  each  city for 30 years (108000 data points).  

  Thus, to studying the variability of climate system of these places needs to explain the 

observed  correlations between elements and situations.   

To achieve the first goal of this study ,to define the factors influencing the Climate, the factor  

analysis is used and the following results are obtained : 

1- Kaiser - Meyer – Olkin (KMO) ,  0.6 <  KMO < 0.8 , that  is mean the factor analysis  

have   a good  results. 

2- Maximum Temperature (X1), Hours Of  Sun Shine (X6), Clouds Amount (X7)  and 

Rainfall Amount (X8) are significant and good representative for  all  eight  original variables 

in the coastal cities (Derna , Benina , Agedabia , Tripoli , Misurata,  Shahat). While , the 

variables Maximum temperature (X1), Minimum temperature (X2), Relative humidity (X3), 

Wind speed (X4), Duration of sun shine (X6), Clouds amount (X7)  and   Rainfall amount (X8) 

all these variables have high correlations with them factors in the desert cities (Sebha, Jalu, 

EL-Kufra, Ghadames). Bartlett's Test is referred to the test is  significant in each case. 

 To achieve the second goal for this study , to classify the Type of Climate for all the cities to 

two type (coastal or desert) , the discriminant  and  classification  analysis  results  revealed  

that : 

3-  Maximum temperature (X1), Relative Humidity (X3), Duration Of Sun Shine (X6), Clouds 

Amount (X7) and Rainfall Amount (X8) are significant. But Minimum Temperature (X2), 

Wind Speed (X4), Wind Direction (X5) are not significant. 

4- The Maximum Temperature (X1), Relative Humidity (X3), Duration Of  Sun Shine (X6) 

and Clouds Amount (X7) are most important variables, but just Relative Humidity (X3) have 

high correlation with discriminant function. 

    To achieve the third goal for this study, to classify the Type of Building for all the cities to 

two type (prevalent or distinctive) , the discriminant and classification analysis results 

revealed that: 



 

 
 

5- Minimum Temperature(X2) is not significant, and all the remaining variables are  

significant. 

6- The Maximum Temperature (X1) and Relative Humidity (X3) are important variables. But 

just Relative Humidity (X3) have highly correlation with discriminant function. 
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