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Stability of Periodic solutions by Krasnoselskii fixed point theorem of 

neutral nonlinear system of dynamical equation with Variable Delays 

Abstract 

       The fixed point theorem is used in this study to provide stability results for the zero 

solution of a nonlinear neutral system of differential equations with functional delay. 
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 استقرار الحلول الدورية للنظام غير الخطي المحايد للمعادلة الديناميكية ذات المتغيرات المتأخرة

 عائشة امبية مفتاح امحمد &رفيق عبدالفتاح فرج المنصوري  &أميرة علي محمد بن فايد 
 الملخص

ام نظرية النقطة الثابتة في هذه الدراسة لتوفير نتائج الاستقرار للحل الصفري لنظام محايد غير خطي للمعادلات يتم استخد
 التفاضلية التي تمتلك الدوال التفاضلية بدلالة الزمن.

 كماش .دالة ان –استقرار  –غير خطي محايد  –معادلة تفاضلية  –معادلة تكاملية الكلمات المفتاحية : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

1.INTRODUCTION 

         Over the past two decades, the stability difficulties of the time-delay systems of neutral 

type have received considerable attention . Practical examples of such systems 

include electrical distribution networks containing lossless transmission lines, and population 

ecology, and vibration of masses attached to an elastic bar [7,8,9]. 

         Lyapunov functions (LF) have been the commonly deployed tool to obtain 

boundedness, stability, and the existence of periodic solutions of differential equations, 

differential equations with functional delays, and functional differential equations 

. When using LF to investigate differential equations with applicable delays, 

several difficulties arise if the postponement is unbounded [13,14]. Furthermore, getting the 

necessary and appropriate conditions is considerably more difficult. 

        Boundedness, stability, and periodic solutions of differential equations, differential 

equations with functional delays, and functional differential equations have all been studied 

using Lyapunov functions (LF) .. However, if the postponement is unbounded, 

many issues arise when employing LF to explore differential equations with applicable delays 

[13,14]. Furthermore, obtaining the necessary and appropriate circumstances is significantly 

more challenging. 

         For the past ten years, many researchers have looked at specific problems that have 

posed significant challenges to that theory and proposed answers through various fixed-point 

theorems. Many of these difficulties can be solved using fixed point theory, including Burton 

and Furumochi [15,16,17].  

         Ben Fayed et al [18] showed an investigation into the possibility of 

finding the existence and uniqueness of periodic solutions of the nonlinear neutral system of 

differential equations by employing Krasnoselskii's fixed point theorem under slightly more 

stringent conditions and by applying the 

solution of the fundamental matrix solution of  . 



 

 
 

        This paper is  motivated by the limitations listed in  We study the stability results of 

the zero solution method of the nonlinear neutral system of the following differential 

equations: 

 

,with the assumptions of the initial function as in:  

 

where  and  is nonsingular,   matrix 

with continuous real-valued functions as its elements,  being scalar, continuous, and 

. The functions  and   are continuous.  

       In the analysis, we use the fundamental matrix solution  

to convert the system (1.1) into an integral equation. Where we derive a fixed point mapping 

approach consecutively, we define a suitable complete space prudently with respect to the 

initial condition so that the mapping is a contraction. Using Banach's contraction mapping 

principle, we obtain a solution for this mapping, and hence we quantify an asymptotically 

stable answer for (1.1).  

      This paper is structured as follows: in section 2, we present some definitions, remarks, 

and the inversion formulas of the system (1.1). The main results are illustrated in the section 

3.  

2. PRELIMINARIES 

       For  let T be the set of all n-vector continuous functions , periodic in t of 

period T. Then is a Banach space with the supremum norm 

                                                   

Where |·| denotes the infinity norm for x ∈  n. 



 

 
 

        In addition, if A is an n × n real matrix, then we define the norm of A by 

|A| =  First, we make the following definition. 

        Let  be a given continuous bounded initial function. We denote such 

a solution by . From the existence theory we can conclude that for each 

, there exists a unique solution  of (1.1) defined on 

. We define . 

We mention to some definition for fundamental matrix, see also [20] 

Definition 2.1. If the matrix A(t )is periodic of period T, then the linear system 

              (2.1) 

We said to be noncritical with respect to T if it has no periodic solution of period T except the 

trivial solution            

Definition 2.2. An Identity real matrix  function , defined on an open interval 

, is called a matrix solution of the homogeneous linear system (2.1) if each of its columns is 

a (vector) solution. 

Definition 2.3. A set of  solutions of the homogeneous linear differential equation (2.1), all 

defined on the same open interval , is called a fundamental set of solutions on  if the 

solutions are linearly independent functions on  

Definition 2.4. A matrix solution is called a fundamental matrix solution if its columns form 

a fundamental set of solutions. In addition, a fundamental matrix solution  is called 

the principal fundamental matrix solution at  if , where  denotes the  

identity matrix. 

Definition 2.5. The state transition matrix for the homogeneous linear system (2.1) on the 

open interval  is the family of fundamental matrix solutions  parametrized by 

 such that . 

 



 

 
 

In this paper we assume that, for , the functions 

 are globally Lipschitz continuous in  and 

, respectively. That, there are positive constants  such that 

  (2.2) 

  (2.3) 

  (2.4) 

  (2.5) 

and 

  (2.6) 

Proposition 2.6 ([20, Proposition 2.14]). If  is a fundamental matrix solution for the 

system (2.1) on , then  is the state transition matrix. Also, the state 

transition matrix satisfies the Chapman-Kolmogorov identities 

 

Throughout this paper,  will denote a fundamental matrix solution of the homogeneous 

(unperturbed) linear problem (2.1). First, we have to transform (1.1) into an equivalent 

equation that possesses the same basic structure and properties to define a fixed point 

mapping. 

Lemma 2.7 

is a solution of the equation (1.1) if and only if   

 



 

 
 

Proof. Let  be a solution of (1.1) and  is a fundamental system of solutions of (2.1). 

Rewrite the equation (1.1) as 

 

Define a new function  by . We have 

 

 

By the Proposition , it follows that 

 

Then 

 

Thus, 

 

and 

 



 

 
 

Also notice that . 

An integration of the equation  from  to  yields 

 

, in other words, 

2.8 

For studying the behavior (  can be expressed by 

 

The converse implication is easily obtained and the proof is complete. 

If  is a given solution of (1.1), then discussing the behavion of another 

solution  of this equation relative to the solution , i.e. discussing the behavior of the 

difference  is equivalent to studying the behavior of the solution  of the 

equation 



 

 
 

 

relative to the trivial solution . Thus we may, without loss in generality, assume that 

(1.1) has the trivial solution as a reference solution, i.e. 

 

an assumption we shall henceforth make. 

3. Conclusion 

       Our aim here is to give a necessary and sufficient condition for asymptotic stability of the 

zero solution of (1.1). Stability definitions may be found in [15], for example. By the Lemma 

2.7, let a mapping  given by  for  and for  

 

and define the space  by 

 

Then,  is a complete metric space where  is the supremum norm. 

Theorem 3.1. Assume (2.2) - (2.6) hold. Further assume that 

 



 

 
 

 

 

 

and there is  such that 

 

hold. Then every solution  of  with small continuous initial function , is 

bounded and asymptotically stable. Moreover, the zero solution is stable at .  

Proof.  

Let the mapping  defined by (3.1). Since  are continuous, it is easy to 

show that  is. Let  be a small given continuous initial function with       

    . Since  then there exist a positive constant , such that 

   , this and the conditions (3.2)- (3.6) imply 

 

 



 

 
 

 which implies  is bounded, for the right . Next we show that  as . 

The first term on the right side of (3.1) tends to zero, by condition (3.2). Also, the second 

term on the right side tends to zero, because of (3.3), (3.4) and the fact that . Let 

 be given, then there exists a  such that for , . By the 

condition (3.2), there exists a  such that for  implies that 

 

Thus for , we have 

 

Hence,  as . It is natural now to prove that  is contraction under the 

supremum norm. Let, . Then 

 

Hence, the contraction mapping principle implies,  has a unique fixed point in  which 

solves (1.1), bounded and asymptotically stable. The stability of the zero solution of (1.1) 

follows simply by replacing  by . 
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