

Faculty of Science - University of Benghazi

Libyan Journal of Science & Technology

journal home page: www.sc.uob.edu.ly/pages/page/77

On *n*-adic Algebra

Nabila M. Bennour *, Kahtan H. Alzubaidy

Departement of Mathematics, University of Benghazi, Libya,

Highlights

- n-adic algebra is a generalization of monadic algebra by extending the number of quantifiers from 1 to n.
- The method used in deduction of monadic algebra is generalized to the case of n-adic algebra with respect to terms.

ARTICLE INFO

Article history:

Received 11 June 2019 Revised 19 December 2019 Accepted 27 December 2019 Available online 30 Dcember 2019

Keywords:

Monadic algebra, n-adic algebra, terms, deduction

*Address of correspondence:

E-mail address: n.benour@yahoo.com

N. M. Bennour

ABSTRACT

This paper studies n-adic algebras with terms. Deduction is also done in these algebras.

1. Introduction

n-adic algebra is a generalization of monadic algebra by extending the number of quantifiers from 1 to n. Our main results are given in theorems 12, 13. The method used in (Alzubaidy, 2007) is generalized to the case of n-adic algebra. A Boolean algebra is an algebraic structure $B = < A, \lor, \land, '$, 0, 1 > in which \lor, \land are binary operations on A, ' is a unary operation, while 0 and 1 are nullary operations (distinguished elements of A), which satisfy the following conditions: For arbitrary $a, b, c \in A$

i)
$$a \lor b = b \lor a$$
, $a \land b = b \land a$

ii)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
, $(a \land b) \land c = a \land (b \land c)$

iii)
$$a \lor (b \land c) = (a \lor b) \land (a \lor c), \ a \land (b \lor c) = (a \land b) \lor (a \land c)$$

iv)
$$a \lor (a \land b) = a$$
, $a \land (a \lor b) = a$

v)
$$a \lor a' = 1, a \land a' = 0.$$

A partial order \leq on a Boolean algebra is defined by $a \leq b$, if $a \land b = a$ or $a \lor b = b$.

A Boolean algebra B is said to be complete if any subset A of B has infimum and supremum in B.

Suppose that B is a complete Boolean algebra. An existential operator on B is a mapping $\exists : B \to B$ such that:

i)
$$\exists$$
(0) = 0

ii) $a \le \exists (a)$ for any $a \in B$

iii)
$$\exists (a \land \exists (b)) = \exists (a) \land \exists (b) \text{ for any } a, b \in B$$

 (B,\exists) is called monadic algebra.

2. n-adic algebras

An n-adic algebra $(n \ge 0)(B, \exists_1, \dots, \exists_n)$ consists of a complete Boolean algebra B and n mappings $\exists_i \colon B \to B$; $1 \le i \le n$ called existential operators such that:

i)
$$\exists_i(0) = 0$$

ii) $a \le \exists_i(a)$ for any $a \in B$

iii)
$$\exists_i ((a) \land \exists_i (b)) = \exists_i (a) \land \exists_i (b)$$
 for any $a, b \in B$

iv)
$$\exists_i \exists_j = \exists_j \exists_i$$
.

Note that 0-adic algebra is just Boolean algebra B and 1-adic algebra is the monadic algebra (B, \exists) . Obviously, the n-adic algebra is a locally finite polyadic algebra in the sense given in (Alzubaidy and Bennour, 2012).

The universal operator $\forall_i : B \to B$; $1 \le i \le n$ is defined by $\forall_i(a) = (\exists_i(a)')'$, for any $a \in B$.

Proposition 1. (Alzubaidy, 2007)

i)
$$\forall_i(0) = 0$$

ii) $a \le \forall_i(a)$ for any $a \in B$

iii)
$$\forall_i ((a) \land \forall_i (b)) = \forall_i (a) \land \forall_i (b)$$
 for any $a, b \in B$

iv)
$$\forall_i \forall_j = \forall_j \forall_i$$
.

Proposition 2. (Alzubaidy, 2007)

$$\exists_i \forall_i = \forall_i \exists_i \text{ if } i \neq j.$$

Suppose Q_i is an existential operator or universal operator. By the previous proposition, we have

Corollary 3.

$$Q_1Q_2\dots Q_n \leq \forall \forall \dots \exists \exists \dots \exists.$$

2.1 Functional n-adic Algebra

Let X be a nonempty set and B a Boolean algebra. Suppose that

 $B^{X^n} = \{p | p : X^n \to B \text{ is a function}\}$, where X^n is the Cartesian product of n copies of X.

For $p, q \in X^n$ define $p \land q, p \lor q, p'$ and 0, 1 pointwise as follows:

$$(p \wedge q)(x_1, \dots, x_n) = p(x_1, \dots, x_n) \wedge q(x_1, \dots, x_n),$$

$$(p \lor q)(x_1, ..., x_n) = p(x_1, ..., x_n) \lor q(x_1, ..., x_n), p'(x_1, ..., x_n) = (p(x_1, ..., x_n))', 0(x_1, ..., x_n) = 0 \text{ and } 1(x_1, ..., x_n) = 1 \text{ for any } (x_1, ..., x_n) \in X^n.$$

Proposition 4. (Alzubaidy, 2007)

 $(B^{X^n}, V, \Lambda, ', 0, 1)$ is an Boolean algebra.

Proposition 5. (Alzubaidy, 2007)

 (B^{X^n}, \exists) is a monadic algebra.

Existential and universal operators \exists_i, \forall_i on the functional Boolean algebra B^{X^n} are defined as follows:

for each
$$p \in B^{X^n}$$
, $\exists_i(p)(x_1, ..., x_n) = \sup$

$$\{p(x_1,...,x_n):(x_1,...,x_n)\in X^n\}$$
 and

$$\forall (p)(x_1,\ldots,x_n)=\inf_{\cdot} \ \{p(x_1,\ldots,x_n)\colon (x_1,\ldots,x_n)\in X^n\}.$$

Proposition 6.

$$(B^{X^n}, \exists_i)$$
 is a *n*-adic algebra, $1 \le i \le n$

Proof

i)
$$\exists_i(0)(x_1,...,x_n) = \sup \{0(x_1,...,x_n): (x_1,...,x_n) \in X^n\} =$$

$$0(x_1, ..., x_n) = 0$$
. Then $\exists_i(0) = 0$

ii) Let
$$\in B^{X^n}$$
, $\exists_i(p)(x_1,\ldots,x_n) = \sup \{p(x_1,\ldots,x_n): (x_1,\ldots,x_n) \in$

$$X^n$$
} $\geq p(x_1, ..., x_n)$. Then $\exists_i(p) \geq p$

iii) Let
$$p, q \in B^{X^n}$$
, $\exists_i (p \land \exists_i (q))(x_1, ..., x_n) = \sup \{p \land a\}$

$$\exists_i(q)(x_1,...,x_n):(x_1,...,x_n)\in X^n\} = \sup_i \left\{ (p)(x_1,...,x_n) \land \sup_i \right\}$$

$$(q)(x_1,...,x_n):(x_1,...,x_n) \in X^n$$
 = \sup_{i}

$$\{p(x_1,\ldots,x_n)\colon (x_1,\ldots,x_n)\in X^n\} \wedge \, \sup_{\cdot} \, \{q(x_1,\ldots,x_n)\colon (x_1,\ldots,x_n)\in X^n\} + \inf_{\cdot} \, \{q(x_1,\ldots,x_n)\colon (x_1,\ldots,x_n)\colon (x_1,\ldots,x_n)\in X^n\} + \inf_{\cdot} \, \{q(x_1,\ldots,x_n)\colon (x_1,\ldots,x_n)\colon (x_1,\ldots,x_n)\colon (x_1,\ldots,x_n$$

$$X^n$$
} = $\exists_i(p)(x_1, \dots, x_n) \land \exists_i(q)(x_1, \dots, x_n)$. Then $\exists_i(p \land \exists_i(q)) = \exists_i(p) \land \exists_i(q)$

$$\mathrm{iv})\,\exists_i(p)(x_1,\ldots,x_n))\,\exists_j(p)(x_1,\ldots,x_n)=\,\sup\left\{p(x_1,\ldots,x_n)\right\}\sup$$

$${p(x_1,...,x_n)} = \sup_{i} {p(x_1,...,x_n)} \sup_{i} {p(x_1,...,x_n)} =$$

$$\exists_i(p)(x_1,\ldots,x_n)\exists_i(p)(x_1,\ldots,x_n)$$
. Then $\exists_i\exists_i=\exists_i\exists_i$.

A more general case is the locally finite polyadic algebra. This is given in (Alzubaidy, 2007).

3. Terms

Let X be a set of variables and \mathcal{F} be a type of algebra. The set T(X) of terms of type \mathcal{F} over X is the smallest set such that: i) $X \cup \mathcal{F}_0 \subseteq T(X)$

ii) If $t_1, ..., t_n \in T(X)$ and $f \in \mathcal{F}_n$ then $f(t_1, ..., t_n) \in T(X)$ (Burris and Shakappanavar, 1981).

For $t \in T(X)$ we often write t as $t(x_1, ..., x_n)$ to indicate that the variables occurring in t are among $x_1, ..., x_n$.

A term t is n-ary if the number of variables appearing explicitly is less than or equal n.

The term t define a function $t_A: A^n \to A$ as $t_A(a_1, ..., a_n) = t(x_i/a_i)$ for $a_1, ..., a_n \in A$, where A is an algebra of type \mathcal{F} .

The set T(X) can be transformed into an algebra (Burris and Shakappanavar, 1981). The term algebra T(X) of type $\mathcal F$ over X has as its universe the set T(X) and the fundamental operations satisfy:

$$f^{T(X)}\colon (t_1,\dots,t_n) \mapsto f(t_1,\dots,t_n) \text{ for } f \in \mathcal{F}_n \text{ and } t_i \in T(X), 1 \leq t \leq n$$

Now consider the functional n-adic algebra (B^{X^n}, \exists_i) . A term t defines a function $t_*: B^{X^n} \to B^{X^n}$ as follows:

$$t_*(p)(x) = p(t_1(x), ..., t_n(x))$$
, for any $x \in X$ and $p \in B^{X^n}$ where $t = (t_1, ..., t_n)$ as functions.

 $End(B^{X^n})$ is the set of an endomorphisms from B^{X^n} into itself.

Proposition 7.

i)
$$t_* \in End(B^{X^n})$$
 ii) $\exists_i t_* = t_* \exists_i$

Proof

i) 1)
$$t_*(p \lor q)(x) = (p \lor q)(t_1(x), ..., t_n(x)) = p(t_1(x), ..., t_n(x)) \lor q(t_1(x), ..., t_n(x)) = t_*(p)(x) \lor t_*(q)(x).$$

Then
$$t_*(p \lor q) = t_*(p) \lor t_*(q)$$
.

2)
$$t_*(p \wedge q)(x) = (p \wedge q)(t_1(x), ..., t_n(x)) = p(t_1(x), ..., t_n(x)) \wedge q(t_1(x), ..., t_n(x)) = t_*(p)(x) \wedge t_*(q)(x).$$

Then
$$t_*(p \wedge q) = t_*(p) \wedge t_*(q)$$
.

3)
$$(t_*(p)(x))' = (p(t_1(x), ..., t_n(x)))' = p'(t_1(x), ..., t_n(x)) = t_*(p)'(x)$$
. Then $(t_*(p))' = t_*(p)'$.

4)
$$t_*(0)(x) = 0(t_1(x), ..., t_n(x)) = 0 = 0(x)$$
. Then $t_*(0) = 0$.

5)
$$t_*(1)(x) = 1(t_1(x), ..., t_n(x)) = (t_1(x), ..., t_n(x)) = t_*(x)$$
. Then $t_*(1) = t_*$.

ii)
$$t_* \exists_i(p)(x) = t_* \left(\sup_i \{p(x)\} \right) = \sup_i \{p(t_1(x), \dots, t_n(x))\} = \sup_i \{t_*(p)(x)\} = \exists_i t_*(p)(x)$$
. Then $\exists t_* = t_* \exists$.

4. Deduction

4.1 n-adic ideals and filters

A subset U of a Boolean algebra B is called a Boolean ideal if i) $0 \in U$

- ii) $a \lor b \in U$ for any $a, b \in U$
- iii) If $a \in U$ and $b \le a$ then $b \in U$.

A subset F of a Boolean algebra B is called a Boolean filter if

- i) $1 \in F$
- ii) $a \land b \in F$ for any $a, b \in F$
- iii) If $a \in F$ and $b \ge a$ then $b \in F$.

A subset U of an n-adic algebra B is called an n-adic ideal of B if

- i) *U* is a Boolean ideal
- ii) $\exists_i(U)(a) \in U$, $a \in U$ for $1 \le i \le n$.

Bennour & Alzubaidy. /Libyan Journal of Science & Technology 10:1(2019) 48-50

A subset F of an n-adic algebra B is called an n-adic filter of B if

i) F is a Boolean filter

ii) $\forall_i(F)(a) \in F$, $a \in F$ for $1 \le i \le n$.

Thus we have the following two propositions.

Proposition 8.

There is a one to one correspondence between ideals and filters.

Proposition 9.

The set of all n-adic ideals and the set of all n-adic filters are closed under the arbitrary intersection.

Let B be an n-adic algebra and $\Gamma \subseteq B$. Let $U(\Gamma)$ denote the least n-adic ideal containing Γ and $F(\Gamma)$ denote the least n-adic filter containing Γ . We say that $U(\Gamma)$ and $F(\Gamma)$ are generating by Γ .

Proposition 10.

Let *B* be an *n*-adic algebra and $\Gamma \subseteq B$. Then

i)
$$U(\Gamma) = \{b \in B : b \le x_1 \lor x_2 \lor \dots \lor x_n \text{ for some } x_1, \dots, x_n \in \Gamma \} \cup \{0\}$$

ii)
$$F(\Gamma) = \{b \in B : b \ge x_1 \land x_2 \land \dots \land x_n \ for \ some \ x_1, \dots, x_n \in \Gamma \} \cup \{1\}$$

Proof

i) Let
$$J = \{b \in B: b \le x_1 \lor x_2 \lor ... \lor x_n \ for \ some \ x_1, ..., x_n \in \Gamma \} \cup \{0\}, 0 \in J.$$
 Let $b_1, b_2 \in J$ then $b_1 \le x_1 \lor x_2 \lor ... \lor x_n$ and $b_2 \le y_1 \lor y_2 \lor ... \lor y_m$ for some $x_i, y_i \in \Gamma$.

$$b_1 \vee b_2 \leq x_1 \vee x_2 \vee ... \vee x_n \vee y_1 \vee y_2 \vee ... \vee y_m. \text{ Therefore } b_1 \vee b_2 \in I$$

If $a \le b \le x_1 \lor x_2 \lor \dots \lor x_n$, then $a \in J$. Then J is a Boolean ideal containing Γ .

If
$$a \in J$$
, then $a \le x_1 \vee x_2 \vee ... \vee x_n$, $\exists_i(J)(a) \le \exists_i(J)(x_1 \vee x_2 \vee ... \vee x_n) = \exists_i(J)(x_1) \vee ... \vee \exists_i(J)(x_n)$. Then $\exists_i(J)(a) \subseteq U(\Gamma)$.

ii) A similar argument leads to (ii).

A filter F of an n-adic algebra is called ultrafilter if F is maximal with respect to the property that $0 \notin F$.

Ultrafilters satisfy the properties of the following proposition.

Proposition 11. (Burris and Shakappanavar, 1981)

Let F be a filter of n-adic algebra, then

- i) F is an ultrafilter of B iff for any $a \in F$ exactly one of a, a' belong to F.
- ii) *F* is an ultrafilter of *B* iff $0 \in F$ and $a \lor b \in F$ iff $a \in F$ or $b \in F$ for any $a, b \in F$.
- iii) If $a \in B F$, then there is an ultrafilter L such that $F \subseteq L$ and $a \notin L$.

Let $\Gamma \subseteq B$, the ultrafilter containing $F(\Gamma)$ is denoted by $UF(\Gamma)$.

A mapping $\mu \colon B_1 \to B_2$ between two n-adic algebras is called n-adic homomorphism if

i) μ is a Boolean homomorphism,

ii)
$$\mu \exists_i = \exists_i \mu$$
.

Obviously, $\mu \forall_i = \forall_i \mu$.

For $\Gamma \subseteq B$, $b \in B$, we define the deduction $\Gamma \vdash b$ iff $b \in UF(\Gamma)$.

Theorem 12.

Let $\Gamma \subseteq B^{X^n}$

i) $\Gamma \vdash p \land q \text{ iff } \Gamma \vdash p \text{ and } \Gamma \vdash q$

ii) $\Gamma \vdash p \lor q$ iff $\Gamma \vdash p$ or $\Gamma \vdash q$

iii) $\Gamma \vdash p \text{ iff } \Gamma \not\vdash p'$

iv) $\Gamma \vdash p \text{ iff } \Gamma \vdash \forall_i p, 1 \leq i \leq n$

v) $F(\Gamma) \vdash p(x_0)$ iff $F(\Gamma) \vdash \exists_i p(x), 1 \le i \le n$.

Proof

(i), (ii) follow from the definition of filter and (Alzubaidy, 2007, p.2)

iii) follows from proposition 10.

iv) This is by $\forall_i p(x) \leq p(x)$ and $\forall_i (F) \subseteq F$.

v) This is by the definition $\exists_i p(x) = \sup\{p(x)\}, x = (x_1, ..., x_n).$

Note that $t_*\big(UF(\Gamma)\big) = UF\big(t_*(\Gamma)\big)$. Define $\Gamma \vdash pt$ if $pt \in F\big(t_*(\Gamma)\big)$. Then theorem 12 can be generalized with respect to terms as follows:

Theorem 13.

i) $\Gamma \vdash pt \land qt$ iff $\Gamma \vdash pt$ and $\Gamma \vdash qt$

ii) $\Gamma \vdash pt \lor qt$ iff $\Gamma \vdash pt$ or $\Gamma \vdash qt$

iii) $\Gamma \vdash pt$ iff $\Gamma \not\vdash p't$

iv) $\Gamma \vdash p \text{ iff } \Gamma \vdash \forall_i pt, 1 \leq i \leq n$

v) $F(\Gamma) \vdash pt(x_0)$ iff $F(\Gamma) \vdash \exists_i pt(x), 1 \le i \le n$.

5. References

Alzubaidy, K. H. (2007)' Deduction in monadic logic', *Journal of Mathematical Science*, 18, 1, pp. 1-5.

Alzubaidy, K. H. (2007) 'On algebraization of Polyadic logic', *Journal of Mathematical Science*, 18,1, pp. 15-18.

Alzubaidy, K. H. and Bennour, N. M. (2012) 'Locally Finite Polyadic Algebra with Terms', *Bulletin of Mathematical Science and Applications*, 1, 2, pp. 70-77.

Burris, S. and Shakappanavar, H. P. (1981) A Course In Universal Algebra, Springer-Verlag, New York.