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This paper studies n-adic algebras with terms. Deduction is also done in these algebras.

1. Introduction

n-adic algebra is a generalization of monadic algebra by extend-
ing the number of quantifiers from 1 to n. Our main results are
given in theorems 12, 13. The method used in (Alzubaidy, 2007) is
generalized to the case of n-adic algebra. A Boolean algebra is an
algebraic structure B =< 4,V,A,’, 0,1 > in which V,A are binary op-
erations on 4, is a unary operation, while 0 and 1are nullary oper-
ations (distinguished elements of A4), which satisfy the following
conditions: For arbitrary a, b,c € A

jy)avb=bVvaaAb=bAa
ii)(avb)vc=av(Vvc),(anb)rAc=aAr(bAc)
iiav(bAac)=(avb)A(avc), an(bvc)=(anb)V(aAc)
ivlav(aAb)=a, an(aVvb)=a

vlava =1,ana =0.

A partial order < on a Boolean algebra is defined by a < b, ifa A
b=aoraVvb=hb.

A Boolean algebra B is said to be complete if any subset A of B has
infimum and supremum in B.

Suppose that B is a complete Boolean algebra. An existential oper-
ator on B is a mapping 3: B — B such that:

)3(0)=0
ii)a < 3(a) foranya € B
i) 3(a A3(b)) = 3(a) A3(b) foranya,b € B

(B, 3) is called monadic algebra.

2. n-adic algebras

An n-adic algebra (n = 0)(B, 34, ..., 3,,) consists of a complete
Boolean algebra B and n mappings 3;: B = B; 1 < i < n called ex-
istential operators such that:

)3,(0) =0

ii) a < 3;(a) foranya € B

iii) 3;((@) A3;(b)) = 3;(a) A3;(b) foranya,b € B
iv) 3,3,= 3,3,

Note that 0-adic algebra is just Boolean algebra B and 1-adic
algebra is the monadic algebra (B, 3). Obviously, the n-adic alge-
bra is a locally finite polyadic algebra in the sense given in
(Alzubaidy and Bennour, 2012).

The universal operator V;: B = B; 1 < i < nis defined by
V;(a) = (3;(a)")’, forany a € B.

Proposition 1. (Alzubaidy, 2007)

Dv;(0)=0

ii)a < V;(a) foranya € B

iii) v;((a) A V(b)) = V;(a) AV;(b) forany a,b € B
iv) V;V,= V;V,.

Proposition 2. (Alzubaidy, 2007)

3,V;= V3, if i # J.

Suppose Q; is an existential operator or universal operator. By the
previous proposition, we have

Corollary 3.
0103 ..Q, <VVv..33..3.

© 2019 University of Benghazi. All rights reserved. ISSN 2663-1407; National Library of Libya, Legal number: 390/2018



Bennour & Alzubaidy. /Libyan Journal of Science & Technology 10:1(2019) 48-50

2.1 Functional n-adic Algebra

Let X be a nonempty set and B a Boolean algebra. Suppose
that

BX" = {p|p: X™ = B is a function}, where X™ is the Cartesian
product of n copies of X.

Forp,q € X™ definep Aq,pV q,p’ and 0, 1 pointwise as follows:
@ AD Gy, , x0) = POy, o, X)) Aq(xg, e, X),

(p \% q)(xll ...,Xn) = P(x1: ""xn) \% Q(xp ---;xn); p’(xlr ---:xn) =
(p(xy, s %)), 0(Cxg, -, %) = 0 and 1(xy, ..., x,) = 1 for any
(X1, e xp) € X™

Proposition 4. (Alzubaidy, 2007)

(BX", v, A 0,1 ) is an Boolean algebra.
Proposition 5. (Alzubaidy, 2007)

(BX",3) is a monadic algebra.

Existential and universal operators 3;, V; on the functional Bool-
ean algebra BX" are defined as follows:

for eachp € BX", 3;,(p) (xy, ..., x,) = SUP
i

{p(xq, oo x): (X1, o, X)) € X"} and

V(p)(x1, oo, xp) = Ir'llf (g, oo, x0): (xq, o, %) € XM
Proposition 6.

(BX", 3;)isan-adicalgebra, 1 <i<n

Proof

) 3;(0)Cxq, e, xp) = sup {0(xg, ooy x): (g, ooy ) €E XM} =

0(xq, .., X)) = 0.Then 3;(0) =0
ii) Let € BX", 3,(p) (x4, ..., Xp) = sup PGy o, %01 (xq, 1, %) €
i

X"} = p(xy, ..., xp). Then 3;(p) = p
iii) Let p,q € BX", 3(pA3i(@)(x, .., ) = SUP (P A
i

ai(q)(xl' "'rxn): (xlr ---'xn) € Xn} = Sup {(p)(xp ""xn) A Sup

(Q)(xp "'rxn): (xlr ---'xn) € Xn} = SUp

{pQxy, oy x): (X1, oo, X)) EXMIA sup {q(xg, ooy xp): (1, o, %) €

Xn} = Eli(p)(xll ""xn) A EIi(q)(xlr ""xn)- Then Eli(p A EL(Q)) =

3;(p) A3i(q)

iV) Eli(p)(xll ""xn)) Elj(p)(xlr ""xn) = SUp {p(xll ,xn)}SUp
i j

{p(xlt ...,Xn)} = Sup {P(xp :xn)}sup {P(xp ---,xn)} =
j i

Elj(p)(xl, ...,xn)EIi(p)(xl, ...,Xn). Then 31312 3]31

A more general case is the locally finite polyadic algebra. This is
given in (Alzubaidy, 2007).

3. Terms

Let X be a set of variables and F be a type of algebra. The set
T(X) of terms of type F over X is the smallest set such that: i) X U
Fo € T(X)

i) If tq, ..., t, € T(X) and f € F, then f(t4, ...
and Shakappanavar, 1981).

,tn) € T(X) (Burris

For t € T(X) we often write t as t(xy, ..., X,) to indicate that the
variables occurring in t are among x4, ..., X,.

A term t is n-ary if the number of variables appearing explicitly is
less than or equal n.

The term t define a function t4: A™ - A as ty(ay, ..., a,) = t(x;/a;)
for a4, ..., a, € A, where A is an algebra of type F.

The set T(X) can be transformed into an algebra (Burris and
Shakappanavar, 1981). The term algebra T (X) of type F over X
has as its universe the set T (X) and the fundamental operations
satisfy:

fT(X): (tl' ™
n.

Jt) o f(ty, e tp)for f € Fyandt; eT(X), 1<t <

Now consider the functional n-adic algebra (BXn, Eli). Atermt de-
fines a function t,: BX" — BX" as follows:

t.(0)(x) = p(t1(x), ..., t,(x)), for any x € X and p € BX" where
t = (ty, ..., t,) as functions.

End(B*") is the set of an endomorphisms from BX" into itself.
Proposition 7.

i) t. € End(B*") i) 3;¢, = t.3;
Proof

DDEGVOE) =@ V(t(), ... th(x) =
P(t1 (0, e, (D)) V g (£ (), oo () = £. () () V L.(q) ().

Then t,(p Vv q) = t.(p) vV t.(q).

2)t.p A = @ADL, s tr(0)) = P(t1 (), ooe) £1 (X)) A
q(t1(x), ..., ta(x)) = t.(P)(X) A t.(q) (x).

Then t,(p A q) = t.(p) At.(q).

3) (t.(M(x) = (p(tl(x), ---,tn(X)))’ =p'(t,(x), ., ta () =
t.(p)'(x). Then (t.(p)) = ¢t.(p)".

4) £,(0)(x) = 0(t,(x), ..., tn(x)) = 0 = 0(x). Then ¢,(0) = 0.

5)t.(D(x) = 1(t1(x), . tn(x)) = (tl(x), ...,tn(x)) = t,(x). Then
t.(1) =t..

i) t,3;(p)(x) = t. (sup {p(x)}) = sup {p(t: @), ... tx ()} =
sup { t.(p)()} = 3; t.(p) (x). Then 3¢, = ¢.3.

4. Deduction

4.1 n-adic ideals and filters

A subset U of a Boolean algebra B is called a Boolean ideal if
0eU

ii)avbeUforanya,beU

iii)Ifa € Uand b < athenb € U.

A subset F of a Boolean algebra B is called a Boolean filter if
1€eF

ii)aAnb €F foranya,b €F

iii) Ifa € Fand b = athenb € F.

A subset U of an n-adic algebra B is called an n-adic ideal of B if
i) U is a Boolean ideal

ii)3;(U)(a) eU,aeUforl <i<n.
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A subset F of an n-adic algebra B is called an n-adic filter of B if
i) F is a Boolean filter

i)V;(F)(a) eF,aeFfor1<i<n.

Thus we have the following two propositions.

Proposition 8.

There is a one to one correspondence between ideals and filters.
Proposition 9.

The set of all n-adic ideals and the set of all n-adic filters are
closed under the arbitrary intersection.

Let B be an n-adic algebra and I' € B. Let U(I") denote the least n-
adic ideal containing I and F(I') denote the least n-adic filter con-
taining I'. We say that U(I') and F (') are generating by T".

Proposition 10.
Let B be an n-adic algebra and I' € B. Then

DU ={b€eB:b<x;Vx,V..Vx, for some xy,..,x, ET}U

{0}

i) FT) ={b€B:b=x; Axy A ... \X, fOr SOme Xy, ..., X, ET }U

{1
Proof

iYLet] ={b€B:b<x;Vx,V..VX, for some xq,...,x, E[}U
{0},0 €. Lethy, b, €Jthenby <x; VX,V ..Vx,and b, <y, V
Y, V ...V Yy, for some x;,y; € T.

byVby <x;VXxV..VX, VY1 VY5V ...V Yy, Therefore by V b, €
J.

Ifa<b<xVx,V..Vx, thena € ]. Then] is a Boolean ideal
containing I'.

Ifa€],thena<x;Vxy,V..Vxy, 3;(N@) <3;(N0x Va V...V
xp) =3;(N () V... v 3;(ND (). Then 3;(N) (@) < UD).

ii) A similar argument leads to (ii).

A filter F of an n-adic algebra is called ultrafilter if F is maximal
with respect to the property that 0 & F.

Ultrafilters satisfy the properties of the following proposition.
Proposition 11. (Burris and Shakappanavar, 1981)
Let F be a filter of n-adic algebra, then

i) F is an ultrafilter of B iff for any a € F exactly one of a, a’ belong
to F.

ii) F is an ultrafilter of Biff0 € FandaVv b € Fiffa€ Forb € F
foranya,b € F.

iii) If a € B — F, then there is an ultrafilter L such that F € L and
aél.

Let T C B, the ultrafilter containing F(I') is denoted by UF ().
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A mapping u: B; = B, between two n-adic algebras is called n-
adic homomorphism if

i) 1 is a Boolean homomorphism,

i) p3;=3; p.

Obviously, uv,= v; u.

ForT € B, b € B, we define the deductionT + b iff b € UF(T).
Theorem 12.

LetT c BX"

)T FpAqiffT -pandT + q
ii)TFpvqiffT -porT +q

iii) T - piffT  p'

V)T FpiffT-FV;p,1<i<n

V)F(D) Fp(xo) iff F(D) - 3;p(x), 1 <i<n.
Proof

(i), (ii) follow from the definition of filter and (Alzubaidy, 2007,
p-2)

iii) follows from proposition 10.

iv) This is by V;p(x) < p(x) and V;(F) € F.

v) This is by the definition 3;p(x) = sup{p(x)},x = (x4, ..., xp).

Note that ¢,(UF(T)) = UF(t.(T)). Define T + pt if pt €

F(t.(T)). Then theorem 12 can be generalized with respect to

terms as follows:

Theorem 13.

I FptAqtiffT -ptandT + gt

)T +ptvaqtiffT -ptorl gt

iii) T + ptiffT ¥ p't

V)T FpiffT-FV;pt,1<i<n

V) F(T) F pt(xy) iff F(T) + 3;pt(x),1 < i <n.
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