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Highlights 

 Linear grading of charge impurities in the depletion layer was implemented. First, the calculation was carried out for 
one-dimension (1D), then extended into two-dimensions (2D) 

 Close to the metallurgical junction of p-n, the charge density follows linearity on both sides, however, far away of the 
junction it deviated from linearity, due to the exponential form of free charge density. 

 The electric field and electrostatic potential distributions within the depletion layer are significantly affected by free 
carriers. 
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In this paper, the numerical solution of Poisson's equation in two-dimension (2D) of p-n junc-
tion of silicon has been carried out using Neumann and Dirichlet boundary conditions. As-
sumption of linearly grading impurities doping has been used for analysis of charge density. 
The calculation has been done for different dopant concentration rates of impurities. The aim 
of this calculation is to find out the profile of the potential and electric field within depletion 
layer.  
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1. Introduction 

The p-n junction is a fundamental building block of semicon-
ductor devices. One side of a semiconductor is doped with an ac-
ceptor impurity and another side with a donor impurity. The impu-
rity distribution in p-n junction can be presented with the simpli-
fied models called abrupt junction and the linearly graded junction 
(Henry et al., 1982; Zambuto 1989). In a linearly graded junction, 
the doping concentration varies almost linearly with the distance 
from the junction. 

In the theory of p-n junction in semiconductor, Shockley pre-
sented the first analysis applicable to structure containing a linear-
graded impurity atom distribution in the depletion layer (Shockley, 
1949). With the charge density of impurities and mobile charges, 
Poisson's equation can be solved to obtain the potential and elec-
tric field within the depletion layer. Although this equation does 
not appear to have an analytical solution, many articles (Green 
1982; Neamen 1997; Zambuto 1989) deal with an analytical treat-
ment in order to simplify the analysis. The exponential variation of 
mobile charges with the potential in the space-charge region leads 
to the solution of Poisson's equation to be non-linear. Hence, vari-
ous methods such as the relaxation method, an iterative algorithm 
are essential for the numerical solution of such problems (Fathi 
and Darkwi 2006; Alexei and Sajeev 2012). 

It often happens that, the equation to be solved may contain 
more than one variable, x, y, z. In this paper, the solution is devoted 
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to solving Poisson's equation in two dimensions (2D) within a rec-
tangle with Neumann and Dirichlet boundary values. We derived 
the solution for the case of p-n junction at equilibrium (zero bias). 
Numerous papers have been devoted to numerical solution of Pois-
son's equation (Achoyan et al., 2002; Kosec and Trobec 2015). 
Some work has been done (Akinpelu et al., 2018) on numerical sim-
ulation of Poisson's equation in 2D for an abrupt and linearly 
graded charge densities distribution in the depletion layer. How-
ever, they did not show explicitly the profile of the electric field 
within the depletion layer.   

In this paper, we present a numerical method for the solution 
of Poisson’s equation using the successive over-relaxation (SOR) 
technique. The method is based on transforming Poisson’s equa-
tion into a system of nonlinear algebraic equations. Linear grading 
of charge impurities in the depletion layer was implemented. First, 
the calculation was carried out for one-dimension (1D), and then 
extended into two-dimensions (2D). 

2. Theory 

The schematic diagram of the p-n junction diode is shown in 
Fig. 1. When the metallurgical junction is preform between two 
types of semiconductors, electrons move to p-type and holes move 
to n-type until fermi levels become coincide on both sides in equi-
librium. Hence, near the junction, fixed positive charges are left in 
n-type while negative charges in p-type creating an internal electric 
field and a built-in potential that prevent the moving of more 
charges across the junction. The space charge region or depletion 

https://en.wikipedia.org/wiki/Relaxation_method
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layer exists on either side of the metallurgical junction that sepa-
rates the n-and p-type regions. To do quantitative analysis of phys-
ical parameters, the distribution of charges within the depletion 
layer may be represented by geometrical functions such as abrupt 
or linear grading junction (Sze 1981; Zambuto 1989). 

 
Fig. 1. The p-n junction 

 

Fig. 2. Linearly grading distribution of impurity charges: (a)- equal dopant 
NA=ND, and (b)- non-equal dopant NA≠ND. 

In the space charge region, the relationships among the charges 
and potential are represented by Poisson’s equation on 2-D case as:  

𝑑2∅(𝑥, 𝑦)

𝑑𝑥2 +
𝑑2∅(𝑥, 𝑦)

𝑑𝑦2 = −
𝑞

𝜖 
 (𝑁𝐷 − 𝑁𝐴 +  𝑝(𝑥)  − 𝑛(𝑥)   )           (1) 

Where ϕ(x, y) is the potential, ε is the dielectric of the media, q is 
the electric charge, ND donor, and NA acceptor densities. The n(x) 
and p(x) are the electron and hole density respectively, which are 
given by 

𝑝(𝑥) =  𝑛𝑖  𝑒
−𝑞 ∅(𝑥,𝑦)

𝐾𝑇                                                                                    (2) 

and  

𝑛(𝑥) =  𝑛𝑖  𝑒
𝑞 ∅(𝑥,𝑦)

𝐾𝑇                                                                                       (3) 

where ni is the intrinsic concentration of charges, K is Boltzmann's 
constant, and T is temperature. Because of the exponential terms 
in the expression for charge density on the potential φ(x, y), the 
analytical solution of Poisson's equation becomes difficult, hence, a 
numerical solution is essential for this case. 

Using the finite difference method to L-side of the Eq. (1), yield-
ing (Benyam, 2015): 

  
∅𝑖+1 ,𝑗 − 2∅𝑖,𝑗 + ∅𝑖−1,𝑗

ℎ𝑥
2

+
∅𝑖,𝑗+1  − 2∅𝑖,𝑗 + ∅𝑖,𝑗−1 

ℎ𝑦
2

= 𝑓(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , ∅𝑖,𝑗) (4) 

Where hx and hy are the distance between two successive grid 
points along x, y respectively. For linear impurity doping, the func-
tion 𝑓(𝑥𝑖,𝑗, 𝑦𝑖,𝑗, ∅𝑖,𝑗) is given by 

𝑓(𝑥𝑖,𝑗, 𝑦𝑖,𝑗, ∅𝑖,𝑗) = −
𝑞

𝜀
(𝑎 𝑥𝑖,𝑗 − 2𝑛𝑖 sinh (

𝑞∅𝑖,𝑗

𝐾𝑇
))                           (5) 

Rearranging Eq. (4) and for hx = hy =h one can find 

∅𝑖 ,𝑗 =  
∅𝑖+1 ,𝑗 + ∅𝑖−1,𝑗 + ∅𝑖,𝑗+1 + ∅𝑖,𝑗−1 − ℎ2𝑓(𝑥𝑖,𝑗, 𝑦𝑖,𝑗, ∅𝑖,𝑗)

4
      (6)  

For hx ≠ hy, Eq. (6) reduce to 

 ∅𝑖 ,𝑗 =  
ℎ𝑦

2 (∅𝑖+1 ,𝑗 + ∅𝑖−1,𝑗) + ℎ𝑥
2(∅𝑖,𝑗+1 + ∅𝑖,𝑗−1) − ℎ𝑥

2ℎ𝑦
2𝑓(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , ∅𝑖,𝑗)

2(ℎ𝑥
2 + ℎ𝑦

2 )
   (7) 

Implementing the boundary condition, one can find the potential at 
each inner grid point using the iteration method. 

a-The Neumann boundary condition 

The potential at edges of depletion layer (xn) and (–xp) is given by 
(Zambuto, 1989) 

∅𝑛 =
𝑞𝑁𝐷

2𝜀
 𝑥𝑛

2                                                                                                 (8) 

∅𝑝 = −
𝑞𝑁𝐴

2𝜀
 𝑥𝑝

2                                                                                            (9) 

The grading point potential ϕ(i, j) along x= xn and 0 ≤ y ≤ dy will be: 

∅(𝑁+1,𝑗) = ∅𝑛       𝑓𝑜𝑟     0 ≤   𝑗 ≤  𝑀 + 1                                          (10) 

Similarly, along x= - xp and 0 ≤ y ≤ dy will be: 

∅(0,𝑗) = ∅𝑝       𝑓𝑜𝑟     0 ≤   𝑗 ≤  𝑀 + 1                                               (11) 

The N and M are the number of the grid points along x and y re-
spectively, see Fig. 3. 

 

Fig. 3. Gridding points in two dimensions 

b-The Dirichlet boundary condition 

Fig. 1 shows the electric field due to the distribution of charges 
is directed along the x-axis. Consequently, there is no field along the 
y-axis, hence 𝐸 = − 𝑑∅ 𝑑𝑦⁄ = 0. At y = 0 we get 

𝐸𝑦 = −
(∅(𝑖,𝑗+1), − ∅(𝑖,𝑗−1))

ℎ𝑦
= 0                                                          (12) 

Or 

∅(𝑖,𝑗−1) = ∅(𝑖,𝑗+1)                                                                                      (13)  

Substituting Eq. (13) in Eq. (7), we get the potential at edge y=0 and 
x follow the indices i where 0≤ i ≤ N as, 

∅𝑖 ,0

=  
ℎ𝑦

2(∅𝑖+1 ,0 + ∅𝑖−1,0) + 2ℎ𝑥
2∅𝑖,1 − ℎ𝑥

2ℎ𝑦
2𝑓(𝑥𝑖,0, 𝑦𝑖,0, ∅𝑖,0)

2(ℎ𝑥
2 + ℎ𝑦

2)
            (14) 

Similarly, at edge y = dy, we get; 

∅𝑖 ,𝑀+1

=  
ℎ𝑦

2 (∅𝑖+1 ,𝑀+1 + ∅𝑖−1,𝑀+1) + 2ℎ𝑥
2∅𝑖,𝑀 − ℎ𝑥

2ℎ𝑦
2𝑓(𝑥𝑖,𝑀+1, 𝑦𝑖,𝑀+1, ∅𝑖,𝑀+1)

2(ℎ𝑥
2 + ℎ𝑦

2 )
  (15) 
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The boundary conditions Eq. (10), Eq. (11), Eq. (14), and Eq. 
(15), with the initial gauss of inner grade points of ∅𝑖,𝑗, Eq. (7) can 

be solved by using the successive over-relaxation (SOR) method.  

3. The depletion layer approximation 

The width of depletion rejoin in a p-n junction can be estimated 
by depletion layer approximation. This assuming that the carrier 
concentration (n(x) and p(x)) is negligible compared to the net 
doping concentration (NA and ND) in the region straddling the met-
allurgical junction. For a linearly graded junction of Fig. 2a the im-
purity concentration is given by (Zambuto 1989; Kennedy and 
O'Brien 1967) 

𝑁𝐷 − 𝑁𝐴 = 𝑎 𝑥      − 𝑥𝑝 ≤ 𝑥 ≤ 𝑥𝑛                                                        (16) 

where a is constant called dopant rate with units cm-4. 

Consequently, with the above assumption Poisson's equation can 
simply be integrated yielding built-in potential ∅𝑏𝑖 related to the 
depletion layer. 

∅𝑏𝑖 =
𝑞 𝑎 𝑥𝑑

3

12𝜀 
                                                                                              (17) 

where xd is total depletion layer, for ND = NA, one can find xd = 2 xn. 
Then, the proportionality constant a is given by 

𝑎 =
𝑁𝐷

𝑥𝑛 
 =

2 𝑁𝐷

𝑥𝑑
                                                                                        (18) 

The built-in potential can also be computed from the equation: 

∅𝑏𝑖 =
𝑘𝑇

𝑞
ln (

𝑁𝐷𝑁𝐴

𝑛𝑖
2  )                                                                              (19) 

Using Eq. (17) and Eq. (18), one can find the depletion layer by 

𝑥𝑑 = √
6 𝜀 ∅𝑏𝑖

𝑞𝑁𝐷
                                                                                           (20) 

For linearly graded junction of Fig. 2b, where A and D are rates of 
variation of acceptor and donor respectively, given by 

𝐴 =
𝑁𝐴

𝑥𝑝
                                                                                                        (21) 

and  

𝐷 =
𝑁𝐷

𝑥𝑛
                                                                                                        (22) 

In this case, the depletion region charge neutrality condition be-
comes  

𝐴 𝑥𝑝
2 = 𝐷 𝑥𝑛

2                                                                                                (23) 

Integrating Poisson equation and using boundary condition, yield-
ing approximate depletion layer in each side of the junction as 
(Zambuto, 1989) 

𝑥𝑝 = √
3𝜀

𝑞 𝐴
 

√𝐷

√𝐴 + √𝐷
  ∅𝑏𝑖  

3

                                                                    (24) 

𝑥𝑛 = √
3𝜀

𝑞 𝐷
 

√𝐴

√𝐴 + √𝐷
  ∅𝑏𝑖  

3

                                                                    (25) 

And quasi-Fermi levels  

∅𝑝 = −
𝑞  𝐴

3𝜀
 𝑥𝑝

3                                                                                          (26) 

∅𝑛 =
𝑞  𝐷

3𝜀
 𝑥𝑛

3 =
𝑞 𝐴

3𝜀
  𝑥𝑝

3  √
𝐴

𝐷
                                                                (27) 

4. Result and Discussion 

A silicon p-n linear-grading junction with ND=1014 cm-3 and 
NA=1014 cm-3 has been implemented in the calculation. Finite differ-
ence method by implying successive over-relaxation (SOR), a solu-
tion of Poisson's equation in two-dimension has been obtained us-
ing Newman and Dirichlet boundary condition. In the case of con-
sidering only fixed charge density due to impurity within the de-
pletion layer, Poisson's equation was solved analytically. Fig. 4 
shows the linearly fixed charge distribution of ionized impurities 
within the depletion layer. Fig. 5 and Fig. 6 show the profile of po-
tential and electric field within the depletion layer due to charge 
distribution. The numerical result obtained was in quite well agree-
ment with the analytical. 

 

Fig. 4. The linearly fixed charge density of impurities [NA, ND] within the 
depletion layer 

 

Fig. 5. Electrostatic potential for fixed charge density of impurities [NA, ND] 
within depletion layer  

 
Fig. 6. Electric field for fixed charge density of impurities [NA, ND] within 
depletion layer 
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In the existence of free charges p(x) and n(x) in the depletion 
layer, the solution of Poisson's equation is difficult to solve analyt-
ically because free charges p(x) and n(x) follow exponential form 
as given by Eq. (2) and Eq. (3). Hence, a numerical method is imple-
mented. Fig. 7 shows the free charge p(x), n(x) carriers appear as 
majority carriers ( holes within the p-type material and electrons 
within n-type material ) will partially neutralize the electrostatic 
charge arising from ionized impurity atoms. Using charge density 
p(x), n(x), and impurity concentrations in the numerical analysis 
we attend to charge distribution within the depletion layer as seen 
in Fig. 8. Close to the metallurgical junction, the charge density fol-
lows linearity on both sides, however, far away from the junction it 
deviated from linearity, due to the exponential form of free charge 
density. The high density of free charges will neutralize ionized im-
purity leading to reduce the width of the depletion layer in these 
regions. 

 

Fig. 7. Distribution of fixed [NA, ND] and movable [n(x), p(x)] charge den-
sity within depletion layer 

 

Fig. 8. Charge density ρ within depletion layer 

Fig. 9 and Fig. 10 show the profile of the potential and electric 
field. The electric field is maximum at the metallurgical junction. 
The peaking of the electric field is because of the overall neutrality 
of the positive and negative charges in each side of the junction. The 
field lines will go from positive charges ends into negative charges. 
Thus, the highest number of electric field lines will be at the plane 
separating the two charge distributions, which is the metallurgical 
junction. Then, the electric field decreases with distance into both 
the p-type and n-type semiconductor. At the point x=-1.98μm and 
x=1.98μm, the electric field changes its sign, and this is meanly due 
to no more ionized dopant exist beyond these points, hence, these 
points represented the boundary of depletion layers. The electric 
field and potential distributions within the depletion layer are sig-
nificantly affected by free carriers. 

 

Fig. 9. The electrostatic potential within the depletion layer 

 

Fig. 10. The electric field within the depletion layer 

As a matter of fact, the device is not in one dimension, our anal-
ysis extended into two dimensions (2D). To do the calculation in 
two dimensions, the charge density ρ(x, y) has to be known. For 
simplicity in the calculation, the concentrations of charge along the 
y-axis were kept constant through each particular site yi. Using this 
assumption, the profile of charge density is shown in Fig. 11. The 
potential and electric field of this charge distribution are given in 
Fig. 12 and Fig. 13. 

 

Fig. 11. The charge density ρ in [2D] within the depletion layer  
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Fig. 12. The electrostatic potential in [2D] within the depletion layer 

 

Fig. 13. The electric field in [2D] within the depletion layer 

A step of major importance in the theory of p-n junction is to 
get detailed information about the distribution of charge density 
within depletion later, see Fig. 14. In the case of dopant concentra-
tion rates, A=71018 cm-4 and D=1019cm-4, the asymmetry distribu-
tion gives the resultant charge density as in Fig. 15. The depletion 
layer extends more in p-type material due to the high density of 
free charge p(x) as seen in Fig. 14, which makes the neutralization 
of holes with impurity atoms more in this region of the junction. 
The boundary of the depletion layer reduces to x=-0.78μm instead 
of xp=-0.97μm. Fig. 16 and Fig. 17 show the potential and electric 
field in (1D). The electric field is maximum at the junction transi-
tion point and decrees with distance into both sides, but for p-type 
at x=-0.78μm for value E=2.23x103 V/cm, the electric field 
changes its sing due to free charge p(x) remaining in p-type as seen 
in Fig. 15. 

 

Fig. 14. Fixed [Ax, Dx ] and free [p(x), n(x) ] charge density within deple-

tion layer for doping rates A=71018 cm-4 and D=1019 cm-4. 

 

Fig. 15. Charge density ρ within depletion layer for doping rates A=71018 
cm-4 and D=1019 cm-4. 

 

Fig. 16. The electrostatic potential within depletion layer for doping rates 

A=71018 cm-4 and D=1019 cm-4. 

 

Fig. 17. The electric field within depletion layer for doping rates A=71018 
cm-4 and D=1019 cm-4.  
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Fig. 18. Charge density ρ in [2D] within depletion layer for doping rates 

A=71018 cm-4 and D=1019 cm-4. 

 

Fig. 19. Electrostatic potential in [2D] within depletion layer for doping 

rates A=71018 cm-4 and D=1019 cm-4. 

 

Fig. 20. The electric field in [2D] within depletion layer for doping rates 

A=71018 cm-4 and D=1019 cm-4. 

Fig. 18 shows the distribution of charge density in two dimen-
sions (2D) for the case of asymmetry of dopant concentration rates 
(A, D). It is clear that asymmetry distribution yield a magnitude of 
depletion layer slightly greater in of low-doped region. Fig. 19 and 
Fig. 20 show the potential and electric field within the depletion 
layer for non-equal dopant concentration rates. Throughout the 
present calculation, the electric field is maximum at the junction, 
the depletion layer is assumed to be at locations where the electric 
field equals zero on each side of the junction or at points where the 
electric field changes its sign as explained in Fig. 15. 

5. Conclusion 

In this paper, we have attempted to provide a simple technique 
in the numerical analysis of semiconductor devices. The finite-dif-
ference method for the solution of Poisson's equation is discussed. 
First, the calculation was carried out for one-dimension (1D) using 
full charge density ρ (impurities [NA, ND] and free charges [n(x), 
p(x)]. Then, calculations were extended into two-dimension (2D). 
The profile of charge density distribution; electric potential and 
electric field within the depletion layer were investigated. The ef-
fect of impurities in the depletion layer, electrostatic potential, and 
electric field was discussed. The method derived here is helpful to 
analyze non-linear impurities distribution such as exponential or 
hyper abrupt junction. The numerical solution of Poisson's equa-
tion in 2D can be combined with two equations of charge carriers 
(electrons, holes) to obtain the current density J(x, y) of p-n junc-
tion solar cell in two dimensions. 
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