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 The vortex panel method has its strength and weakness points. 
 The method is computationally cheap and relatively easy to program. 
 The method is capable of solving the incompressible flow past thin airfoils at small angle of attack. 
 The method can not capture shock waves even if they are weak. 
 Friction is completely ignored by the method. 
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The vortex panel method is a very simple and computationally effective method to solve the in-
compressible and inviscid flow past thin airfoils. This work tries to provide a complete and de-
tailed presentation of the mathematical derivation of this method. It also highlights the points of 
strength and weakness of this method as compared with more advanced yet expensive computa-
tional methods. The results obtained from this work have shown that the method is capable of 
solving the flow past thin airfoils with good precision for subsonic and laminar flow. For transonic 
and turbulent flows and as the angle of attack of the flow is increased, the method lacks the pre-
cision, especially near the leading and trailing edges. 
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1. Introduction 

Numerical methods are nowadays very essential in the aero-
space industry. A Simple method such as the vortex panel method 
is still used in large companies that produce commercial aircraft, 
especially in the preliminary design stage. The vortex panel 
method offers a faster and easier alternative as compared to more 
time consuming both Navier–Stokes and Euler flow solvers due to 
the fact that the vortex panel method does not require the process 
of computational grid generation.  

2. Mathematical model 

The basic equations of fluid motion are called alternatively as 
the “conservation laws” because they are basically a representation 
of the three concepts: conservation of mass, conservation of linear 
momentum, alternatively called Newton’s second law of motion, 
and conservation of energy. In this section, the first two conserva-
tion laws will be reviewed in details whereas the third law will be 
excluded. The panel method, which is the main subject of this study, 
is based on mass conservation and linear momentum conservation, 
and it has nothing to do with energy conservation. That is why the 
conservation of energy is considered as an “out of the scope” sub-
ject. 

∇⃗⃗ . V⃗⃗ = 0                                                                                                          (1) 

𝜌 [
𝜕𝑉⃗ 

𝜕𝑡
− 𝑉⃗ × (∇⃗⃗ × V⃗⃗ ) + ∇⃗⃗ (

𝑉⃗ 2

2
)] = 𝜌𝑔 − ∇⃗⃗ 𝑃                                       (2) 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
                                                                             (3) 

                                                             
1 1  2019 University of Benghazi. All rights reserved.1ISSN 2663-1407; National Library of Libya, Legal number: 390/2018 

𝑢 =
𝜕𝜙

𝜕𝑥
;         𝑣 =

𝜕𝜙

𝜕𝑦
;           𝑤 =

𝜕𝜙

𝜕𝑧
                                                      (4) 

In this study, the fluid is assumed to be steady, incompressible, 
irrotational, inviscid, and two-dimensional. Applying the above -
mentioned assumptions, and recalling that the continuity equation 
can be represented by an equivalent total velocity potential func-
tion equation in the case of potential flow, Eqs. 1 and 2 are reduced 
to the following equations:  

 𝜙𝑻 = 𝜙𝑣1 + 𝜙𝑣2 = 𝜙1 + 𝜙2 =
Γ1
2𝜋

𝜃1 +
Γ2

2𝜋
𝜃2                                    (5) 

𝑃 +
1

2
𝜌𝑉2 + 𝜌𝑔(𝑍 − 𝑍𝑜) = 𝑃𝑜                                                                (6 ) 

In the case of panel codes, the direct implementation of the wall 
boundary condition would be to mathematically state that the ve-
locity normal to the surface is zero, see (White, 2003). 

𝑉⃗ . 𝑛⃗ = 0                                                                                                          (7) 

The Kutta condition states that in order to obtain a lift from the air-
foil, the fluid flow at the trailing edge must satisfy the following 
condition: 

𝑉𝑢𝑝𝑝𝑒𝑟(𝑎𝑡 𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒) = 𝑉𝑙𝑜𝑤𝑒𝑟(𝑎𝑡 𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒)                   (8) 

A computer program written by (Kireny, 2002) was employed 
in this paper. This program implements the variable vortex panel 
method explained by (Kuethe and Chow, 2009). Although the orig-
inal computer program, which was introduced by (Kuethe and 
Chow, 2009) has been written in FORTRAN, the program of 
(Kireny, 2002) is written in MATLAB. MATLAB is considered a 
fourth–generation programing language, which has the advantage 
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of containing many embedded libraries. Those libraries were de-
veloped, tested, and tweaked to provide the most exact solution for 
several mathematical problems without sacrificing the speed of 
computation. Moreover, MATLAB has a built-in plotter, which ena-
bles the user to see and investigate the results after the computa-
tion. 

 

Fig.1. Control Point at Mid Panel (Kuethe and Chow, 2009). 

The main idea behind the panel method is in employing the ve-
locity potential instead of the velocity components (𝑢, 𝑣) to repre-
sent each elementary flow component incorporated in the complex 
flow at hand. The complex flow at hand in this situation is con-
structed of a free stream having a velocity of 𝑉∞ at an angle of attack 
(∝) and a set of vortex panels (m vortex panels), see Fig. 1. Employ-
ing the superposition method to write the equation of the total ve-
locity potential for panel 𝑖 yields: 

∅(𝑥𝑖,𝑦𝑖) = 𝑉∞(𝑥𝑖𝑐𝑜𝑠 ∝ +𝑦𝑖𝑠𝑖𝑛 ∝) +

∑ ∫
−𝛾(𝑠𝑗)

2𝜋𝑝𝑎𝑛𝑒𝑙 𝑗
𝑚
𝑗=1 tan−1 [

𝑦𝑖−𝑦𝑗

𝑥𝑖−𝑥𝑗
] . 𝑑𝑠𝑗                                                      (9)  

It is possible to obtain two equations for the normal and tangen-
tial velocity components on panel 𝑖 as: 

𝑉𝑛𝑖
= 𝑉∞(𝑐𝑜𝑠𝛼𝑖̂ + 𝑠𝑖𝑛𝛼𝑗̂). 𝑛⃗ + ∑ 𝛾′

𝑗 ∫ 𝑓1𝑛(𝑠𝑗). 𝑑𝑠𝑗 +
𝑠𝑗

0
𝑚
𝑗=1

𝛾′
𝑗+1 ∫ 𝑓2𝑛(𝑠𝑗). 𝑑𝑠𝑗

𝑠𝑗

0
                                                                               (10)  

𝑉𝑡𝑖
= 𝑉∞(𝑐𝑜𝑠𝛼𝑖̂ + 𝑠𝑖𝑛𝛼𝑗̂). 𝑡 + ∑ 𝛾′

𝑗 ∫ 𝑓1𝑡(𝑠𝑗). 𝑑𝑠𝑗 +
𝑠𝑗

0
𝑚
𝑗=1

𝛾′
𝑗+1 ∫ 𝑓2𝑡(𝑠𝑗). 𝑑𝑠𝑗

𝑠𝑗

0
                                                                                (11)  

Eq. 11 will be dealt with later*. Now concentrating on Eq. 10, the 
estimation of the two integrals is lengthy and tedious algebraic 
task. The result is directly given below as:  

∫ 𝑓1𝑛(𝑠𝑗). 𝑑𝑠𝑗 = 𝐶𝑛1𝑖𝑗
𝑠𝑗

0
                                                                (12 − 𝑎)  

∫ 𝑓2𝑛(𝑠𝑗). 𝑑𝑠𝑗 = 𝐶𝑛2𝑖𝑗
𝑠𝑗

0
                                                                (12 − b)  

𝐶𝑛1𝑖𝑗 and 𝐶𝑛2𝑖𝑗 are coefficients expressed by:  

𝐶𝑛1𝑖𝑗 = 0.5𝐷𝐹 + 𝐶𝐺 − 𝐶𝑛2𝑖𝑗                                                               (13) 

𝐶𝑛2𝑖𝑗 = 𝐷 + 0.5
𝑄𝐹

𝑆𝑗
−

(𝐴𝐶 + 𝐷𝐸)𝐺

𝑆𝑗
                                                  (14) 

The intermediate constants appearing on the right -hand sides 
of Eqs 13 and 14 and some later expressions are defined as: 

𝐴 = −(𝑥𝑖 − 𝑋𝑗)𝑐𝑜𝑠𝜃𝑗 − (𝑦𝑖 − 𝑌𝑗)𝑠𝑖𝑛𝜃𝑗  

𝐵 = (𝑥𝑖 − 𝑋𝑗)
2
+ (𝑦𝑖 − 𝑌𝑗)

2
 

𝐶 = 𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑗) 

𝐷 = 𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗) 

𝐸 = (𝑥𝑖 − 𝑋𝑗) 𝑠𝑖𝑛𝜃𝑗 − (𝑦𝑖 − 𝑌𝑗)𝑐𝑜𝑠𝜃𝑗  

                                                             
*The normal velocity component is dealt with firstly because of the boundary condition, which states that this component is equal to zero. 

F= ln [1 +
𝑆𝑗

2+2𝐴𝑆𝑗

𝐵
]                                

𝐺 = tan−1 [
𝐸𝑆𝑗

𝐵 + 𝐴𝑆𝑗
] 

𝑃 = (𝑥𝑖 − 𝑋𝑗) sin(𝜃𝑖 − 2𝜃𝑗) + (𝑦𝑖 − 𝑌𝑗)𝑐𝑜𝑠 (𝜃𝑖 − 2𝜃𝑗)  

𝑄 = (𝑥𝑖 − 𝑋𝑗) cos(𝜃𝑖 − 2𝜃𝑗) − (𝑦𝑖 − 𝑌𝑗)𝑠𝑖𝑛 (𝜃𝑖 − 2𝜃𝑗)  

Note that these constants are functions of the coordinates of the 𝑖𝑡ℎ 
control points, those of the boundary points of the 𝑗𝑡ℎ vortex panel, 
and the orientation angles of both 𝑖𝑡ℎ and 𝑗𝑡ℎ panels. They can be 
computed for all possible values of 𝑖 and 𝑗 once the panel geometry 
is specified. Eq. 10 will be employed to write a set of equations for 
the induced velocity at panel 𝑖 from all of the remaining panels in-
cluding the induced velocity from the variable vortex on panel 𝑖  
itself. In addition to this set of equations, the Kutta condition in 
form of the following equation is added: 

  𝛾′
1 +  𝛾′

𝑚+1 = 0                                                                                     (15) 

This will construct a system of (m+1) simultaneous algebraic equa-
tions as: 

[
 
 
 
 
 
 

𝐴𝑛1,1

𝐴𝑛2,1
...

𝐴𝑛𝑚−1,1

𝐴𝑛𝑚,1

1

𝐴𝑛1,2

𝐴𝑛2,2
...

𝐴𝑛𝑚−1,2

𝐴𝑛𝑚,2

0

.

....

..

..

.
0

.

....

......

.
0

𝐴𝑛1,𝑚

𝐴𝑛2,𝑚
...

𝐴𝑛𝑚−1,𝑚

𝐴𝑛𝑚,𝑚

0

𝐴𝑛1,𝑚+1

𝐴𝑛2,𝑚+1
...

𝐴𝑛𝑚−1,𝑚+1

𝐴𝑛𝑚,𝑚+1

1 ]
 
 
 
 
 
 

[
 
 
 
 
 
 

 𝛾′
1

 𝛾′
2

.
 𝛾′

𝑚−1

 𝛾′
𝑚

 𝛾′
𝑚+1]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑅𝐻𝑆1

𝑅𝐻𝑆2

..

.
𝑅𝐻𝑆𝑚−1

𝑅𝐻𝑆𝑚

0 ]
 
 
 
 
 
 

(16) 

where: 

𝑅𝐻𝑆𝑖 = 𝑠𝑖𝑛(𝜃𝑖 − 𝛼)                    𝑖 = 1,2, ……… .𝑚 + 1 

𝐴𝑛𝑖𝑗 is known as the influence coefficient for the normal velocity. 

In which, for 𝑖 ≠ 𝑚 + 1 

 𝑖𝑓        𝑗 = 1                      𝐴𝑛𝑖1 = 𝐶𝑛1𝑖1   

 𝑖𝑓       𝑗 = 2,3, …… 𝑚        𝐴𝑛𝑖𝑗 = 𝐶𝑛1𝑖𝑗 + 𝐶𝑛2𝑖𝑗  

𝑖𝑓       𝑗 = 𝑚 + 1                𝐴𝑛𝑖𝑚+1 = 𝐶𝑛2𝑖𝑚+1 

𝑅𝐻𝑆𝑖 = 𝑠𝑖𝑛(𝜃𝑖 − 𝛼) 

And for 𝑖 = 𝑚 + 1 

𝑖𝑓     𝑗 = 1 𝑎𝑛𝑑 𝑗 = 𝑚 + 1           𝐴𝑛𝑖1 = 𝐴𝑛𝑖𝑚+1 = 1    

 𝑖𝑓      𝑗 = 2,3, …… ……… 𝑚          𝐴𝑛𝑖𝑗 = 0         

𝑅𝐻𝑆𝑖 = 0 

This system of linear algebraic equations lends itself to solution by 
the Gauss elimination method to obtain the (m+1) unknowns of 
 𝛾′

𝑗s. Having  𝛾′
𝑗s at hand will enable the calculation of the tangen-

tial velocity and hence the pressure at the control points. This task 
will be accomplished by recalling Eq. 11 and substituting for the 
values of  𝛾′

𝑗s in it. The only unknown in Eq. 11 will be the tangen-

tial velocities at each panel. Here again, the two integrals on the 
right-hand side of Eq. 11 will undergo to a lengthy mathematical 
manipulation and the result is directly given below as:  

∫ 𝑓1𝑡(𝑠𝑗). 𝑑𝑠𝑗 = 𝐶𝑡1𝑖𝑗

𝑠𝑗

0

                                                                 (17 − 𝑎) 

∫ 𝑓2𝑡(𝑠𝑗). 𝑑𝑠𝑗 = 𝐶𝑡2𝑖𝑗                                                                  (17 − 𝑏)
𝑠𝑗

0

 

Where: 
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𝐶𝑡1𝑖𝑗 = 0.5𝐶𝐹 − 𝐷𝐺 − 𝐶𝑡2𝑖𝑗                                                                (18) 

𝐶𝑡2𝑖𝑗 = 𝐶 +
0.5𝑃𝐹

𝑆𝑗
+

(𝐴𝐷 − 𝐶𝐸)𝐺

𝑆𝑗
                                                     (19) 

The constants appearing in Eqs. 18 and 19 are the same constants 
that appeared when  𝐶𝑛1𝑖𝑗 and  𝐶𝑛2𝑖𝑗 , were calculated. A special 

case arise when 𝑖 =𝑗, the coefficients have the simplified values: 

𝐶𝑡1𝑖𝑗 = 𝐶𝑡2𝑖𝑗 =
𝜋

2
 

The local dimensionless velocity defined as 𝑉𝑖 = [
𝑉𝑡𝑖

𝑉∞
⁄ ] can be 

computed as: 

𝑉𝑖 = cos(𝜃𝑖 − 𝛼) + ∑ 𝐴𝑡𝑖𝑗

𝑚+1

𝑗=1

.  𝛾′
𝑗                                                           (20) 

Where 𝑖 = 1,2, … ,𝑚 and 𝐴𝑡𝑖𝑗
 is known as the influence coefficient 

for the tangential velocity. 

𝐴𝑡𝑖𝑗
 can be obtained as follows: 

𝑖𝑓     𝑗 = 1                                   𝐴𝑡𝑖1
= 𝐶𝑡1𝑖1 

𝑖𝑓     𝑗 = 2,3,… ……… 𝑚         𝐴𝑡𝑖𝑗
= 𝐶𝑡1𝑖𝑗 + 𝐶𝑡2𝑖𝑗  

𝑖𝑓      𝑗 = 𝑚 + 1                         𝐴𝑡𝑖,𝑚+1
= 𝐶𝑡2𝑖,𝑚+1         

The  𝛾′
𝑗  is already known and the only unknown now is 𝑉𝑖  at each 

control point. 

We can determine 𝑉𝑖   for each panel by: 

[𝑉𝑖] = [cos (𝜃𝑖 − 𝛼)] + [𝐴𝑡𝑖𝑗
] [ 𝛾′

𝑗]                                                     (21) 

After solving Eq. 21 for each panel, the values of the dimension-
less velocity at each control point can be obtained. We can calculate 
the pressure coefficient at each control point by Bernoulli’s law and 
using dimensionless velocity 𝑉𝑖  at each control point, that is: 

𝐶𝑝𝑖
= 1 − 𝑉𝑖

2                                                                                              (22) 

3. Results and discussions 

3.1 Determination of the Optimum Panel Count 

The effect of airfoil thickness on the panel count can be investi-
gated by examination of Figs. 2 to 6. In each figure, six solutions are 
shown. These solutions are obtained using twenty, forty, eighty, 
one hundred and twenty, one hundred and sixty, and two hundred 
panels. As seen in these figures the solutions obtained by using 
both twenty and forty panels deviate considerably from the other 
solutions. These deviations occur especially at the regions of high 
gradients, namely; near the leading and the trailing edges. Another 
important notice here is that all the remaining obtained solutions 
are coincident. This means that increasing the panel count above 
eighty is superfluous and will not lead to any improvement in the 
accuracy. 

 

Fig. 2. Effect of Number of Panels on 𝐶𝑃 Distribution for 
NACA0004 at AOA=zero. 

 

Fig. 3. Effect of Number of Panels on 𝐶𝑃 Distribution for 
NACA0006 at AOA=zero. 

 

Fig. 4. Effect of Number of Panels on 𝐶𝑃 Distribution for 
NACA0008 at AOA=zero. 

 

Fig. 5. Effect of Number of Panels on 𝐶𝑃 Distribution for 
NACA0010 at AOA=zero. 

 

Fig. 6. Effect of Number of Panels on 𝐶𝑃 Distribution for 
NACA0012 at AOA=zero. 

The effect of the flow angle of attack on the panel count can be 
studied by examination of Figs. 7 to 10 a similar observation is 
made here: Both the solutions obtained by using twenty and forty 
panels have considerable deviations from the other obtained solu-
tions in the vicinity of the leading as well as the trailing edge. Start-
ing from eighty panels and increasing the panel count to two hun-
dred has not led to any noticeable increase in the accuracy of the 
obtained solution. 
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Fig. 7. Effect of Number of Panels on 𝐶𝑃 Distribution at 
AOA=1 for NACA 0012. 

 

Fig. 8. Effect of Number of Panels on 𝐶𝑃 Distribution at 
AOA=2 for NACA 0012. 

 

Fig. 9. Effect of Number of Panels on 𝐶𝑃  Distribution at AOA =3 
for NACA 0012. 

 

Fig. 10. Effect of Number of Panels on 𝐶𝑃 Distribution at 
AOA=5 for NACA 0012. 

3.2 Comparison of the Vortex Panel Method with the CFX 

When it comes to choosing the test case, a special care must be 
taken. In other words, the test case must be chosen such that it lies 
within the field of application of the vortex panel method. It is well 
documented in the literature that vortex panel method is devel-

oped from the vortex sheet method, that is; it is originally formu-
lated for a sheet or flat plate, and hence it can be extended to airfoils 
as long as the airfoils are thin.  

Another aspect which should be considered when employing 
the vortex panel method is that it ignores the induced normal ve-
locities on the surface of the airfoil and they are set equal to zero 
during the solution. This assumption is valid as long as the angle of 
attack is less than six degree; see (White, 2003). Accordingly, the 
test cases were chosen to be the flow around the NACA0012 at an-
gles of attack of zero, one, two, three, four, five, and six degrees. 
Figs. 11 to 17 show the distribution of the coefficient of pressure 
versus the relative distance measured from the leading edge as ob-
tained by the vortex panel method and by the CFX commercial pro-
gram. 

It should be noted here that the CFX was run based on input 
flow with a Mach number of 0.3 (incompressible flow) and select-
ing the laminar flow option. Examination of these six figures leads 
to two important observations: For angles of attack between zero 
and three degrees, the panel method solution is in good agreement 
with the CFX solution except at about 95% of the chord near the 
trailing edge. Slight deviations for (0 <∝< 3) near the leading edge 
are also noticed that are related to the presence of the strong gra-
dients near the stagnation point. The solution scheme of the CFX is 
strongly dependent on the values of these gradients. In contrast, 
the panel method does not depend on them. 

The difference between the two solutions at the trailing edge is 
explained by the fact that the panel method employs the Kutta con-
dition at the trailing edge whereas the CFX solves the laminar vis-
cous flow past the airfoil. The second observation is that as the an-
gle of attack is increased above three degrees, the solution of the 
panel method starts slightly to deviate (overestimate) the pressure 
on the higher-pressure side of the airfoil. This deviation occurs in 
the vicinity of the leading edge where the flow accelerates very fast 
from the stagnation point. In doing, so the flow will also pass the 
point at which the airfoil has the maximum thickness. Here it 
should be recalled that the panel method has the constraint of be-
ing limited to thin air foils and that the NACA0012 is a relatively 
thick airfoil. Increasing the angle of attack above three degrees will 
have an effect equivalent to increasing the airfoil thickness, see Fig. 
18. 

 

Fig. 11. 𝐶𝑃 Distribution versus Distance from the Leading 
Edge for an AOA=zero. 

 

Fig. 12. 𝐶𝑃 Distribution versus Distance from the Leading 
Edge for an AOA=1. 
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Fig. 13. 𝐶𝑃 Distribution versus Distance from the Leading 
Edge for an AOA=2. 

 

Fig. 14. 𝐶𝑃 Distribution versus Distance from the Leading 
Edge for an AOA=3. 

 

Fig. 15. 𝐶𝑃 Distribution versus Distance from the Leading Edge for an 
AOA=4. 

 

Fig. 16. 𝐶𝑃 Distribution versus Distance from the Leading Edge 
for an AOA=5. 

 

Fig. 17. 𝐶𝑃 Distribution versus Distance from the Leading 
Edge for an AOA=6. 

 

Fig. 18. Airfoil Thickness Change on the Lower Side due to 
the Increase in AOA.  

3.3 Comparison of Panel Method Results with Results from 
Publications 

In order to beef up the assessment process for the performance 
of the panel method, it was decided to compare its results with re-
sults published in the literature for the same test case. This has put 
a constraint on the selection of the test case. In other words, the 
authors of this paper were obliged to stick to that special test case 
which was selected by the authors of that published work. Moreo-
ver, most of the recent publications solve the full Navier−Stokes 
equations taking into account both compressibility and viscous ef-
fects. Nevertheless, this is one of the main reasons for this study, 
that is; to compare the result obtained by the panel method with 
that obtained by another more advanced yet sophisticated and 
time-consuming scheme. (Sengupta et al., 2013) presented two dif-
ferent solutions for the flow past NACA0012 airfoil: The first solu-
tion is obtained for a compressible flow with a Mach number of 0.6 
and an angle of attack of 0.14 degrees. The second solution is ob-
tained for a near –transonic flow with Mach number of 0.758 and 
an angle of attack of 0.14 degrees. It should be noted that these 
two solutions were obtained for turbulent flow with Reynolds 
number of 3 × 106. 

 

Fig. 19. Comparison of Panel Solution with the First Solution 
Given by (Sengupta et al., 2013 ).  

Fig. 19 shows a comparison of the first solution of (Sengupta et 
al., 2013) with that obtained by the vortex panel method. It is very 
clear that the vortex panel method has performed well as com-
pared to the numerically expensive other solution. Another com-
parison is shown in Fig. 20 where this time the second solution of 
(Sengupta et al., 2013) is compared with that of the panel method. 

Careful investigation of Fig. 20 delivers two important remarks: 
The first is that the vortex panel method solution deviates consid-
erably from the solution of (Sengupta et al., 2013). The second re-
mark is that the vortex panel method solution has failed to capture 
the very weak shock waves that appear on both the lower and the 
upper surface of the airfoil. This behaviour of the vortex panel 
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method is pretty expected since this method was developed for in-
compressible flows that is; for flows with Mach number less than 
0.3. As the Mach number is increased, the compressibility of the 
fluid is increased and accordingly the validity of the panel method 
will deteriorate. In the transonic flow range Mach number (0.8-
1.2), weak shock waves will start to appear in the flow field. Shock 
waves are thin layers in the flow field through which steep gradi-
ents of the flow properties exist.  

 

Fig. 20. Comparison of Panel Solution with Second Solution 
Given in (Sengupta et al., 2013). 

Special techniques* are usually incorporated in advanced flow 
solvers, like the one used by (Sengupta et al., 2013) in order to en-
able the flow solver to detect the shock wave. Swanson and Lingers 
(2016) provide a solution for the flow past NACA0012 at Mach 
number of 0.5 and an angle of attack of zero. This solution was ob-
tained by solving the complete Navier –Stokes equations for lami-
nar flow at Reynolds number of 5000. 

 

Fig. 21. Comparison of Panel Solution with Solution Given by 
(Swanson and Lingers, 2016). 

Fig. 21 shows a comparison between the solution of the vortex 
panel method and the aforementioned solution from Swanson and 
Lingers (2016). As seen in this figure, the panel solution is in good 
agreement with the solution of Swanson and Lingers (2016) except 
at the trailing edge of the airfoil. This is again an expected behav-
iour from the panel method since it employs the Kutta condition 
(Eq. 8) in its derivation. At about 88% of the chord and before the 
trailing edge, (Swanson and Lingers, 2016) state that a flow sepa-
ration will occur and a blow-up of streamline pattern can be clearly 
observed. Fig. 22 is taken from (Swanson and Lingers, 2016) and is 
presented here to clarify this phenomenon, which appears as a re-
sult of the viscous effect. 

 

Fig. 22. Blow up of Streamline Pattern in the Airfoil Trailing 
Edge Region, from (Swanson and Lingers, 2016). 

4. Conclusion 

The vortex panel method is one of the first mathematical tech-
niques that was used to solve the incompressible inviscid flow past 
thin airfoils. Since this method was developed originally for flat 
plate, the extension of its application to airfoils is limited to thin 
airfoils. The simplicity and compactness of the method have made 
it a very popular tool in hands of airplanes designers especially for 
making initial calculations at the early design stage. Another ad-
vantage of the vortex panel method is its low computational cost as 
compared to the computational cost of other more advanced com-
pressible and viscous flow solvers. The results presented and dis-
cussed in this paper have shown that this method performs pretty 
well for thin airfoils and angle of attack of not more than four de-
grees provided that the flow is subsonic. If the flow is transonic, the 
vortex panel method was incapable of predicting and capturing 
even weak shock waves. One last conclusion that was drawn from 
the results is that the heavy dependence of the vortex panel method 
on the Kutta condition in its derivation has rendered it disable of 
capturing the flow separations and streamline’s pattern blowups 
that appear at the trailing edge especially in turbulent flows. 

This work can be further extended in a future study by studying 
the effect of camber and/or changing to another airfoil family, e.g. 
the NACA five or six-digits family. 
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NOMENCLATURES 

Latins: 

A                              Intermediate constant. 

AOA                            Angle of Attack. 

𝐴𝑛𝑖𝑗
                          Influence coefficient for normal velocity.  

𝐴𝑡𝑖𝑗
                          Influence coefficient for tangential velocity. 

B                             Intermediate constant. 

C                             Intermediate constant. 

𝐶𝑛1𝑖𝑗
 , 𝐶𝑛2𝑖𝑗

            Coefficient for normal velocity. 

𝐶𝑡1𝑖𝑗
 , 𝐶𝑡2𝑖𝑗

             Coefficient for tangential velocity. 

𝐶𝑝                           Coefficient of pressure. 

𝐶𝑝𝑖
                          Pressure coefficient at control point.  

D                            Intermediate constant. 

𝑑𝑠

→                           Elemental vector. 

E                            Intermediate constant. 

F                            Intermediate constant. 

G                           Intermediate constant. 

𝑛
→                           Normal vector. 

P                            Intermediate constant. 

Q                           Intermediate constant. 

Re                         Reynolds number based on airfoil chord. 

𝑆𝑗                           Length of the panel. 

𝑠𝑗                           Distance measured from the leading edge. 

𝑡                            Time. 

𝑡
→                           Tangential vector. 

𝑢                            Velocity in x-coordinate. 

𝑉⃗                             Vector velocity. 

𝑉∞                          Uniform velocity. 

𝑉𝑛𝑖
                          Normal velocity at control point. 

𝑉𝑡𝑖
                          Tangential velocity at control point. 

𝑉𝑖                            Dimensionless velocity at control point. 

𝑣                            Velocity in y-coordinate. 

𝑋𝑖                           X-coordination at start point panel 𝑖̂𝑡ℎ. 

𝑋𝑗                           X-coordination at start point panel 𝑗̂𝑡ℎ. 

𝑥                            X-coordinate. 

𝑥𝑖                           X-coordination at mid-point panel 𝑖̂𝑡ℎ. 

𝑌𝑖                           Y-coordination at start point panel 𝑖̂𝑡ℎ. 

𝑌𝑗                           Y-coordination at start point panel 𝑗̂𝑡ℎ. 

𝑦                            Y-coordinate. 

𝑦𝑖                           Y-coordination at mid-point panel 𝑖̂𝑡ℎ. 

𝑧                            Z-coordinate. 

Greeks: 

𝜃𝑖                            The orientation angle of the 𝑖̂𝑡ℎ panel. 

𝜃𝑗                            The orientation angle of the 𝑗̂𝑡ℎ panel.            

𝛼                            Angle of attack. 

Γ                            Circulation. 

𝛾                            Strength of the vortex 

𝛾𝑗                           Strength of the vortex at the start point   

𝛾̀                            Dimensionless strength 

𝜙                           Velocity potential 

𝜔                           Velocity in z-coordinate  

𝜌                            Density.   

𝜏                            Viscous stress.                       

𝜓                           Stream function. 

 


