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Highlights 
 The number of infected individuals depends on the values of β and γ. It cannot be seen dying out unless β< γ.  
 The equilibrium level of infected individuals decreases as β value decreases.  
 The disease prevalence is decreasing at a fixed time.   
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There are various types of stochastic epidemic models that can be formulated to deal with dif-
ferent types of diseases. In this project (SIS) epidemic model Susceptible - Infected- Susceptible 
will be considered relating to the Continuous Time Markov chains process. Each type of the 
epidemic models studies the disease according to its status. In particular, the SIS epidemic 
model regards infectious diseases. The Maple code is provided in this project, which is created 
to produce and predict the number of infected individuals and the disease prevalence at a fixed 
time. 
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1. Introduction 

Mathematical models have been used in epidemiology since the 
eighteenth century, and in the early nineties, the dynamical sys-
tems approaches were commonly enforced in this field, which 
played a very important role in the development of theoretical ep-
idemiology. The process of modeling infectious diseases purposes 
to recognize the prevalence of a species with respect to the factors 
that allocate incidence, distribute, and continuance. 

Therefore, epidemiological models can be used to be aware of 
how an infectious disease spreads between individuals and how 
can be affected by different complexities. There are several epi-
demic models that can be applied for different infection statuses, 
such as SI, SIS and SIR. The SI and SIR models take the dynamics of 
severe infections that either kill or confer immunity when the in-
fection is recovered, whereas the SIS model, which will be consid-
ered in this project, studies the infectious diseases that do not con-
fer long-lasting immunity. For example, sexually transmitted infec-
tions, HIV and bacterial infections, by which individuals can be in-
fected many times during their lives, and in which susceptible indi-
viduals recover from infection and then become liable to be in-
fected again Keeling, M and Rohani, P (2008). Moreover, because of 
the interactions between populations, it is very difficult to deal 
with the spread of all infectious diseases without a mathematical 
model. Therefore, epidemiological models are used to understand 
and predict the macroscopic behaviour of the disease prevalence 
through a population. Thus, the purpose of this project is to outline 
the (SIS) epidemic model regarding the continuous time Markov 
chains. Furthermore, the Maple code will be also described. 

2. Continuous-Time Markov Chains 

Assume {X(t)} is a continuous-time stochastic process and 
(t≥0). Therefore, {X(t); t ≥0}can be called a Continuous-Time Mar-

kov Chain if the stochastic process {X(t)} has the Markovian prop-
erty, if, in addition, P{X(t + s) = j / X(s) = i}is independent of s, then 
the continuous-time Markov chain is said to have stationary or ho-
mogeneous transition probabilities in which the future behavior of 
the process depends only on the present and it does not depend on 
the past (Ross, S., 2007). This means the conditional distribution of 
X(t+s) (the future) given X(s), s ≥0 (the present) and X(u), 0 ≤ u < s 
(the past) is defined as the following: 

P(X(t + s)=j/X(s)=i, X(u)=x(u); 0≤u< s)=P(X(t+s)=j/X(s)=i) 

3. SIS Epidemic Model 

There are diverse types of stochastic epidemic models that can 
be formulated by different stochastic processes, such as SIS Suscep-
tible -Infected-Susceptible as shown in Fig. 1 and SIR Susceptible - 
Infected- Recovered. In this work, the SIS epidemic model for infec-
tious diseases will be applied with its direct relation to the Contin-
uous Time Markov Chain (CTMC) model. In the CTMC model, the 
time scale is defined on the continuous period, t [0;). However, 
the states random variables S(t); I(t) are discrete, (Allen, 2008). 

According to Clancy (2005), the SIS model can be defined as the 
model, which regards a fixed population size N = S+I at time t ≥0 
with S(t); I(t) susceptible and infective host individuals respec-
tively. In addition, the time for the next infective host individual be-
longs to the exponential distribution with mean 

( β/N I(t)(N −  I(t))  + γ I(t))−1 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑁 − 𝛽𝑟(𝑡)𝑆(𝑡)𝐼(𝑡) + 𝛾𝑟(𝑡)𝐼(𝑡) − 𝑆(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑟(𝑡)𝑆(𝑡)𝐼(𝑡) + 𝛾𝑟(𝑡)𝐼(𝑡) 
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Where N is the population,   0 is the infection rate,   0 is the 
recovery rate, S(t) is the number of susceptible indivduals at time 
t, I(t) is the number of infectious individuals at time tsubject to 
N=S(t)+I(t) and r(t) is a Markov chain with a finite state space 
defined on continuous period, t[0, ). 

 

Fig. 1. SIS diagram (Allen, 2008). 

4. The Description of Maple Code 

It has been generated a sample from the exponential distribu-
tion with a Parameter 

( β/N Y(t)(N −  Y(t))  + γ Y(t))−1 

and probability  
γ

γ+β/N(N−Y)
 

If (Y=Y1). Otherwise, (Y=Y+1). With different values of the popu-
lation size N, β, γ, Y0 and tmax. In this case we used {Y (t)} instead of 
{I(t)}. 

The Maple code produces the number of infective host individ-
uals during a period of time (t) and it can be seen how long each 
individual stays infected and then return susceptible. We can run 
the program for several times with different parameters' values to 
see how we can get different numbers of individuals for a long time. 
In addition, the program can be run to see the number of infective 
individuals Y(t0) at a fixed time. For example, the value of Y with 
the time tmax, Y(tmax), which is the highest value oft, in this case we 
produced a histogram to show the prevalence of diseases at a fixed 
time with various values of the other parameters regarding the 
change in the number of the infective individuals with the change 
of the other parameters' values, such as β, γ and Y0. 

5. The effect of β and γ values on the graph 

If β value is greater than γ value, the graph's trend is going up-
wards, in this case the number of infected individuals(Y) cannot be 
seen dying out, we can just see how this number is increasing and 
decreasing during a period of time (t) as it is shown in the graph in 
Fig. 2, in which β= 2 and γ= 1 

 

Fig. 2. Graph showing the number of infected individuals when β>γ. 

Whereas If β value is smaller than γ value the graph's trend is 
going downwards. Similarly, it can be identified from the graph that 
how the number of infected individuals (Y) is changing up and 

down until it is nearly or completely died out in a period of time (t) 
as it is provided in the graph shown in Fig. 3, in which β= 1 and γ=2.  

 

Fig. 3. Graph showing the number of infected individuals when β<γ. 

6. The equilibrium level of the infected individuals 

The equilibrium level is shown in Fig. 4 when β>γ and in Fig. 5 
when β<γ respectively. According to the graphs the equilibrium 
level of the host individuals when β>γ is approximately 20 infected 
individuals. However, in the case β<γ the equilibrium level is about 
five infected individuals. This means that the equilibrium level in-
creases as the β value increases, in which the number of infected 
individuals enhances at one level that can be clearly seen in the 
graph.  

 

Fig. 4. Graph showing the equilibrium level when β>γ. 

 

Fig. 5. Graph showing the equilibrium level when β<γ. 

7. The number of infective individuals at specific Time 

As it has been mentioned previously the Maple code produces 
the number of infective individuals at a fixed time Y(tmax), which is 
demonstrated in three histograms, each one illustrates different 
data from the others. Fig. 6 shows the number of infective individ-
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uals at specific time tmax=10 with a higher value of Y to see the dif-
ference when we start the experiment with a quite high number of 
infective individuals.  

 

Fig. 6. Number of infective individuals at specific time(Y = 50; β= 2; γ= 3). 

Fig. 7 shows that the prevalence of the disease at the fixed time 
(tmax) is decreasing starting with about 0.4 at level zero ending with 
a very small amount at level ten.  

 

Fig. 7. Number of infective individuals at specific time(Y = 5; β= 3; γ= 2).  

According to the information in Fig. 8, the number of infective 
individuals has almost the same behavior as in Fig. 7, although in 
both graphs we changed β and γ values to see if there is any differ-
ence, it does not seem to. 

 

Fig. 8. Number of infective individuals at specific time(Y=5; β=2; γ=3). 

8. The equilibrium level for the disease’s prevalence at the 
fixed time 

The histogram in Fig. 9 demonstrates the equilibrium level for 
the number of infected individuals at a specific time tmax. In this 
case and as it is shown in the graph the equilibrium level is about 
15.  

 
Fig. 9. Graph showing the equilibrium level for the diseases prevalence at 
specific time (Y = 50, β= 3, γ= 2, tmax = 10). 

9. The Maple Code 

The Maple code includes three procedures, which are First 
Step, Raga Function and Second Step. These procedures have dif-
ferent inputs as well as the outputs. For instance, the first step of 
the procedure has an exponential random variable T from which 
the sample x is generated as a list, Z is a Bernoulli random variable 
and two lists (Y list and t list), Y list consists of the initial value Y0 
and Y-1 if the probability of Z is 1 otherwise Y+1 and t list consists 
of t values that include the initial value t=0 adding x each time 
reaching to tmax. The output of this procedure produces Y list and t 
list and plot them. Raga Function procedure has the same lists and 
the real number tmax as the First Step procedure with a real number 
s that should be between 0 and tmax, this procedure produces the ith 
element of Y list, where i is a positive integer with s between ith and 
i+1st element of t list. In addition, Second Step procedure has the 
almost same inputs as the previous procedures with Y tmax, which 
is a list of Y values as a function of tmax values by this procedure, 
and Raga Function we can obtain a histogram shows Y values at a 
fixed time tmax. Finally, because some variables have not defined 
from the First Step the Maple code needs to be run three times. 

10. Conclusion 

This project has provided a simple account of improvements in 
modeling infectious diseases by stochastic models. In particular, 
using SIS epidemic model with a fixed population size N, suscepti-
ble and infective host individuals and time (t) to predict the dis-
ease’s prevalence. We used Maple program to understand and see 
how the infectious disease spreads between a population. In addi-
tion, the prevalence of the disease has also been examined at a spe-
cific time, which done by producing some graphs regarding differ-
ent values of parameters that may affect the results and the time.  
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