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1. Introduction 

The notion of a b-metric space was first introduced by Czer-
wik in Czerwik, S. (1993); Czerwik, S. (1998) and then many fixed-
point results were obtained. Second hand, the notion of a 2-metric 
space was instituted by Cähler in Cähler, S. (1963), similarly, sev-
eral fixed-point results were also obtained (Aghajani, A., et al., 
2014; Alqahtani, B., et al., 2018; Hicks, T. L.; et al., 1979). Later, 
Zead Mustafa (Mustafa, Z., et al., 2014) introduced a new type of 
generalized metric space called 𝑏2-metric space, as a generaliza-
tion of both 2-metric space and 𝑏-metric space. Recently, Kamran 
et al., (2017) have dealt with an extended 𝑏-metric space and ob-
tained unique fixed-point results. 

In this paper, we  introduce a new type of generalized 𝑏2-
metric space , which we call an extended 𝑏2-metric spaces, as a 
generalization of both 𝑏2-metric space and extended  𝑏-metric 
space. Then we verify some fixed point Theorems. 

We provide some notations, definitions and auxiliary facts, 
which will be need later in this paper. Throughout the manuscript, 
we denote ℕ0 = ℕ⋃{0}, where ℕ represents the positive integers. 

Definition 1.1 (Samina, B., 2016) Let X be a nonempty set and 
𝑇:𝑋 → 𝑋 a self-map. We say that 𝑥 ∈ 𝑋 is a fixed point of T if 
𝑇(𝑥) = 𝑥,  denote by 𝐹𝑖𝑥(𝑇) the set of all fixed points of T. 

Definition 1.2 (Kamran et al., 2017) Let 𝑋 be a nonempty set and 
𝜃:𝑋 × 𝑋 → [ 1,∞) be a mapping. 

A function 𝑑𝜃: 𝑋 × 𝑋 ⟶ [ 0,∞) is an extended 𝑏-metric on 𝑋 if for 
all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions hold: 

1) 𝑑𝜃(𝑥, 𝑦) = 0 if and only if  𝑥 = 𝑦, 
2) 𝑑𝜃(𝑥, 𝑦) = 𝑑𝜃(𝑦, 𝑥), 
3) 𝑑𝜃(𝑥, 𝑦) ≤ 𝜃(𝑥, 𝑦 )[𝑑𝜃(𝑥, 𝑦) + 𝑑𝜃(𝑦, 𝑧)]. 

The pair (𝑋, 𝑑𝜃) is called an extended 𝑏-metric space. 

Example 1.1. (Kamran et al., 2017) Let 𝑋 = 𝐶([𝑎, 𝑏], ℝ) be the 
space of all continuous real valued functions defined on [𝑎, 𝑏].  

Define 𝜃 ∶ 𝑋2 ⟶ [1,∞) by  
𝜃(𝑥, 𝑦) = | 𝑥(𝑡)| + |𝑦(t)| + 2, 

and    𝑑𝜃: 𝑋
2 ⟶ [0,∞) by 

𝑑𝜃  (𝑥, 𝑦 ) = sup
𝑡∈[𝑎,𝑏]

| 𝑥(𝑡) − 𝑦(𝑡)|2. 

Then 𝑑𝜃 is called an extended 𝑏-metric and (X, 𝑑𝜃) is a complete 
extended 𝑏-metric space. 

Definition1.3. (Mustafa et al., 2014) Let 𝑋 be a nonempty set, 𝑠 ≥
1 be a real number and 
𝑑:𝑋 × 𝑋 × 𝑋 ⟶ ℝ be a map satisfying the following conditions: 

1) For every pair of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists a 
point  𝑧 ∈ 𝑋 such that 𝑑(𝑥, 𝑦, 𝑧) ≠ 0, 

2) If at least two of three points 𝑥, 𝑦, 𝑧 are the same, then  
𝑑(𝑥, 𝑦, 𝑧) = 0, 

3) The symmetry: 𝑑(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧, 𝑦) = 𝑑(𝑦, 𝑥, 𝑧) =
𝑑(𝑦, 𝑧, 𝑥) = 𝑑(𝑧, 𝑥, 𝑦) = 𝑑(𝑧, 𝑦, 𝑥), for all x, y, z ∈ X. 

4) The rectangle inequality: 𝑑(𝑥, 𝑦, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦, 𝑎) +
𝑑(𝑦, 𝑧, 𝑎) + 𝑑(𝑧, 𝑥, 𝑎)] for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 

Then 𝑑 is called a 𝑏2-metric on 𝑋 and the pair (𝑋, 𝑑) is called a 𝑏2-
metric space.  

Example 1.2. (Mustafa et al., 2014) Let a mapping 𝑑:ℝ3 ⟶ [0,∞) 
be defined by  

𝑑(𝑥, 𝑦, 𝑧) = min{|𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑧 − 𝑥|}. 

Then 𝑑 is a 2-metric space on ℝ. For arbitrary real num-
bers𝑥, 𝑦, 𝑧, 𝑎. Using convexity of the function 𝑓(𝑥) = 𝑥𝑝 on [0,∞) 
for 𝑝 ≥ 1, we obtain that  

𝑑𝑝(𝑥, 𝑦, 𝑧) = [min {|𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑧 − 𝑥|}]
𝑝, 
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is a 𝑏2-metric on ℝ with 𝑠 ≤ 3𝑝−1 and ( ℝ,𝑑𝑝) is a 𝑏2-metric space. 

Theorem 1.1 (Hassan, et al., 2017) Let (X, d) be a complete 𝑏2-
metric space with constant 𝑠 ≥ 1, such that 𝑏2-metric is a contin-
uous functional. Let 𝑇: 𝑋 → 𝑋 be a contraction having contraction 
constant 𝑘 ∈ [0,1) such that 𝑠𝑘 < 1. Then T has a unique fixed 
point. 

2. Main Results  

In this section, we adduce a new type of generalized 𝑏2-metric 
space; we call an extended 𝑏2-metric space. We also provide some 
fixed-point theorems on such spaces. 

Definition 2.1. Let 𝑋 be a nonempty set and 𝜃:𝑋 × 𝑋 × 𝑋 →
[1,∞) be a mapping. A function 𝑑𝜃: 𝑋 × 𝑋 × 𝑋 ⟶ [0,∞) is an 
extended 𝑏2-metric on 𝑋 if for all𝑎, 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following condi-
tions hold: 

1) For every pair of distinct points 𝑥, 𝑦 ∈ 𝑋, there exists a 
point  𝑧 ∈ 𝑋 such that 𝑑𝜃(𝑥, 𝑦, 𝑧) ≠ 0, 

2) If at least two of three points 𝑥, 𝑦, 𝑧 are the same, then 
𝑑𝜃(𝑥, 𝑦, 𝑧) = 0. 

3) The symmetry: 𝑑𝜃(𝑥, 𝑦, 𝑧) = 𝑑𝜃(𝑥, 𝑧, 𝑦) = 𝑑𝜃(𝑦, 𝑥, 𝑧) =
𝑑𝜃(𝑦, 𝑧, 𝑥) = 𝑑𝜃(𝑧, 𝑥, 𝑦) = 𝑑𝜃(𝑧, 𝑦, 𝑥), for all x, y, z ∈ X. 

4) The rectangle inequality: 𝑑𝜃(𝑥, 𝑦, 𝑧) ≤
𝜃(𝑥, 𝑦, 𝑧 )[𝑑𝜃(𝑥, 𝑦, 𝑎) + 𝑑𝜃(𝑦, 𝑧, 𝑎) + 𝑑𝜃(𝑧, 𝑥, 𝑎)]  for all  
𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 

Then 𝑑𝜃 is called an extended 𝑏2-metric on 𝑋 and the pair (𝑋, 𝑑𝜃) 
is called an extended 𝑏2-metric space.  

Remarks 2.1. 

1) It is obvious that the class of an extended  𝑏2-metric 
space is larger than 𝑏2-metric space, because if 
𝜃(𝑥, 𝑦, 𝑧 ) = 𝑠, for 𝑠 ≥ 1 then we obtain the definition 
of a 𝑏2-metric space. Furthermore, for𝜃(𝑥, 𝑦, 𝑧 ) = 𝑠 =
1, the 𝑏2-metric reduces to a 2-metric. 

2) Using condition (1) it readily verified that for all 𝑎 ∈
𝑋, 𝑑𝜃(𝑥, 𝑦, 𝑎) = 0, then x = y. 

Example 2.1. Let 𝑋 =  {1,2,3,4 }. Define 𝜃 ∶ 𝑋3 ⟶ [1,∞) by 

𝜃(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 + 1, 

and    𝑑𝜃: 𝑋
3 ⟶ [0,∞) by 

𝑑𝜃  (𝑥, 𝑦, 𝑧 ) =

{
 
 

 
 
   0                if at least two of 𝑥, 𝑦, 𝑧 are equal,    

    80               if    𝑥, 𝑦, 𝑧 ∈ {1,2,3},                                 

300           if    𝑥, 𝑦, 𝑧 ∈ {1,2,4},                             

600            if    𝑥, 𝑦, 𝑧 ∈ {1,3,4},                             

 1000          if    𝑥, 𝑦, 𝑧 ∈ {2,3,4}.                              

 

Then ( X, 𝑑𝜃) is an extended  𝑏2-metric space . 

Proof 

In Definition 2.1 conditions 1, 2 and 3 trivially hold. For 4, we 
have 

𝑑𝜃  (1,2,3 ) = 80 ,     𝜃(1,2,3)[𝑑𝜃 (1,2,4 ) + 𝑑𝜃  (1,3,4 ) +
𝑑𝜃  (2,3,4 )}  = 13300, 𝑑𝜃  (1,3,4 ) = 600 ,   𝜃(1,3,4)[𝑑𝜃  (1,3,2 ) +
𝑑𝜃  (2,3,4 ) + 𝑑𝜃  (1,2,4 )} = 12420, 𝑑𝜃  (2,3,4 ) =
1000 , 𝜃(2,3,4)[𝑑𝜃  (2,3,1 ) + 𝑑𝜃  (2,1,4 ) + 𝑑𝜃  (1,3,4 )} = 9800, 
𝑑𝜃  (1,2,4 ) = 300,    𝜃(1,2,4)[𝑑𝜃  (1,2,3 ) + 𝑑𝜃  (1,3,4 ) +
𝑑𝜃  (2,3,4 )} = 13440. 

Thus for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋  
𝑑𝜃(𝑥, 𝑦, 𝑧) ≤ 𝜃(𝑥, 𝑦, 𝑧 )[𝑑𝜃(𝑥, 𝑦, 𝑎) + 𝑑𝜃(𝑦, 𝑧, 𝑎) + 𝑑𝜃(𝑧, 𝑥, 𝑎)]. 

Hence (𝑋, 𝑑𝜃) is an extended 𝑏2-metric space. Inspired by Exam-
ple 1.2 (Alqahtani et al., 2018), we have: 

Example 2.2. Let 𝑋 = [0,1]. Define 𝜃 ∶ 𝑋 × 𝑋 × 𝑋 ⟶ [1,∞) by 

𝜃 (𝑥, 𝑦, 𝑧 ) =
1 + 𝑥 + 𝑦 + 𝑧

𝑥 + 𝑦 + 𝑧
         for  all  𝑥, 𝑦, 𝑧 ∈ 𝑋 .    

And 𝑑𝜃: 𝑋 × 𝑋 × 𝑋 ⟶ [0,∞) by 

𝑑𝜃(𝑥, 𝑦, 𝑧) =

{
 
 

 
 
1

𝑥𝑦𝑧
   if     𝑥, 𝑦, 𝑧 ∈ (0,1]   and  𝑥 ≠ 𝑦 ≠ 𝑧,

0       if   𝑥, 𝑦, 𝑧 ∈ [0,1]  and at least two 
of 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 

1

𝑥𝑦
     if     𝑥, 𝑦 ∈ (0,1]     and  𝑧 = 0.            

 

Then (X, 𝑑𝜃) is an extended 𝑏2-metric space. 

Proof 

Obviously, conditions 1, 2 and 3 in Definition 2.1 hold. For 4, we 
have the following cases: 

I. Let𝑥, 𝑦, 𝑧 ∈  (0, 1]. For 𝑎 ∈  (0, 1], we have 
𝑑𝜃(𝑥, 𝑦, 𝑧) ≤ 𝜃(𝑥, 𝑦, 𝑧 )[𝑑𝜃(𝑥, 𝑦, 𝑎) + 𝑑𝜃(𝑦, 𝑧, 𝑎) + 𝑑𝜃(𝑧, 𝑥, 𝑎)]   

⟺
1

𝑥𝑦𝑧
≤
1 + 𝑥 + 𝑦 + 𝑧

𝑥 + 𝑦 + 𝑧
∙
𝑥 + 𝑦 + 𝑧

𝑥𝑦𝑧𝑎
          

                                    ⟺ 𝑎 ≤ 1 + 𝑥 + 𝑦 + 𝑧. 

         If 𝑎 =  0, then  

𝑑𝜃(𝑥, 𝑦, 𝑧) ≤ 𝜃(𝑥, 𝑦, 𝑧 )[𝑑𝜃(𝑥, 𝑦, 0) + 𝑑𝜃(𝑦, 𝑧, 0) + 𝑑𝜃(𝑧, 𝑥, 0)]   

⟺
1

𝑥𝑦𝑧
≤
1 + 𝑥 + 𝑦 + 𝑧

𝑥 + 𝑦 + 𝑧
∙
𝑥 + 𝑦 + 𝑧

𝑥𝑦𝑧
          

                                    ⟺ 1 ≤ 1 + 𝑥 + 𝑦 + 𝑧. 

II. Let  𝑥, 𝑦 ∈  (0, 1] and𝑧 =  0, for𝑎 ∈  (0, 1]. 

𝑑𝜃(𝑥, 𝑦, 0) ≤ 𝜃(𝑥, 𝑦, 0 )[𝑑𝜃(𝑥, 𝑦, 𝑎) + 𝑑𝜃(𝑦, 0, 𝑎) + 𝑑𝜃(0, 𝑥, 𝑎)]  

⟺
1

𝑥𝑦
 ≤

1 + 𝑥 + 𝑦

𝑥 + 𝑦
∙
1 + 𝑥 + 𝑦

𝑥𝑦𝑎
         

⟺ 𝑎(𝑥 + 𝑦) ≤ (1 + 𝑥 + 𝑦)2. 
          If 𝑎 =  0, then  

𝑑𝜃(𝑥, 𝑦, 0) ≤ 𝜃(𝑥, 𝑦, 0)[𝑑𝜃(𝑥, 𝑦, 0) + 𝑑𝜃(𝑦, 0,0) + 𝑑𝜃(0, 𝑥, 0)]  

⟺
1

𝑥𝑦
≤
1 + 𝑥 + 𝑦

𝑥 + 𝑦
∙
1

𝑥𝑦
          

                                    ⟺ 𝑥 + 𝑦 ≤ 1 + 𝑥 + 𝑦. 

III. For 𝑥, 𝑦, 𝑧, 𝑎 ∈ [0,1]  and at least two of 𝑥, 𝑦 and 𝑧 are 
equal. Let  𝑥 = 𝑦, then 

𝑑𝜃(𝑥, 𝑥, 𝑧) ≤ 𝜃(𝑥, 𝑥, 𝑧 )[𝑑𝜃(𝑥, 𝑥, 𝑎) + 𝑑𝜃(𝑥, 𝑧, 𝑎) + 𝑑𝜃(𝑧, 𝑥, 𝑎)]  

⟺   0 ≤
1 + 2𝑥 + 𝑧

2𝑥 + 𝑧
∙
2

𝑥𝑧𝑎
          

                                    ⟺    0 ≤ 2(1 + 2𝑥 + 𝑧). 

Similarly, for 𝑥 = 𝑧, 𝑦 = 𝑧 and 𝑥 = 𝑦 = 𝑧. In conclusion, for any 
𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋, 

𝑑𝜃(𝑥, 𝑦, 𝑧) ≤ 𝜃(𝑥, 𝑦, 𝑧 )[𝑑𝜃(𝑥, 𝑦, 𝑎) + 𝑑𝜃(𝑦, 𝑧, 𝑎) + 𝑑𝜃(𝑧, 𝑥, 𝑎)]. 

Hence (𝑋, 𝑑𝜃) is an extended 𝑏2-metric space. 

Definition 2.2. Let {𝑥𝑛 }𝑛∈ℕ be a sequence in an extended 𝑏2-
metric space (𝑋, 𝑑𝜃). 

1) A sequence {𝑥𝑛} is a Cauchy sequence if and only if 
  𝑑𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) → 0, when  𝑛,𝑚 → ∞.  for all 𝑎 ∈ 𝑋.  

2) A sequence {𝑥𝑛} is convergent to 𝑥 ∈ 𝑋, if for all 𝑎 ∈ 𝑋, 
there exists 𝑥 ∈ 𝑋, such that lim

𝑛→∞
𝑑𝜃(𝑥𝑛, 𝑥, 𝑎) = 0. 

3) An extended 𝑏2-metric space (𝑋, 𝑑𝜃) is called complete if 
every Cauchy sequence is convergent sequence. 

Definition 2.3. Let (𝑋, 𝑑𝜃) be an extended 𝑏2 −metric space. The 
extended 𝑏2 − metric 𝑑𝜃   is called continuous if 

𝑑𝜃(𝑥𝑛, 𝑥, 𝑎)  → 0  𝑎𝑛𝑑 𝑑𝜃( 𝑦𝑛, 𝑦, 𝑎)  → 0  ⟹ 𝑑𝜃(𝑥𝑛 , 𝑦𝑛, 𝑎)
⟶ 𝑑𝜃  (𝑥, 𝑦, 𝑎), 
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for all sequence {𝑥𝑛 }, {𝑦𝑛 } in 𝑋  and 𝑥, 𝑦, 𝑎 ∈ 𝑋.Note that , in gen-
eral a 𝑏2-metric d is not continuous functional and thus so is an 
extended 𝑏2-metric 𝑑𝜃. 

Example 2.3. Let 𝑋 =  ℕ⋃{∞ } and let 𝑑: 𝑋 × 𝑋 ⟶ ℝ be defined 
by 

𝑑 (𝑚, 𝑛) =

{
 
 

 
 
         0              if 𝑚 = 𝑛,                                                

|
1

𝑚
−
1

𝑛
|        if  𝑚 and 𝑛 are even  or 𝑚𝑛 = ∞,

        5              if  𝑚 and 𝑛 are odd and 𝑚 ≠ 𝑛,     
      2                 othewise.                                        

 

Then it is facile to see that, for all 𝑚, 𝑛, 𝑝 ∈ 𝑋, (𝑋, 𝑑 ) is a b-metric 
space with 𝑠 = 3 but it is not continuous, (see Hussain et al., 
(2012). 

Now, let 𝑑𝜃(𝑥, 𝑦, 𝑧) = [min  {𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)}]2. It is easy to 
see that 𝑑𝜃  is an extended 𝑏2-metric space, with 𝜃(𝑥, 𝑦, 𝑧) = 𝑠 = 3. 
Now we show that 𝑑𝜃 is not continuous function. Take, 𝑥𝑛 = 2𝑛, 
and 𝑦𝑛 = 1. Then we have  𝑥𝑛 → ∞, 𝑦𝑛 → 1. Also, 

𝑑𝜃(2𝑛,∞, 3) = [min {𝑑(2𝑛,∞), 𝑑(2𝑛, 3), 𝑑(3,∞)}]
2 

= 
1

4𝑛2
  → 0  as 𝑛 →  ∞, 

and 

𝑑𝜃(𝑦𝑛, 1,3) = 0 → 0    as 𝑛 →  ∞. 

On other hand, 

𝑑𝜃(𝑥𝑛, 𝑦𝑛, 3) = [min  {𝑑(𝑥𝑛, 3), 𝑑(𝑦𝑛, 3), 𝑑(𝑥𝑛, 𝑦𝑛)}]
2  = 4,  

and 

𝑑𝜃(∞, 1,3) = [min {𝑑(∞, 1), 𝑑(1,3), 𝑑(∞, 3)}]
2 = 25.  

Hence,  

lim
𝑛→∞

𝑑𝜃(𝑥𝑛, 𝑦𝑛, 𝑎) ≠ 𝑑𝜃(𝑥, 𝑦, 𝑎). 

Thus, 𝑑𝜃 is not continuous function.  

Lemma 2.1 Let (X, 𝑑𝜃) be an extended 𝑏2- metric space . If 𝑑𝜃 is 
continuous, then every converges sequence has a unique limit. 

Definition 2.4 (Samina B., 2016) Given a mapping 𝑇: 𝑋 → 𝑋 and 
𝑥0 ∈ 𝑋, for all 𝑛 ∈ ℕ, the orbit of 𝑥0 with respect to T is defined as 
the following sequences of points,  

 𝒪(𝑥0) = { 𝑥0, 𝑇𝑥0, … , 𝑇
𝑛𝑥0,… } . 

Theorem 2.2 Let (X, 𝑑𝜃) be a complete extended 𝑏2- metric space 
such that  𝑑𝜃  is continuous functional. Let  𝑇: 𝑋 → 𝑋 satisfy, 

𝑑𝜃(𝑇𝑥, 𝑇𝑦, 𝑎) ≤ 𝑘 𝑑𝜃(𝑥, 𝑦, 𝑎),                                                            ( 2. 1 )  

for all  𝑥, 𝑦, 𝑎 ∈ 𝑋, where 𝑘 ∈ [0, 1) be such that for each  𝑥0 ∈

𝑋, lim
𝑛,𝑚→∞

𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) <
1

𝑘
  , where 𝑥𝑛 = 𝑇

𝑛𝑥0, 𝑛 = 1,2, … . Then T 

has precisely one fixed point 𝑢 . Moreover, each  𝑦 ∈ 𝑋, 𝑇𝑛𝑦 → 𝑢. 

Proof  
Assume first that 𝑥0 ∈ 𝑋 be an arbitrary, we define the sequence 
{ 𝑥𝑛} by 

𝑥0,   𝑥1 = 𝑇𝑥0,   𝑥2 = 𝑇𝑥1 = 𝑇
2𝑥0 , … ,   𝑥𝑛 = 𝑇𝑛𝑥0  …  . 

If   𝑥𝑛 = 𝑥𝑛+1 for some n, there is nothing to prove. Therefore, 
suppose that 

𝑥𝑛 ≠ 𝑥𝑛+1 for each 𝑛 ∈ ℕ0 . By Eq. (2.1), we have: 

𝑑𝜃(𝑥𝑛, 𝑥𝑛+1, 𝑎) = 𝑑𝜃(𝑇
𝑛𝑥0, 𝑇

𝑛+1𝑥0, 𝑎) ≤ 𝑘
𝑛𝑑𝜃(𝑥0, 𝑥1, 𝑎)         (2.2) 

Now, we prove that {𝑥𝑛} is Cauchy sequence in 𝑋. For 𝑚 > 𝑛, we 
have  

𝑑𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) ≤ 𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)[𝑑𝜃(𝑥𝑛, 𝑥𝑚 , 𝑥𝑛+1) + 𝑑𝜃(𝑥𝑚, 𝑎, 𝑥𝑛+1)
+ 𝑑𝜃(𝑎, 𝑥𝑛, 𝑥𝑛+1)] 

= 𝜃(𝑥𝑛, 𝑥𝑚 , 𝑎)[𝑑𝜃(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑚) + 𝑑𝜃(𝑥𝑛+1, 𝑥𝑚, 𝑎)
+ 𝑑𝜃(𝑥𝑛, 𝑥𝑛+1, 𝑎)] 

= 𝜃(𝑥𝑛, 𝑥𝑚 , 𝑎)[𝑑𝜃(𝑥𝑛, 𝑥𝑛+1, 𝑎) + 𝑑𝜃(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑚)
+ 𝑑𝜃(𝑥𝑛+1, 𝑥𝑚, 𝑎)] 

 ≤ 𝜃(𝑥𝑛, 𝑥𝑚 , 𝑎)[ 𝑘
𝑛𝑑𝜃(𝑥0, 𝑥1, 𝑎) +  𝑘

𝑛𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚) ]  
+𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝑑𝜃(𝑥𝑛+1, 𝑥𝑚, 𝑎),  

≤ 𝜃(𝑥𝑛, 𝑥𝑚 , 𝑎) 𝑘
𝑛𝑑𝜃(𝑥0, 𝑥1, 𝑎) +  𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) 𝑘

𝑛𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚) 

+𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝜃(𝑥𝑛+1, 𝑥𝑚 , 𝑎) 

[ 𝑑𝜃(𝑥𝑛+2, 𝑥𝑛+1, 𝑎) +   𝑑𝜃(𝑥𝑛+2, 𝑥𝑛+1, 𝑥𝑚) + 𝑑𝜃(𝑥𝑛+2, 𝑥𝑚, 𝑎) ], 

   ≤ [ 𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝑘
𝑛 +

𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝜃(𝑥𝑛+1, 𝑥𝑚 , 𝑎)𝑘
𝑛+1 ]𝑑𝜃(𝑥0, 𝑥1, 𝑎) 

+[ 𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝑘
𝑛 + 𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝜃(𝑥𝑛+1, 𝑥𝑚, 𝑎)𝑘

𝑛+1 ]𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚) 

+ 𝜃(𝑥𝑛, 𝑥𝑚 , 𝑎)𝜃(𝑥𝑛+1, 𝑥𝑚, 𝑎) 𝑑𝜃(𝑥𝑛+2, 𝑥𝑚, 𝑎), 

+                               ≤ [𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝑘
𝑛 + 𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝜃(𝑥𝑛+1, 𝑥𝑚 , 𝑎)𝑘

𝑛+1 +⋯+ 

    𝜃(𝑥𝑛, 𝑥𝑚, 𝑎)𝜃(𝑥𝑛+1, 𝑥𝑚, 𝑎) …𝜃(𝑥𝑚−2, 𝑥𝑚, 𝑎)𝜃(𝑥𝑚−1, 𝑥𝑚 , 𝑎)𝑘
𝑚−1 ]   

 (𝑑𝜃(𝑥0, 𝑥1, 𝑎)   + 𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚) ), 

= (∑ 𝑘𝑖∏ 𝜃(𝑥𝑗, 𝑥𝑚, 𝑎)
𝑖
𝑗=𝑛

𝑚−1
𝑖=𝑛 )( 𝑑𝜃(𝑥0, 𝑥1, 𝑎) +  𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚) ).       

(2.3 ) 

Also, we have: 

𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚) ≤ 𝜃(𝑥0, 𝑥1, 𝑥𝑚)[𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚−1) + 

𝑑𝜃(𝑥𝑚−1, 𝑥𝑚, 𝑥0) + 𝑑𝜃(𝑥𝑚−1, 𝑥𝑚, 𝑥1)] 

        ≤ 𝜃(𝑥0, 𝑥1, 𝑥𝑚)[𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚−1) +  𝑘
𝑚−1𝑑𝜃(𝑥0, 𝑥1, 𝑥0) + 

             𝑘𝑚−2𝑑𝜃(𝑥1, 𝑥2, 𝑥1) ] , 

           = 𝜃(𝑥0, 𝑥1, 𝑥𝑚)𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚−1) 

            ≤ 𝜃(𝑥0, 𝑥1, 𝑥𝑚)𝜃(𝑥0, 𝑥1, 𝑥𝑚−1)𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚−2) 

            ≤  … 

≤ 𝜃(𝑥0, 𝑥1, 𝑥𝑚) 𝜃(𝑥0, 𝑥1, 𝑥𝑚−1)…𝜃(𝑥0, 𝑥1, 𝑥2)𝑑𝜃(𝑥0, 𝑥1, 𝑥1) = 0. 

Hence,  𝑑𝜃(𝑥0, 𝑥1, 𝑥𝑚) = 0. 

Therefore, Eq. (2.3), becomes  

𝑑𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) ≤  (∑ 𝑘𝑖∏𝜃(𝑥 𝑗, 𝑥𝑚, 𝑎)

𝑖

𝑗=𝑛

𝑚−1

𝑖=𝑛

)𝑑𝜃(𝑥0, 𝑥1, 𝑎).        ( 2.4 ) 

Notice the inequality above is dominated by 

    ∑ 𝑘𝑖∏ 𝜃(𝑥 𝑗, 𝑥𝑚 , 𝑎) ≤  ∑ 𝑘𝑖𝑚−1
𝑖=1

𝑖
𝑗=𝑛

𝑚−1
𝑖=𝑛 ∏ 𝜃(𝑥 𝑗, 𝑥𝑚, 𝑎)

𝑖
𝑗=1  . 

Since lim
𝑛,𝑚→∞

𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) <
1

𝑘
 , so that the series , ∑ 𝑎𝑖

∞
𝑖=1   where, 

𝑎𝑖 =  𝑘
𝑖  ∏ 𝜃(𝑥𝑗, 𝑥𝑚, 𝑎),

𝑖
𝑗=1  converges by ratio test to some 𝑠 ∈

(0,∞), for each 𝑚 ∈ ℕ. Let  

𝑠 =  ∑𝑘𝑖∏𝜃(𝑥 𝑗, 𝑥𝑚, 𝑎)

𝑖

𝑗=1

∞

𝑖=1

 , 

with partial sum, 

    𝑠𝑛 = ∑𝑘𝑖∏𝜃(𝑥 𝑗, 𝑥𝑚 , 𝑎)

𝑖

𝑗=1

𝑛

𝑖=1

 . 

Thus for all,  𝑚 > 𝑛, inequality Eq. (2.4)  implies , 

  𝑑𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) ≤  𝑑𝜃(𝑥0, 𝑥1, 𝑎)[𝑠𝑚−1 − 𝑠𝑛−1 ]                                 (2.5)  
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Letting 𝑛 → ∞ in Eq. (2.5), we deduce that, { 𝑥𝑛} is a Cauchy se-
quence in 𝑋. Since, 𝑋 is complete, then there exist a point 𝑢 ∈ 𝑋 
such that 𝑥𝑛 → 𝑢. We have, 

𝑑𝜃(𝑇𝑢, 𝑢, 𝑎) ≤ 𝜃(𝑇𝑢, 𝑢, 𝑎)[𝑑𝜃(𝑇𝑢, 𝑥𝑛, 𝑎) + 𝑑𝜃(𝑇𝑢, 𝑥𝑛, 𝑢) +
𝑑𝜃(𝑢, 𝑥𝑛, 𝑎)] , =  𝜃(𝑇𝑢, 𝑢, 𝑎)[𝑑𝜃(𝑇𝑢, 𝑇

𝑛𝑥0, 𝑎) + 𝑑𝜃(𝑇𝑢, 𝑇
𝑛𝑥0, 𝑢) +

𝑑𝜃(𝑢, 𝑥𝑛, 𝑎)] ,  

 ≤  𝜃(𝑇𝑢, 𝑢, 𝑎) [𝑘𝑑𝜃(𝑢, 𝑥𝑛−1, 𝑎) + 𝑘 𝑑𝜃(𝑢, 𝑥𝑛−1, 𝑢) + 𝑑𝜃(𝑢, 𝑥𝑛, 𝑎)] 

≤ 0 , as 𝑛 → ∞.  

Thus  𝑑𝜃(𝑇𝑢, 𝑢, 𝑎) = 0,   for all 𝑎 ∈ 𝑋 . Hence u is a fixed point of T. 

For uniqueness of 𝑢: Let 𝑢, 𝑣  be distinct fixed points of T, then for 
all 𝑎 ∈ 𝑋, we have 

𝑑𝜃(𝑢, 𝑣, 𝑎) = 𝑑𝜃(𝑇𝑢, 𝑇𝑣, 𝑎) ≤ 𝑘𝑑𝜃(𝑢, 𝑣, 𝑎) , 

This implies that 𝑘 ≥ 1 , which is a contradiction to 𝑘 ∈ [0, 1). 
Therefore 𝑢 is a unique fixed point. 

Definition2.5 (Samina B., 2016) Let 𝑇:𝑋 → 𝑋. A function 𝐺:𝑋 →
ℝ is said to be T-orbitally lower semi-continuous at 𝑡 ∈ 𝑋 if the 
sequence { 𝑥𝑛} ⊂ 𝒪(𝑥0) is such that, 𝑥𝑛 → 𝑡, we have 𝐺(𝑡) ≤
lim
𝑛→∞

inf 𝐺(𝑥𝑛). 

Theorem 2.3 Let ( 𝑋, 𝑑𝜃) be a complete extended 𝑏2- metric 
space such that  𝑑𝜃 is continuous functional. Let  𝑇: 𝑋 → 𝑋 and 
there exists 𝑥0 ∈ 𝑋,  such that 

𝑑𝜃(𝑇𝑦, 𝑇
2𝑦, 𝑎) ≤ 𝑘 𝑑𝜃(𝑦, 𝑇𝑦, 𝑎), for each     𝑦 ∈ 𝒪(𝑥0)            (2.6) 

where 𝑘 ∈ [ 0, 1 ) be such that for each  𝑥0 ∈ 𝑋,

lim
𝑛,𝑚→∞

𝜃(𝑥𝑛, 𝑥𝑚, 𝑎) <
1

𝑘
 ,  and 𝑥𝑛 = 𝑇𝑛𝑥0, 𝑛 = 1,2,… . Then  𝑇𝑛𝑥0 →

𝑢 (𝑎𝑠 𝑛 → ∞). Furthermore u is a fixed point of T if and only if  
𝐺(𝑢) = 𝑑𝜃(𝑢, 𝑇𝑢, 𝑎)   is T-orbitally lower semi-continuous at 𝑢. 

Proof  
We choose any 𝑥0 ∈ 𝑋 be an arbitrary, define the iterative se-
quence {𝑥𝑛} by 

𝑥0,   𝑥1 = 𝑇𝑥0,   𝑥2 = 𝑇𝑥1 = 𝑇
2𝑥0 , … ,   𝑥𝑛 = 𝑇

𝑛𝑥0  …  

Now for 𝑦 = 𝑇𝑥0 by successively applying inequality Eq. (2.6) we 
obtain  

𝑑𝜃(𝑇
𝑛𝑥0, 𝑇

𝑛+1𝑥0, 𝑎) =  𝑑𝜃(𝑥𝑛, 𝑥𝑛+1, 𝑎) ≤ 𝑘
𝑛𝑑𝜃(𝑥0, 𝑥1, 𝑎). 

Following the same procedure as in proof of Theorem 2.2, we 
infer that {𝑥𝑛} is a Cauchy sequence in 𝑋. since 𝑋 is complete , 
then there exist a point 𝑢 ∈ 𝑋 such that 𝑥𝑛 = 𝑇

𝑛𝑥0 → 𝑢. Assume 
that 𝐺 is defined as in Definition 2.5 , then for all 𝑎 ∈ 𝑋,we have 

𝑑𝜃(𝑢, 𝑇𝑢, 𝑎) ≤ lim inf
    𝑛→∞

  𝑑𝜃(𝑇
𝑛𝑥0, 𝑇

𝑛+1𝑥0, 𝑎) 

≤ lim inf
    𝑛→∞

 𝑘𝑛𝑑𝜃(𝑥0, 𝑥1, 𝑎) = 0,    

thus 𝑇𝑢 = 𝑢, and hence 𝑢 is a fixed point of T . 

Conversely, let 𝑢 = 𝑇𝑢 and  𝑥𝑛 ∈ 𝒪(𝑥0) with 𝑥𝑛 → 𝑢. Then,  

𝐺(𝑢) = 𝑑𝜃(𝑢, 𝑇𝑢, 𝑎) = 0 ≤ lim inf
    𝑛→∞

 𝐺(𝑥𝑛) = 𝑑𝜃(𝑇
𝑛𝑥0, 𝑇

𝑛+1𝑥0, 𝑎). 

Example 2.4. Let 𝑋 = [0,
1

4
 ]. Define 𝜃 ∶ 𝑋3 ⟶ [1,∞) by 

𝜃(𝑥, 𝑦, 𝑧) = 2 + 𝑥 + 𝑦 + 𝑧 ,    

and    𝑑𝜃: 𝑋
3 ⟶ [0,∞) by 

 𝑑𝜃  (𝑥, 𝑦, 𝑧 ) = [min{|𝑥 − 𝑦|, |𝑥 − 𝑧|, |𝑦 − 𝑧|}]
2. 

Clearly, 𝜃(𝑥, 𝑦, 𝑎) < 3,   therefore ( X, 𝑑𝜃) is complete extended  
𝑏2-metric space . 

Define 𝑇:𝑋 → 𝑋 by, 

𝑇𝑥 =
𝑥

5
 . 

Then, we have  

𝑑𝜃(𝑇𝑥, 𝑇𝑦, 𝑎) ≤
1

4
  𝑑𝜃(𝑥, 𝑦, 𝑎)  = 𝑘 𝑑𝜃(𝑥, 𝑦, 𝑎). 

Now for each 𝑥 ∈ 𝑋, 𝑇𝑛𝑥 =
𝑥

5𝑛
 . Thus we obtain 

lim
𝑚,𝑛→∞

𝜃(𝑇𝑛𝑥 , 𝑇𝑚𝑥, 𝑎 ) < 4 =
1

𝑘
  . 

Therefore all condition of Theorem 2.2 are satisfied, hence T has a 
unique fixed point. 

3. An application to integral equations 

There are too many applications of fixed point theorem in 
mathematics, Specifically, the most widely quoted is an applica-
tion to integral equations. Inspired by Kamran, et al., (2017), we 
will use Theorem 2.2 to show that the integral equation 

𝑥(𝑡) = 𝑔(𝑡) + ∫𝑀(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝐼

,    𝑡, 𝑠 ∈ 𝐼,    𝐼 = [0,1],              (3.1 ) 

has a unique solution. 

Let, 𝑋 = 𝐶(𝐼, ℝ) be the space of all continuous real valued func-
tions defined on 𝐼. Note that 𝑋 is a complete extended 𝑏2-metric 
space by considering 𝑑𝜃: 𝑋

3  →  [0,∞),  
𝑑𝜃(𝑥, 𝑦, 𝑧) = 

{ max
𝑡∈𝐼

min{|𝑥(𝑡) − 𝑦(𝑡)|, |𝑥(𝑡) − 𝑧(𝑡)|, |𝑦(𝑡) − 𝑧(𝑡)|}}
2
             (3.2) 

with 𝜃:𝑋3  →  [1,∞) by 𝜃(𝑥, 𝑦, 𝑧) =  | 𝑥(𝑡)| + | 𝑦(𝑡)| + | 𝑧 (𝑡) | + 3. 
Let 𝑇:𝑋 → 𝑋, the operator given by: 
𝑇𝑥(𝑡) = 𝑔(𝑡) + ∫ 𝑀(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠𝐼

,    𝑡, 𝑠 ∈ 𝐼.                                 ( 3.3 ) 

Assume that the following conditions are satisfied: 
i. 𝑔: 𝐼 → ℝ, and 𝑀: 𝐼 × 𝐼 × ℝ → ℝ are continuous functions, 

ii. for 𝑡, 𝑠 ∈ 𝐼 and 𝑥, 𝑦, 𝑎 ∈ 𝑋,   
|𝑀(𝑡, 𝑠, 𝑥(𝑠)) − 𝑀(𝑡, 𝑠, 𝑦(𝑠))| ≤ 

1

2
 [max

𝑡∈𝐼
 min{|𝑥(𝑠) − 𝑦(𝑠)|, |𝑥(𝑠) − 𝑎(𝑠)|, |𝑦(𝑠) − 𝑎(𝑠)|}]. 

Theorem 3.1. Under assumptions i and ii the integral equation 
Eq. (3.1) has a unique solution in 𝑋. 

Proof: 

Define the extended 𝑏2-metric 𝑑𝜃: 𝑋 × 𝑋 × 𝑋 → [0,∞) as above by 
Eq. (3.2). Then (𝑋, 𝑑𝜃) is a complete extended 𝑏2-metric space. In 
addition, we define the operator𝑇:𝑋 → 𝑋, as given by Eq. (3.3). By 
using assumptions, we obtain that: 

𝑑𝜃(𝑇𝑥, 𝑇𝑦, 𝑎) = 

[max
𝑡∈𝐼

 min{|𝑇𝑥(𝑡) − 𝑇𝑦(𝑡)|, |𝑇𝑥(𝑡) − 𝑎(𝑡)|, |𝑇𝑦(𝑡) − 𝑎(𝑡)|}]
2
, 

≤ [| 𝑇𝑥(𝑡) − 𝑇𝑦(𝑡)  |]2, 

= [|∫ (𝑀(𝑡, 𝑠, 𝑥(𝑠)))𝑑𝑠 + 𝑔(𝑡) − ∫(𝑀(𝑡, 𝑠, 𝑦(𝑠)))𝑑𝑠 − 𝑔(𝑡)

𝐼𝐼

|]

2

, 

≤ [∫|𝑀(𝑡, 𝑠, 𝑥(𝑠)) − 𝑀(𝑡, 𝑠, 𝑦(𝑠))|𝑑𝑠

𝐼

] ,2 

≤ [∫
1

2
[max
𝑡∈𝐼

 min{|𝑥(𝑡) − 𝑦(𝑡)|, |𝑥(𝑡) − 𝑎(𝑡)|, |𝑦(𝑡) − 𝑎(𝑡)|}] 𝑑𝑠

𝐼

]

2

, 

=
1

4
[max
𝑡∈𝐼

 min{|𝑥(𝑡) − 𝑦(𝑡)|, |𝑥(𝑡) − 𝑎(𝑡)|, |𝑦(𝑡) − 𝑎(𝑡)|}]
2
[∫𝑑𝑠
𝐼

]

2

 

≤ 
1

4
 𝑑𝜃(𝑥, 𝑦, 𝑎) 

Therefore, 𝑑𝜃(𝑇𝑥, 𝑇𝑦, 𝑎) ≤  𝑘 𝑑𝜃(𝑥, 𝑦, 𝑎) . 
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Hence all the conditions of Theorem 2.2 are satisfied and the 
mapping T has one fixed point. Thus, we conclude that the integral 
equation Eq. (3.1) has a unique solution in 𝑋. 

4. Conclusion 

In this paper, we introduce a new type of generalized b2-
metric space; we call an extended b2-metric space. We also pro-
vide some fixed-point theorems on these spaces. This provides a 
background for extended b2-metric spaces technique in the fixed-
point theory. Several consequences can be observed from the 
main results. For example, taking 𝜃(𝑥, 𝑦, 𝑧) 𝑠, with 𝑠 ≥ 1 implies 
corresponding fixed-point results in the context of 𝑏2-metric 
space. Furthermore, for 𝜃(𝑥, 𝑦, 𝑧 ) = 1, the 𝑏2-metric reduces to a 
2-metric. In addition, we can indicate several directions from our 
results for further work, which go through fixed-point theory.  As 
a new work, it will be interesting to extend known fixed-point 
results on an extended b-metric space and b2-metric space to our 
results on an extended b2-metric. 
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