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Highlights 
 Energy liberated from fusion must balance the energy losses due to radiations. 
 The power output for a given magnetic field assembly is proportional to the square root of the plasma beta (2). 
 The magnetic field curvature is interpreted in terms of the radius of curvature of the magnetic field lines. 
 To within a factor of order of unity the plasma beta is the ratio of the square of the sound speed to the square of the 

Alven wave speed. 
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In this paper, the magnetic field curvature (𝜅 ) and the poloidal (βθ), for single fluid 
magneto-hydrodynamic (MHD) plasma expressions are derived. To simplify the 
approach, we adhere to plasmas, with a circular cross-section. Thus we use the ge-
ometry of the torus, where (𝜑) is in the toroidal direction and (𝜃) is in the poloidal 
direction. 
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1. Introduction 

In a fusion reactor, the high values of the ions temperature (Ti) 
and density (ni) must be maintained long enough for the energy lib-
erated by fusion to balance the energy losses due to radiation, con-
duction, convection and neutron flux. Let E be the time it takes 
these processes to remove all the energy from the system, then for 
a given value of niE, there is a minimum temperature at which the 
plasma is said to be ignited, i.e. at which the liberated fusion energy 
is just adequate to balance all losses.  

As D-D plasmas require considerably higher temperatures to 
achieve ignition, almost all reactor proposals have concentrated on 
D-T Fusion, which has a minimum at Ti∽30 keV (Woods, 2006), 
where for ignition niE 1.51020m3s. A slightly lower bound (niE 

61019m3s) known as Lawson's criterion (Lawson, 1957) is ob-
tained if a continuous power supply from outside the system is used 
to compensate the transport and radiation losses. 

The power output for a given magnetic field assembly is pro-
portional to the square of the plasma beta (2p/B2), so for an ade-
quate return on an energy investment in magnetic fields, it has been 
estimated that  in a reactor exceed at least 10 percent (Wesson, 
1987). 

 
Fig. 1. Primitive toroidal coordinates 

The aim of this work is to smooth the way for researchers and 
engineers in this field by casting the theoretical physical laws into 
simple quantitative mathematical formulas. To this end, the coor-
dinate system is that of toroidal geometry, which is suitable to most 
promising fusion reactors mainly tokamaks. A simple torus is 
shown in Fig. 1 and Fig. 2 depicts the toroidal geometry of a toka-
mak. Where the toroidal axis vertical by convention; it is encircled 
by the magnetic axes, a single toroidal field line that generally lo-
cates the peak of the plasma current and plasma density profiles. 
The magnetic axis also identified with the toroidal direction param-
eter (φ). Similarly closed poloidal curves encircling the magnetic 
axis, indicate the local poloidal direction (θ) (Harris, 1974). 
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Fig. 2. Top view of the magnetic torus 

2. Calculations of the parameters 

In deriving the parameter  which is the ratio of the ideal pres-
sure p to the magnetic pressure 2/2, we have to adopt a single 
magnetohydrodynamic (MHD) model, where the timescale ei 
and Te=Ti, where 𝜏𝑒𝑖 is electron-ion collision time and Te=Ti are the 
electrons and ions temperatures respectively. When the plasma 
fluid velocity is negligible, and the magnetic field is steady, the sys-
tem is in static equilibrium. To obtain the magneto static equations 
we need the following MHD fluid equations (Shafranov, 1966; Bate-
man, 1980): 

Firstly, the mass conservation equation is 

𝜕𝜌

𝜕𝑡
+ 𝛻⃗⃗ ∙ (𝜌𝜐⃗) = 0                                                                                        (1) 

Secondly, the momentum conservation equation is 

𝜕(𝜌𝜐⃗)

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌𝜐⃗𝜐⃗ + 𝑃) = 𝑗 × 𝐵⃗⃗ + 𝜌𝐹⃗                                                    (2) 

Where 𝐹⃗ is the body force and 𝑃 is the pressure tensor. These two 
equations can be reduced to their intrinsic form by using the iden-
tity 

𝐷 ≡
𝜕

𝜕𝑡
+ 𝜐⃗ ∙ 𝛻⃗⃗, Hence 

𝐷𝜌 + 𝜌𝛻⃗⃗ ∙ 𝜐⃗ = 0                                                                                           (3) 

𝜌𝐷𝜐⃗ + ∇⃗⃗⃗ ∙ 𝑃 = 𝑗 × 𝐵⃗⃗ + 𝜌𝐹⃗                                                                         (4) 

If the body force 𝐹⃗, 𝜕/𝜕𝑡 and 𝜐⃗ are all zeros. Then the plasma is in 
static equilibrium and the divergence of the pressure tensor bal-
ances the magnetic force density 

∇⃗⃗⃗ ∙ 𝑃 = 𝑗 × 𝐵⃗⃗                                                                                                 (5) 

The pressure tensor in the left-hand side of Eq. 5 consists of two 
parts (Wesson, 1987): 

𝑃 = 𝑝𝛿 + 𝜋                                                                                                    (6) 

where 𝑝 is the ideal pressure with 𝜹⃡ the identity unit matrix tensor, 
the last term 𝜋 is a pure viscosity term which can be written as: 

𝜋 = −𝜇′ ∇⃗⃗⃗ ∙ 𝜐⃗ − 2𝜇∇⃗⃗⃗ 𝜐 ⃗⃗⃗                                                                                (7) 

Where the scalar 𝜇′ and 𝜇 are known as the bulk and shear viscosity 
coefficients. However, all the 𝜋 tensor terms are velocity dependent 
so can be dropped altogether. Hence, Eq. 6 reduced to 

𝑃 = 𝑝𝛿                                                                                                            (8) 

The electromagnetic force density acting on the plasma in the right-
hand side of Eq. 5 can be written in the following form (Wesson, 
1987): 

𝑗 × 𝐵⃗⃗ = 𝛻⃗⃗ ∙ 𝑇 − 𝜇0𝜖0

𝜕𝑆

𝜕𝑥
                                                                            (9) 

Where the Pointing energy vector 𝑆 ≡ (1 𝜇0⁄ )𝐸⃗⃗ × 𝐵⃗⃗ and 𝑇 is the 
electromagnetic stress tensor, which can be written as: 

𝑇 =
1

𝜇0
𝐵⃗⃗𝐵⃗⃗ + 𝜖0𝐸⃗⃗𝐸⃗⃗ − (

𝐵2

2𝜇0
+

𝜖0

2
𝐸2) 𝛿                                               (10) 

Writing the following vector identities for later use: 

i) ∇⃗⃗⃗ × ∇⃗⃗⃗ × 𝐸⃗⃗ = ∇⃗⃗⃗ ∙ (𝐸⃗⃗𝐸⃗⃗) − 𝐸⃗⃗∇⃗⃗⃗ ∙ 𝐸⃗⃗ − ∇⃗⃗⃗ (
1

2
𝐸2) 

ii) ∇⃗⃗⃗ × ∇⃗⃗⃗ × 𝐵⃗⃗ = ∇⃗⃗⃗ ∙ (𝐵⃗⃗𝐵⃗⃗) − 𝐵⃗⃗∇⃗⃗⃗ ∙ 𝐵⃗⃗ − ∇⃗⃗⃗ (
1

2
𝐵2) with ∇⃗⃗⃗ ∙ 𝐵⃗⃗ = 0 

iii) ∇⃗⃗⃗ ∙ (𝜑𝛿) = ∇⃗⃗⃗𝜑 if 𝜑 is a scalar 

Dropping the time-dependent pointing energy term the force den-
sity now becomes: 

𝑗 × 𝐵⃗⃗ = 𝛻⃗⃗ ∙ (
1

𝜇0
𝐵⃗⃗𝐵⃗⃗ + 𝜖0𝐸⃗⃗𝐸⃗⃗) − 𝛻⃗⃗ ∙ (

𝐵2

2𝜇0
+

𝜖0

2
𝐸2) 𝛿                       (11) 

In MHD dynamics, the plasma is quasineutral and any charge in 

balance will be shielded out and any resulting electric field 𝑬⃗⃗⃗ van-
ishes. Thus, the force density in Eq. 11 can be given (Shafranov, 
1966) as: 

𝑗 × 𝐵⃗⃗ = 𝛻⃗⃗ ∙
1

𝜇0
𝐵⃗⃗𝐵⃗⃗ − 𝛻⃗⃗ ∙ (

𝐵2

2𝜇0
) 𝛿                                                           (12) 

Now using Eq. 8 and Eq. 12 we can write Eq. 5 as: 

𝛻⃗⃗ ∙ (𝑝 +
𝐵2

2𝜇0
) 𝛿 = 𝛻⃗⃗ ∙

1

𝜇0
𝐵⃗⃗𝐵⃗⃗                                                                  (13) 

𝛻⃗⃗ ∙ (𝑝 +
𝐵2

2𝜇2
) 𝛿 =

1

𝜇0
(𝛻⃗⃗ ∙ 𝐵⃗⃗)𝐵⃗⃗ + (𝐵⃗⃗ ∙ 𝛻⃗⃗)𝐵⃗⃗                                        (14) 

Using ∇⃗⃗⃗ ∙ B⃗⃗⃗ = 0 and identity (iii) in Eq. 14 to get: 

𝛻⃗⃗ (𝑝 +
𝐵2

2𝜇0
) =

1

𝜇0
(𝐵⃗⃗ ∙ 𝛻⃗⃗)𝐵⃗⃗                                                                    (15) 

3. Magnetic field curvature 

The term (𝐵⃗⃗ ∙ ∇⃗⃗⃗)𝐵⃗⃗  in the right hand side of Eq. 15 is related to 

the field curvature 𝜅 ≡ (𝑏̂ ∙ ∇⃗⃗⃗)𝑏̂ with B⃗⃗⃗ = Bb̂ we can write: 

B2κ⃗⃗ = (B⃗⃗⃗ ∙ ∇⃗⃗⃗)B⃗⃗⃗                                                                                           (16) 

The term involving κ⃗⃗ is more readly interpreted in terms of the ra-
dius 𝐫 of curvature of the magnetic field lines and the unit normal 𝐧̂ 

  

  

 

Minor axis 
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towards the center of curvature. The field line is normal to the cur-

vature, i.e. κ⃗⃗ ⊥ b̂ (Shafranov, 1966). This yield, see Fig. 3  

κ⃗⃗ =  
n̂

r
= −

r̂

r
                                                                                               (17) 

 

Fig. 3. Field line curvature 

The right-hand side of Eq. 15 can be put in the following form: 

1

𝜇0
(𝐵⃗⃗ ∙ ∇⃗⃗⃗)𝐵⃗⃗ =

1

𝜇0
𝐵2 𝜅 + ∇⃗⃗⃗∥ (

𝐵2

2𝜇0
)                                                      (18) 

Where ∇⃗⃗⃗∥  is parallel to 𝐵⃗⃗ direction. Comparing Eq.15 and Eq. 18 we 
deduce that: 

∇⃗⃗⃗ (𝑝 +
𝐵2

2𝜇0
) =

1

𝜇0
𝐵2𝜅 + ∇⃗⃗⃗∥ (

1

𝜇0
𝐵2)                                                  (19) 

Using the definition of the field line curvature in Eq. 17 into Eq. 19 
to have:  

∇⃗⃗⃗ (𝑝 +
𝐵2

𝜇0
) = −

1

𝜇0

𝐵2

𝑟
𝑟̂ + ∇⃗⃗⃗∥ (

1

𝜇0
𝐵2)                                                (20) 

Due to equilibrium and assumed plasma column symmetry in 
the torus cross-section, we approximate a short segment of the 
plasma torus by cylindrical piece, shown in Fig. 4a and Fig. 4b.Thus 
we can adopt a cylindrical coordinates system for the shown piece. 
Now the toroidal φ-axis of the torus becomes the z-axial coordinate 
of the cylindrical piece (Goldstone, 1982). Hence, we need only the 
r-component of the cylindrical coordinates of Eq. 20: 

d

dr
(r2(Bφ

2 + Bθ
2)) = −2rBφ

2 − 2rBθ
2 − 2μ0r2

dp(r)

dr
                       (21) 

 

Fig. 4a. Show a short segment of the plasma torus by cylindrical piece 

 

Fig. 4b. Cylindrical and local coordinates 

In general, unstated pressure and toroidal field profiles, the so-
lution to Eq. 21 can be written in terms of an average over the vol-
ume bounded by the so-called magnetic flux surface. In this work, 
the fields poloidal Bθ or toroidal Bφ are independent of the varia-

bles θ and φ. This amounts to a simple radial averaging, given by 
the general formula (Kruskel and Kulsrud, 1958). 

〈ψ〉 ≡
2

r2 ∫ dr′r′
r

0

ψ(r′)                                                                            (22) 

After some rearrangement and integration by parts, Eq. 21 yields: 

Bφ
2 + Bθ

2 − 〈Bφ
2 (r)〉 = −2μ0(p(r) − 〈p(r)〉)                                       (23) 

To this end, the plasma poloidal βθ is defined as 

βθ(r) = 2μ0

〈p(r)〉

Bθ
2                                                                                    (24) 

Using this definition in Eq. 23 to obtain: 

βθ(r) = 1 +
Bφ

2 (r) − 〈Bφ
2 (r)〉

Bθ
2(r)

+ 2μ0

𝑝(𝑟)

𝐵𝜃
2(𝑟)

                                       (25) 

This definition obtained from the plasma MHD theory slightly dif-
fers from that usually used in laboratory plasmas (Hutchison, 
1987). The expression for 𝛽𝜃(𝑟) at the plasma boundary (𝑟 = 𝑎) 
limiter radius. Thus  

βθ(a) = 1 +
Bφ

2 − 〈Bφ
2 〉

Bθ
2(a)

                                                                          (26) 

Where the plasma pressure p(a) = 0. 

4. Conclusion 

At a frequency below relevant collision frequencies; plasmas 
act like fluids. Almost all plasmas have magnetic fields and they are 
highly electrically conducting. The magnetic field is then frozen into 
the fluid and moves with the fluid. A distinction is made between 
high- β and low-β plasmas. In high- 𝛽 plasmas; the magnetic field is 
dragged along the plasma and in low-𝛽 plasmas; the plasma is 
pulled by the magnetic field. Put in another way, for β ≫ 1 the 
stresses in the plasma are predominantly gas like and are trans-
ferred by sound waves with speed 

Cs = √
γp

ρ
   

Where ρ is the plasma mass density and γ is the adiabatic constant. 
For β ≪ 1 the stresses are predominantly magnetic and are trans-
ferred by Alfven waves with speed 

b̂ 

n̂ 

r̂ 

o 

𝐵⃗⃗ 
𝐵⃗⃗ r 

𝑩⃗⃗⃗ 𝒋 

∇⃗⃗⃗𝑝 

𝑝

= 0 
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 υA =
B

√ρμ
0

  
  

See (Cheng and Chance, 1985). To within a factor of order unity β is 
the ratio of the square of the sound speed 𝐶𝑠 to the square of the 
Alfven speed υA, approximately equal to 

β ≈
Cs

2

υA
2 =

γp

(
B

μ0
)
 . 
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