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The generalized Laguerre polynomials form a complete set (orthogonal and normalized) in the 
space 𝐿2(0, ∞) with respect to a certain weighting function because they are the Eigen 
functions of a second-order differential operator. Here we shall show how to expand some 
well-known classical polynomials such as the Legendre and the Hermite polynomials in series 
of generalized Laguerre polynomials. Since the generalized Laguerre orthogonal polynomials 
are set of polynomials that are mutually orthogonal to each other with respect to a measure of 
weighting function that is just the integrand of the gamma function, thus it grants us the 
guarantee of the ability to expand the first kind of Bessel functions and the gamma function in 
terms of the generalized Laguerre polynomials. The series expansion in terms of the 
generalized Laguerre polynomials can be achieved by following various approaches. For 
instance, the series expansion of the first kind Bessel functions is gained by the generalized 
hypergeometric function approach, whereas the series expansion of gamma function was 
obtained directly by the usual way that is by calling the orthogonality and orthonormality 
properties of the generalized Laguerre polynomials. Another powerful technique to gain the 
series expansion of the classical polynomials is the generating function approach as it has been 
followed here to obtain a series expansion of the Legendre and the Hermite polynomials in 
terms of the generalized Laguerre polynomials. The series expansion in series of the 
generalized Laguerre polynomials has a variety of applications in mathematics, physics, and 
engineering. 
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1. Introduction 

The field of orthogonal polynomials (Chihara et al., 2001; 
Gautsch, 2004; Koornwinder et al., 2010; Mourad, 2005; Sansone, 
1991; Szegö, 1975; Vilmos, 2005) has been taken growing interest 
by many well-known scientists in the twenty century. The most 
common orthogonal polynomials are the classical polynomials 
such as the Laguerre, Hermite, Legendre, Chebyshev, Jacobi and 
Gegenbauer polynomials (Andrew et al., 1999; Bell, 1968; 
Brychkov, 2008; Rainville, 1960; Sneddon, 1980). The classical pol-
ynomials in general and the generalized (or referred to as associ-
ated) Laguerre polynomials (Arfken,1985; Bell, 1968; Brychkov, 
2008; Lebedev, 1972; Rainville, 1960; Sneddon, 1980; Chihara et 
al., 1999) in particular are very important in many applications in 
mathematics, engineering, physics. A comprehensive historical lit-
erature review on what has been done on the orthogonal polyno-
mials over the 45 years beginning in 1950 was written by Chihara 
(Chihara et al., 2001). 

The generalized Laguerre polynomials are named after the 
French mathematician Edmond Laguerre (1834, 1886) and occur 
in quantum mechanics as the solution of the Schrödinger equation 
for the Hydrogen atom. The orthogonal polynomials are a set of 
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polynomials that are mutually orthogonal to each other with re-
spect to a measure of weighting function under a certain inner 
product. Any piecewise continuously differentiable function and 
square-integrable with respect to a weighting function associated 
with the classical orthogonal polynomials can be expanded in se-
ries of some classes of the classical orthogonal polynomialssuch as 
the Hermite or the generalized Laguerre polynomials (Uspensky, 
1972). In fact, the orthogonal classical orthogonal is the Eigen-func-
tions of a symmetric second-order differential operator, thus such 
polynomials play an important role in the theory of moments, con-
tinued fractions, and spectral theory (Brychkov, 2008). 

The generalized Laguerre polynomials are considerably im-
portant in the numerical analysis as they can be used for Gaussian 
quadrature to numerically compute integrals of the 

form∫ 𝑒−𝑥∞

0
𝑓(𝑥) (Gautsch, 2004; Van Assche, 1987). It is worth 

mentioning that there are some classes of orthogonal polynomials 
that are orthogonal on some plane regions in the complex plane 
such as discs or triangles. For instance, Cantero (Cantero et al., 
2003) considered orthogonal polynomials for some curves in the 
complex plane such as the unit circle. Furthermore, Endl (1955) 
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generalized the orthogonality of the Hermite and the Laguerre pol-
ynomials over some star regions in the complex plane. 

By following various approaches (Lebedev, 1972; Rainville, 
1960), in this paper we shall show how to expand some well-
known classical polynomials such as the Hermite and the Legendre 
polynomials in series of the generalized Laguerre polynomials. 
Furthermore, we shall show how to expand some well-known func-
tions such as the first kind Bessel functions and gamma function in 
series of generalized Laguerre polynomials. 

This paper is structured as follows: in section two, we briefly 
set up some concepts that we need in the paper. These concepts 
consist of a brief introduction of some needed formulae on double 
series manipulations, Pochhammer symbol, gamma function, the 
generalized hypergeometric function, the Hermite polynomials, the 
first kind Bessel functions, the Legendre polynomials, and finally 
the associated Laguerre polynomials and its hypergeometric rep-
resentation. Then the general theory of expanding any function in 
terms of generalized Laguerre polynomials is introduced in section 
three. In sections four and five, expansions of the Hermite and the 
Legendre polynomials in series of the generalized Laguerre poly-
nomials will be obtained respectively. Then expansions of the 
gamma function and the first kind Bessel functions in series of the 
generalized Laguerre polynomials will be obtained respectively in 
sections six and seven. Finally, a conclusion is drawn in section 
eight. 

2. Preliminaries 

Here we shall introduce some necessary concepts, which we 
will need later on, such as a very important tool of dealing with 
double series. 

2.1. Double series manipulations 

Here we shall introduce some elementary operations with dou-
ble summation which we will need later in the rearrangement of 
series appearing later in the paper.  

Theorem 1: For a convergent power series φ , one has 

∑ ∑ 𝜑(𝑚, 𝑛)

∞

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 − 𝑚)

𝑛

𝑚=0

∞

𝑛=0

                                             (1) 

and 

∑ ∑ 𝜑(𝑚, 𝑛)

∞

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 − 2𝑚)

[𝑛 2⁄ ]

𝑚=0

∞

𝑛=0

                                         (2) 

where [n/2] is the greatest integer symbol defined as 

[
𝑛

2
] = {

n 2⁄ , for n even,
(n − 1) 2⁄ , for n odd

 

It should be noted that these identities can be taken in reverse or-
der, that is 

∑ ∑ 𝜑(𝑚, 𝑛)

𝑛

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 + 𝑚)

∞

𝑚=0

∞

𝑛=0

                                             (3) 

and 

∑ ∑ 𝜑(𝑚, 𝑛)

[𝑛 2⁄ ]

𝑚=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑚, 𝑛 + 2𝑚)

∞

𝑚=0

∞

𝑛=0

                                         (4) 

Also note that a combination of the Identities (1) and (2) yields 

∑ ∑ 𝜑(𝑚, 𝑛) =

𝑛

𝑚=0

∞

𝑛=0

∑ ∑ 𝜑(𝑚, 𝑛 − 𝑚)

[𝑛 2⁄ ]

𝑚=0

∞

𝑛=0

                                            (5) 

2.2. Pochhammer. Symbol and gamma function 

It is very convenient to introduce the so-called generalized fac-
torial function (Arfken,1985; Rainville, 1960) or Pochhammer 
symbol (𝑎)𝑛 defined as 

(𝑎)𝑛 = ∏(𝑎 + 𝑘 − 1), (𝑎)0 = 1,    𝑎 ≠ 0

𝑛

𝑘=1

 

(𝑎)𝑛 = 𝑎(𝑎 + 1)(𝑎 + 2) … (𝑎 + 𝑛 − 1), 𝑛 ≥ 1 

Now we introduce the gamma function that is related to the Poch-
hammer symbol. 

Definition 1: For a non-negative real number𝛼, the gamma func-
tion Γ(𝛼) is defined by the following Euler integral 

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥 , 𝛼 > 0

∞

0

                                                                 (6) 

The gamma function can be written as the sum of two integrals as 
follows: 

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥 + ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥 ,       𝛿 ∈ [0, ∞) 

∞

𝛿

𝛿

0

 

Γ(𝛼) = γ(𝛼, 𝛿) + Γ(𝛼, 𝛿)  𝛼 > 0                                                             (7) 

where γ(𝛼, 𝛿) is called the lower incomplete gamma function and 
Γ(𝛼, 𝛿) is called the upper incomplete gamma function. For fixed 𝛿, 
the function Γ(𝛼, 𝛿)is analytic for all z, while the function γ(𝛼, 𝛿)is 
not analytic at the values = 0, −1, −2, … . The factorial function is 
related to the gamma function by the following relation, 

Γ(𝑎 + 1) = 𝑎!   

In addition, the Pochhammer symbol is related to the gamma func-
tion by the following relation. 

Theorem 2: If a is neither zero nor a negative integer then 

(𝑎)𝑛 =
Γ(𝑎 + 𝑛)

Γ(𝑎)
,       𝑎 ≠ 0, ±1, ±2, … , 𝑛 = 0,1,2, …                        (8) 

Next, we introduce some beneficial identities that we will need in 
our derivations in this article. 

Lemma 1: Let 𝑛 be a positive integer and a any real number, 

(𝑎)2𝑛 = 22𝑛 (
𝑎

2
)

𝑛
(

𝑎 + 1

2
)

𝑛
                                                                     (9) 

Proof: since 

(𝑎)2𝑛 = 𝑎(𝑎 + 1)(𝑎 + 2)(𝑎 + 3) … (𝑎 + 2𝑛 − 1),                         

= 22𝑛 [
𝑎

2
(

𝑎

2
+

1

2
) (

𝑎

2
+ 1) (

𝑎

2
+

3

2
) … (

𝑎

2
+ 𝑛 −

1

2
) (

𝑎

2
+ 𝑛 − 1)], 

= 22𝑛
𝑎

2
(

𝑎

2
+ 1) … (

𝑎

2
+ 𝑛 − 1) (

𝑎 + 1

2
) (

𝑎 + 3

2
) … (

𝑎

2
+ 𝑛 −

1

2
) 

Thus, 

(𝑎)2𝑛 = 22𝑛 (
𝑎

2
)

𝑛
(

𝑎 + 1

2
)

𝑛
 

This relation can be generalized as in the following lemma. 

Lemma 2: If k is a positive integer and 𝑛 = 0,1,2, …    then 

(𝑎)𝑘𝑛 = 𝑘𝑛𝑘 (
𝑎

𝑘
)

𝑛
(

𝑎 + 1

𝑘
)

𝑛
… (

𝑎 + 𝑘 − 1

𝑘
)

𝑛
                                   (10) 

Lemma 3: For integer numbers 𝑘, 𝑛 such that 0 ≤ 𝑘 ≤ 𝑛 , one has 
the identity 

(−𝑛)𝑘

𝑛!
=

(−1)𝑘

(𝑛 − 𝑘)!
, 0 ≤ 𝑘 ≤ 𝑛                                                       (11) 
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Proof: Since 

(−𝑛)𝑘

𝑛!
=

(−𝑛)(−𝑛 + 1) … (−𝑛 + 𝑘 − 1)

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 − 1) … 3.2.1
, 

             =
(−1)𝑘𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 − 1) … 3.2.1
 

Thus, one obtains the required Relation (11). 

In a similar fashion to lemma 1, we can prove the following benefi-
cial formula 

(𝑎)𝑛−𝑘 =
(−1)𝑘(𝑎)𝑛

(1 − 𝑎 − 𝑛)𝑘
, 0 ≤ 𝑘 ≤ 𝑛                                             (12) 

2.3. The generalized hypergeometric function 

In this section, we shall introduce some functions that are used 
in this paper. Consider the series  

1 + ∑
𝛼(𝛼 + 1) … (𝛼 + 𝑛 − 1)𝛽(𝛽 + 1) … (𝛽 + 𝑛 − 1)

𝛾(𝛾 + 1) … (𝛾 + 𝑛 − 1)  𝑛!

∞

𝑛=1

𝑧𝑛        (13) 

where z  is a complex variable, 𝛼 or 𝛽 and 𝛾 are parameters, which 
can take arbitrary real or complex values provided that 𝛾 ≠
0, −1, −2, …. If we let 𝛼 = 1 and 𝛽 = 𝛾, then we get the elementary 
geometric series ∑ 𝑧𝑛∞

𝑛=0 . In terms of the Pochhammer symbol, we 
can simplify the hypergeometric Series (13) in the following form, 

∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛 

We shall denote the convergent hypergeometric Series (13) by the 
notation 𝐹(𝛼, 𝛽; 𝛾; 𝑧) that is 

𝐹(𝛼, 𝛽; 𝛾; 𝑧) = ∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛,      |𝑧| < 1, 𝛾 ≠ 0, −1, −2, …     (14) 

The confluent hypergeometric series is defined by 

Φ(𝛼; 𝛾; 𝑧) = ∑
(𝛼)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛, ∀ 𝑧, 𝛾 ≠ 0, −1, −2, …                           (15) 

which is convergent for all finite values of z. Thus, the confluent hy-
pergeometric function is analytic for all finite values of z. Next, we 
show how to rewrite a function in terms of the confluent hyperge-
ometric function 

Example 1: Rewrite the function 𝑓(𝑧) = (1 − 𝑧)𝑎 in terms of the 
hypergeometric function. 

We can rewrite the function 𝑓(𝑧) in terms of the hypergeometric 
function as follows, 

(1 − 𝑧)−𝑎 = 1 + 𝑎𝑧 + ⋯ + 𝑎(𝑎 + 1)(𝑎 + 𝑛 − 1)
𝑧𝑛

𝑛!
+ ⋯ 

Thus, 

(1 − 𝑧)−𝑎 = ∑
(𝑎)𝑛𝑧𝑛

𝑛!

∞

𝑛=0

= Φ(𝑎; −; 𝑧),       |𝑧| < 1                           (16) 

The Series (14) can be generalized as 

1 + ∑
∏ (𝑎𝑖)𝑝

𝑖=1 𝑛

∏ (𝑏𝑗)
𝑞
𝑗=1 𝑛

∞

𝑛=1

𝑧𝑛

𝑛!
                                                                              (17) 

where the denominator parameters 𝑏𝑗 are not allowed to be zeros 

or negative integers. By the ratio test, it can be easily shown that 
the Series (17) converges for all finite z if 𝑝 ≤ 𝑞 (Rainville, 1960). 

We shall denote to the Series (17) by the nota-

tion 𝐹𝑞𝑝 (𝑎1, 𝑎2, … 𝑎𝑝; 𝑏1, 𝑏2, … 𝑏𝑞; 𝑧) that is 

𝐹𝑞𝑝 (𝑎1, 𝑎2, … 𝑎𝑝; 𝑏1, 𝑏2, … 𝑏𝑞; 𝑧) = ∑
∏ (𝑎𝑖)𝑝

𝑖=1 𝑛

∏ (𝑏𝑗)
𝑞
𝑗=1 𝑛

∞

𝑛=0

𝑧𝑛

𝑛!
                       (18) 

Or 

𝐹𝑞𝑝 (𝑎1, 𝑎2, … 𝑎𝑝; 𝑏1, 𝑏2, … 𝑏𝑞; 𝑧) = 𝐹𝑞𝑝 [
𝑎1, 𝑎2, … 𝑎𝑝;

𝑏1, 𝑏2, … 𝑏𝑞;   𝑧]                (19) 

2.4. Hermite polynomials 

The Hermite polynomials denoted as 𝐻𝑛(𝑥) are defined by the 
following generating function 

𝑒2𝑥ℎ−ℎ2
= ∑

𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛, ∀  finite, real 𝑥, ℎ                                (20) 

Now the exponential functions in the left-hand side of equation 
(20) can be expanded as, 

𝑒2𝑥ℎ−ℎ2
= (∑

(2𝑥ℎ)𝑛

𝑛!

∞

𝑛=0

) (∑
(−ℎ2)𝑗

𝑗!

∞

𝑗=0

)                                            (21) 

Substituting Eq. (21) in Eq. (20) yields 

∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑗(2𝑥)𝑛ℎ𝑛+2𝑗

𝑗! 𝑛!

∞

𝑗=0

∞

𝑛=0

                                        (22) 

This relation will be used in obtaining the series expansion of the 
Hermite polynomials in terms of the generalized Laguerre polyno-
mials as it will be shown in Section 4. 

2.5. First kind Bessel functions 

Here we present all the needed information about the Bessel 
function that is will be used in this paper. The Bessel differential 
equation takes the form 
𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝜈2)𝑦 = 0 

Solving this equation about the regular singular point at 𝑥 = 0 
using the Frobenius method (Arfken, 1985), one obtains the Bessel 
functions of the first kind of order 𝜈 as 

𝐽𝜈(𝑥) = ∑
(−1)𝑘

𝑘!  Γ(𝑘 + 𝜈 + 1)
(

𝑥

2
)

𝜈+2𝑘

 

∞

𝑘=0

                                                (23) 

We now show how to obtain the generalized hypergeometric 
representation of Bessel functions by using the Identity (8) for the 
term Γ(𝑘 + 𝜈 + 1) in Eq. (23) to obtain 

𝐽𝜈(𝑥) =
(

𝑥
2

)
𝜈

Γ(1 + 𝜈)
∑

(−1)𝑘

𝑘! (1 + 𝜈)𝑘
(

𝑥2

4
)

𝑘∞

𝑘=0

 

Now using the notation of the generalized hypergeometric Func-
tion (18), yields 

𝐽𝜈(𝑥) =
(

𝑥
2

)
𝜈

Γ(1 + 𝜈)
𝐹1(−; 1 + 𝜈; −

𝑥2

4
)0                                                 (24) 

This hypergeometric representation of the first kind Bessel 
functions will be beneficial in expanding the first kind Bessel func-
tion in series of the associated Laguerre polynomials as it will be 
shown in Section 7. 

2.6. Legendre polynomials 

The Legendre polynomials 𝑃𝑛(𝑥) are defined by the following 
generating function as 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = (1 − 2𝑥ℎ + ℎ2)−
1
2 
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Using this formula we will derive a very beneficial series expres-
sion of the Legendre polynomials that will be used later on. There-

fore, by rewriting the function(1 − 2𝑥ℎ + ℎ2)−
1

2 in terms of the hy-
pergeometric function using the Identity (16), one has 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑
(

1
2

)
𝑛

(2𝑥 + ℎ)𝑛

𝑛!

∞

𝑛=0

ℎ𝑛+𝑘 

Now by using the binomial expansion of the term (2𝑥 + ℎ)𝑛, we 
have 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑘 (

1
2

)
𝑛

(2𝑥)𝑛−𝑘

𝑘! (𝑛 − 𝑘)!

𝑛

𝑘=0

∞

𝑛=0

ℎ𝑛+𝑘 

Rearrange this double series using the Identity (5), one has 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑘 (

1
2

)
𝑛−𝑘

(2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

∞

𝑛=0

ℎ𝑛                       (25) 

Again rearranging this double series by using the Identity (4) 
yields, 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑
(−1)𝑘 (

1
2

)
𝑛+𝑘

(2𝑥)𝑛

𝑘!  𝑛!

∞

𝑘=0

∞

𝑛=0

ℎ𝑛+2𝑘                          (26) 

This equation will be used in Section 5 to show how to expand the 
Legendre polynomials in a series of generalized Laguerre polyno-
mials. It should be noted that by equating the coefficients of ℎ𝑛 on 
both sides of Eq. (25), we have the following useful expression of 
𝑃𝑛(𝑥), 

𝑃𝑛(𝑥) = ∑
(−1)𝑘 (

1
2

)
𝑛−𝑘

(2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

 

2.7. Generalized Laguerre polynomials 

The generalized Laguerre differential equation takes the form, 

𝑥𝑦′′(𝑥) + (𝛼 + 1 − 𝑥)𝑦′(𝑥) + 𝑛𝑦(𝑥) = 0                                         (27) 

Solving this equation about the regular singular point at 𝑥 = 0 us-
ing the Frobenius method (Arfken,1985; Andrew et al., 1999), one 
obtains the generalized Laguerre polynomials𝐿𝑛 

𝛼 (𝑥) as, 

𝐿𝑛 
𝛼 (𝑥) = ∑

Γ(𝛼 + 𝑛 + 1)(−1)𝑘

Γ(𝛼 + k + 1)(𝑛 − 𝑘)! 𝑘!
𝑥𝑘                                            (28)

𝑛

𝑘=0

 

In addition, the generalized Laguerre polynomials 𝐿𝑛 
𝛼 (𝑥) are de-

fined by the following formula of Rodrigues type as, 

𝐿𝑛 
𝛼 (𝑥) =

𝑥−𝛼𝑒𝑥

𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑒−𝑥𝑥𝑛+𝛼), 𝑛 = 0,1,2, …                                  (29) 

The generating function of the generalized Laguerre polynomials 
𝐿𝑛 

𝛼 (𝑥) are defined by the following formula, 

𝑒−𝑥ℎ/(1−ℎ)

(1 − ℎ)𝛼+1 = ∑ 𝐿𝑛
𝛼 (𝑥)ℎ𝑛, |ℎ| < 1                                             (30)

∞

𝑛=0

 

Letting 𝛼 = 0 in Eq. (30) leads to the generating function of the sim-
ple Laguerre polynomials 𝐿𝑛(𝑥) as, 

𝑒−𝑥ℎ/(1−ℎ)

(1 − ℎ)
= ∑ 𝐿𝑛(𝑥)ℎ𝑛, |ℎ| < 1                                              (31)

∞

𝑛=0

 

2.8. The confluent hypergeometric representation of the gen-
eralized Laguerre polynomials 

Here we introduce the confluent hypergeometric representa-
tion of the generalized Laguerre polynomials. To achieve that, we 

implement the Identity (11) in the series of the generalized La-
guerre polynomials (28), thus one has 

𝐿𝑛 
𝛼 (𝑧) = ∑

Γ(𝛼 + 𝑛 + 1)(−𝑛)𝑘(−1)𝑘

Γ(𝛼 + k + 1)n!  𝑘!
𝑧𝑘

𝑛

𝑘=0

 

Now using the property of gamma Function (8) leads to 

Γ(𝛼 + n + 1)

Γ(𝛼 + k + 1)
=

Γ(𝛼 + n + 1) Γ(𝛼 + 1)⁄

Γ(𝛼 + k + 1) Γ(𝛼 + 1)⁄
=

(𝛼 + 1)n

(𝛼 + 1)k
 

Thus, one has 

𝐿𝑛 
𝛼 (𝑧) =

(𝛼 + 1)𝑛

𝑛!
∑

(−𝑛)𝑘𝑧𝑘

(𝛼 + 1)k𝑘!

𝑛

𝑘=0

 

Using the notation of the confluent hypergeometric Function (15), 
yields the confluent hypergeometric representation of the general-
ized Laguerre polynomials as, 

𝐿𝑛 
𝛼 (𝑧) =

(𝛼 + 1)n

𝑛!
Φ(−𝑛, 𝛼 + 1; 𝑧)                                                      (32) 

Next, we prove a very important property of the generalized La-
guerre polynomials. 
2.9. Orthogonality property of the generalized Laguerre poly-
nomials 

Now we prove one of the most important properties of the gen-
eralized Laguerre polynomials, which are the orthogonlaity and the 
orthonormality with respect to the weight function 𝑤(𝑥) = 𝑥𝛼𝑒−𝑥 
on the half-line 𝑥 ∈ (0, ∞) (Andrew et al., 1999). We shall start the 
proof by using the generating function of the generalized Laguerre 
polynomials (30) as 

∑ 𝑡𝑛𝐿𝑛
𝛼 (𝑥) =

∞

𝑛=0

1

(1 − 𝑡)𝛼+1 𝑒−𝑥𝑡/(1−𝑡), |𝑡| < 1                            (33) 

∑ 𝑠𝑚  𝐿𝑚
𝛼 (𝑥) =

∞

𝑚=0

1

(1 − 𝑠)𝛼+1 𝑒−𝑥𝑠/(1−𝑠), |𝑠| < 1                       (34) 

Multiplying Eq. (33) by Eq. (34), then doing the integration on the 
half-line 𝑥 ∈ [0, ∞) with the weight function 𝑤(𝑥) = 𝑥𝛼𝑒−𝑥, yields 

∑ ∑ 𝑠𝑚𝑡𝑛 ∫ 𝑥𝛼

∞

0

𝑒−𝑥𝐿𝑛
𝛼 (𝑥)𝐿𝑚

𝛼 (𝑥)𝑑𝑥

∞

𝑛=0

∞

𝑚=0

=
1

(1 − 𝑡)𝛼+1(1 − 𝑠)𝛼+1 ∫ 𝑒
−

(1−𝑠𝑡)
(1−𝑡)(1−𝑠)

𝑥

∞

0

𝑑𝑥 

To do the integral on the right-hand side of the last equation, we 
make the substitution 

𝑦 =
(1 − 𝑠𝑡)

(1 − 𝑡)(1 − 𝑠)
𝑥 

and recall the Euler definition of Gamma function (6) to obtain 

∑ ∑ 𝑠𝑚𝑡𝑛 ∫ 𝑥𝛼

∞

0

𝑒−𝑥𝐿𝑛
𝛼(𝑥)𝐿𝑚

𝛼 (𝑥)𝑑𝑥

∞

𝑛=0

=

∞

𝑚=0

Γ(𝛼 + 1)

(1 − 𝑠𝑡)𝛼+1          𝛼 > −1. 

Now since 

(1 − 𝑠𝑡)𝛼+1 = ∑
(−1)2𝑛(𝑠𝑡)𝑛(𝑛 + 𝛼)!

𝑛! 𝛼!

∞

𝑛=0

 

where we have used the binomial coefficient in the form 

(
𝛼 + 1

𝑛
) = (−1)𝑛 (

𝑛 + 𝛼 + 1 − 1

𝑛
) 

Thus, one has 
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∑ ∑ 𝑠𝑚𝑡𝑛 ∫ 𝑥𝛼𝑒−𝑥𝐿𝑛
𝛼 (𝑥)𝐿𝑚

𝛼 (𝑥)𝑑𝑥 = ∑
Γ(𝛼 + 𝑛 + 1)

𝑛!
(𝑠𝑡)𝑛 

∞

𝑛=0

∞

0

∞

𝑛=0

∞

𝑚=0

 

Equating the coefficients of (𝑠𝑡)𝑛 on both sides of this equation, 
yields 

∫ 𝑥𝛼

∞

0

𝑒−𝑥𝐿𝑛
𝛼(𝑥)𝐿𝑚

𝛼 (𝑥)𝑑𝑥 =
Γ(𝛼 + 𝑛 + 1)

𝑛!
𝛿𝑚,𝑛  , 𝛼 > −1      (35) 

where 𝛿𝑚,𝑛 is the Kronker delta symbol defined as 

𝛿𝑚,𝑛 = {
0, for 𝑚 ≠ 𝑛,
1, for 𝑚 = 𝑛 

 

This is the orthogonality and orthonormality properties of the gen-
eralized Laguerre polynomials (eigenfunctions of the second-order 
Differential operator (27)).  

Thus the normalized and mutually orthogonal 𝐿𝑛
𝛼 (𝑥) with respect 

to the measure weighting function 𝑤(𝑥) = 𝑥𝛼𝑒−𝑥on the half-

line 𝑥 ∈ (0, ∞) forα > −1 {√
𝑛!

𝛤(𝛼+𝑛+1)
𝐿𝑛

𝛼 (𝑥), 𝑛 ∈ ℕ }form a com-

plete set in the Hilbert space 𝐿2(0, ∞). 

3. Expansion of functions in series of the generalized Laguerre 
polynomials 

It is useful to introduce the following important definitions. 

Definition 2: The real function 𝑓(𝑥) is piecewise continuous on the 
interval [𝑎, 𝑏] if: 

1- 𝑓(𝑥)is continuous on [𝑎, 𝑏] except at a finite number of 
points {𝑥1, 𝑥2, … 𝑥𝑛}. 

2- The two limits lim
𝑥→𝑥𝑖

−
𝑓(𝑥) = 𝑓(𝑥𝑖

−), and lim
𝑥→𝑥𝑖

+
𝑓(𝑥) = 𝑓(𝑥𝑖

+) 

are existed except at the two endpoints 𝑥 = 𝑎, 𝑏 where only the 
limits 𝑓(𝑏−), 𝑓(𝑎+) are existed. 

Definition 3: The real function 𝑓(𝑥) is piecewise smooth on the in-
terval[𝑎, 𝑏]if the function itself and its first derivative are both 
piecewise continuous on [𝑎, 𝑏]. 

The real function 𝑓(𝑥) defined in the half-line 0 ≤ 𝑥 < ∞ can be 
expanded in series of the generalized Laguerre polynomials in the 
following form 

𝑓(𝑥) = ∑ 𝑎𝑛𝐿𝑛
𝛼 (𝑥),

∞

𝑛=0

  0 < 𝑥 < ∞, 𝛼 > −1                                 (36) 

provided that the function 𝑓(𝑥) meets certain conditions that are 
mentioned in the following theorem. 

Theorem 3: If the real function 𝑓(𝑥) defined through the half-line 
0 < 𝑥 < ∞ is piecewise smooth in every finite subinterval [𝑥1, 𝑥2] 
where 0 < 𝑥1 < 𝑥2 < ∞ and well-behaved at the two endpoints 
𝑥1 = 0,  𝑥2 = ∞. Then, the Expansion (36) converges to the func-
tion 𝑓(𝑥) at each continuity point of 𝑓(𝑥) and converges to 
[𝑓(𝑥+)+𝑓(𝑥−)]

2
 at each discontinuity point of 𝑓(𝑥) in the Hilbert space 

𝐿2(0, ∞) if and only if 𝑓(𝑥) is square-integrable, that is, the norm 
should satisfy 

‖𝑓‖𝐿2
2 = ∫ 𝑒−𝑥𝑥𝛼𝑓2(𝑥)

∞

0

𝑑𝑥 < ∞ 

The unknown coefficient 𝑎𝑛 in the Expansion (36) can be com-
puted using the orthogonality and orthonormality properties of the 
generalized Laguerre polynomials (35). That is by multiplying the 
Expansion (36) by the function 𝑥𝛼𝑒−𝑥𝐿𝑚

𝛼 (𝑥) and then integrating 
on the interval 0 < 𝑥 < ∞ to obtain the coefficients 𝑎𝑛 as 

𝑎𝑛 = 〈𝑓(𝑥), 𝐿𝑛
𝛼 (𝑥)〉   =

𝑛!

Γ(𝛼 + 𝑛 + 1)
∫ 𝑒−𝑥

∞

0

𝑥𝛼𝑓(𝑥)𝐿𝑛
𝛼 (𝑥)𝑑𝑥     (37) 

where the angled brackets 〈 , 〉 denote the inner product. 

Example 2: Expand the function 𝑓(𝑥) = 𝑥𝛽  in terms of the gener-
alized Laguerre polynomials 

The function𝑓(𝑥) can be expanded as 

𝑥𝛽 = ∑ 𝑎𝑘𝐿𝑘
𝛼(𝑥),

∞

𝑘=0

  0 < 𝑥 < ∞, 𝛼 > −1 

The coefficients𝑎𝑘can be computed using Eq. (37) as 

𝑎𝑘 = 〈𝑥𝛽 , 𝐿𝑘
𝛼(𝑥)〉 =

𝑘!

Γ(𝛼 + 𝑘 + 1)
∫ 𝑒−𝑥

∞

0

𝑥𝛼+𝛽𝐿𝑘
𝛼(𝑥)𝑑𝑥 

Now replace the function 𝐿𝑘
𝛼(𝑥) by its equivalence using the Ro-

drigues formula (29) to obtain, 

𝑎𝑘 =
𝑘!

Γ(𝛼 + 𝑘 + 1)
∫ 𝑥𝛽

∞

0

𝑑𝑘

𝑑𝑥𝑘
(𝑒−𝑥𝑥𝑘+𝛼)𝑑𝑥. 

Doing this integral by parts k times, one has 

𝑎𝑘 =
(−1)𝑛𝛽(𝛽 − 1) … (𝛽 − 𝑘 + 1)

Γ(𝛼 + 𝑘 + 1)
∫ 𝑒−𝑥𝑥𝛼+𝛽

∞

0

𝑑𝑥 

Calling the definition of Gamma function (6), multiplying, and di-
viding by the factor Γ(𝛽 − 𝑘 + 1) obtain the required expansion as, 

𝑥𝛽 = ∑
(−1)𝑘𝛽!  Γ(𝛼 + 𝛽 + 1)

Γ(𝛼 + 𝑘 + 1)Γ(𝛽 − 𝑘 + 1)
𝐿𝑘

𝛼(𝑥) 

∞

𝑘=0

                                     (38) 

By letting 𝛽 = 𝑛 = 0,1,2, …is a positive integer in the Expansion 
(38), one has 

𝑥𝑛 = ∑
(−1)𝑘𝑛!  Γ(𝛼 + 𝑛 + 1)

Γ(𝛼 + 𝑘 + 1)Γ(𝑛 − 𝑘 + 1)
𝐿𝑘

𝛼(𝑥) 

∞

𝑘=0

 

To simplify the coefficients in this expansion we use the property 
of Gamma function (8) to obtain 

Γ(𝛼 + n + 1)

Γ(𝛼 + k + 1)
=

Γ(𝛼 + n + 1) Γ(𝛼 + 1)⁄

Γ(𝛼 + k + 1) Γ(𝛼 + 1)⁄
=

(𝛼 + 1)𝑛

(𝛼 + 1)𝑘
 

Γ(𝑛 − 𝑘 + 1) = (𝑛 − 𝑘)!, 𝑘 ≤ 𝑛 

Thus, one has 

𝑥𝑛 = ∑
(−1)𝑘𝑛! (𝛼 + 1)𝑛

(𝑛 − 𝑘)! (𝛼 + 1)𝑘
𝐿𝑘

𝛼(𝑥)                                                    

𝑛

𝑘=0

  (39) 

This expansion will be very beneficial in obtaining the series 
expansion of the Hermite polynomials in terms of the generalized 
Laguerre polynomials as shown in the next section. 

4. Expansion of the Hermite polynomials in series of the gen-
eralized Laguerre polynomials 

The core idea of obtaining the expansion of the Hermite poly-
nomials in series of the generalized Laguerre polynomials is to re-
place the expansion of 𝑥𝑛 in the generating function of Hermite pol-
ynomials by its series expansion of the generalized Laguerre poly-
nomials and then doing some lengthy and tedious calculations to 
approach the desired limit as shown here (Rainville, 1960). There-
fore, we start by implementing the Expansion (39) into the equiva-
lent form of the generating function of Hermite polynomials given 
by Eq. (22) to achieve 

∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛 = ∑ ∑ ∑
(−1)𝑘+𝑗2𝑛(1 + 𝛼)𝑛𝐿𝑘

𝛼(𝑥)

𝑗! (𝑛 − 𝑘)! (1 + 𝛼)𝑘

𝑛

𝑘=0

∞

𝑗=0

∞

𝑛=0

ℎ𝑛+2𝑗   

Rearrange this triple series using the Identity (3), one has 
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∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛 = ∑
(−1)𝑘+𝑗2𝑛+𝑘(1 + 𝛼)𝑛+𝑘𝐿𝑘

𝛼(𝑥)

𝑗! 𝑛! (1 + 𝛼)𝑘
ℎ𝑛+𝑘+2𝑗

∞

𝑛,𝑘,𝑗=0

 

Rearrange this triple series using the Identity (2), one has 

∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛

= ∑ ∑
(−1)𝑘+𝑗2𝑛+𝑘−2𝑗(1 + 𝛼)𝑛+𝑘−2𝑗𝐿𝑘

𝛼(𝑥)

𝑗! (𝑛 − 2𝑗)! (1 + 𝛼)𝑘

[𝑛 2⁄ ]

𝑗=0

ℎ𝑛+𝑘            

∞

𝑛,𝑘=0

(40) 

Now we try to simplify the coefficients of this series, so using the 
Relation (12) leads to 

(1 + 𝛼)𝑛+𝑘−2𝑗 =
(−1)2𝑗(1 + 𝛼)2𝑗

(−𝛼 − 𝑛 − 𝑘)2𝑗
                                                     (41) 

Also, using the Identity (9) yields, 

(−𝛼 − 𝑛 − 𝑘)2𝑗  = 22𝑗 (
−𝛼 − 𝑛 − 𝑘

2
)

𝑗
(

−𝛼 − 𝑛 − 𝑘 + 1

2
)

𝑗
        (42) 

In addition, using the Identity (11) leads to 

1

(𝑛 − 2𝑗)!
=

(−1)2𝑗(−𝑛)2𝑗

𝑛!
, 0 ≤ 2𝑗 ≤ 𝑛                                     (43) 

Again, using the Identity (9) to obtain, 

(−𝑛)2𝑗 = 22𝑗 (
−𝑛

2
)

𝑗
(

−𝑛 + 1

2
)

𝑗
                                                          (44) 

Substituting all the Relations (41), (42), (43), and (44) in the Eq. 
(40) and using the definition of the generalized hypergeometric 
function (19) leads to, 

∑
𝐻𝑛(𝑥)

𝑛!

∞

𝑛=0

ℎ𝑛

= ∑

𝐹22 [
−

𝑛

2
,
1 − 𝑛

2
; 

−
(𝛼 + 𝑛 + 𝑘)

2
, −

(𝛼 + 𝑛 + 𝑘 − 1)

2
;

  −
1

4
]

(−1)𝑘  2𝑛+𝑘(1 + 𝛼)𝑛+𝑘𝐿𝑘
𝛼(𝑥)

𝑛! (1 + 𝛼)𝑘
 ℎ𝑛+𝑘

∞

𝑛,𝑘=0

    (45) 

Now to be able to equate the power of ℎ𝑛 on both sides of the 
Series (45), we need to use the Identity (1) and finally equating the 
coefficients of ℎ𝑛 on both sides. Then reuse the Relation (11) to 
achieve the following expansion of the Hermite polynomials in se-
ries of the generalized Laguerre polynomials as, 

∑ 𝐹22 [

−(𝑛 − 𝑘)

2
, −

(𝑛 − 𝑘 − 1)

2
;

−
(𝛼 + 𝑛)

2
, −

(𝛼 + 𝑛 − 1)

2
;

 −
1

4
] ×

(−𝑛)𝑘

(1 + 𝛼)𝑘

𝑛

𝑘=0

𝐿𝑘
𝛼(𝑥)               (46) 

Letting 𝛼 = 0 in Eq. (55) leads to the expansion of the Legendre 
polynomials in series of the simple Laguerre polynomials 𝐿𝑛(𝑥), 
that is 

𝐻𝑛(𝑥)

= 2𝑛𝑛! ∑
𝐹32 [

−(𝑛 − 𝑘)

2
, −

(𝑛 − 𝑘 − 1)

2
;

−
𝑛

2
, −

(𝑛 − 1)

2
;

−
1

4
]

(−𝑛)𝑘𝐿𝑘(𝑥)

𝑘!

𝑛

𝑘=0

,

𝑛 > 1, (1)𝑛 = 𝑛!, (1)𝑘 = 𝑘!    

5. Expansion of the Legendre polynomials in series of the gen-
eralized Laguerre polynomials 

Here in this section, we follow the same steps as the previous 
section to obtain the expansion of the Legendre polynomials in se-
ries of generalized Laguerre polynomials. That is we replace the ex-
pansion of  𝑥𝑛 in the generating function or (its equivalence) of Le-
gendre polynomials by its series expansion of the generalized La-
guerre polynomials (Rainville, 1960) and then doing some lengthy 
and tedious operations as shown below. Therefore, we start by im-
plementing the expansion of  𝑥𝑛 given by Eq. (39) into the equiva-
lent form of the generating function of Legendre polynomials given 
by Eq. (26) to achieve 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛 = ∑ ∑ ∑

(−1)𝑘+𝑗2𝑛 (
1
2

)
𝑛+𝑗

(1 + 𝛼)𝑛𝐿𝑘
𝛼(𝑥)

𝑗! (𝑛 − 𝑘)! (1 + 𝛼)𝑘

𝑛

𝑘=0

∞

𝑗=0

∞

𝑛=0

ℎ𝑛+2𝑗 

Rearrange this triple series using the Identity (3), one has 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛

= ∑

(−1)𝑘+𝑗2𝑛+𝑘 (
1
2

)
𝑛+𝑘+𝑗

(1 + 𝛼)𝑛+𝑘𝐿𝑘
𝛼(𝑥)

𝑗! 𝑛! (1 + 𝛼)𝑘
ℎ𝑛+𝑘+2𝑗

∞

𝑛,𝑘,𝑗=0

    

Again, rearrange this triple series using the Identity (2) yields, 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛

= ∑ ∑

(−1)𝑘+𝑗2𝑛+𝑘−2𝑗 (
1
2

)
𝑛+𝑘−𝑗

(1 + 𝛼)𝑛+𝑘−2𝑗𝐿𝑘
𝛼(𝑥)

𝑗! (𝑛 − 2𝑗)! (1 + 𝛼)𝑘

[𝑛 2⁄ ]

𝑗=0

ℎ𝑛+𝑘

∞

𝑛,𝑘=0

     (47) 

Now we try to simplify the coefficients of this series, so use the Re-
lation (12) to obtain, 

(
1

2
)

𝑛+𝑘−𝑗
=

(−1)𝑗 (
1
2

)
𝑛+𝑘

(
1
2

− 𝑛 − 𝑘)
𝑗

                                                                    (48) 

Substituting all the Relations (41), (42), (43), (44) and (48) in 
the Eq. (47) and using the definition of the generalized hypergeo-
metric Function (19) leads to 

∑ 𝑃𝑛(𝑥)

∞

𝑛=0

ℎ𝑛

= ∑

𝐹32 [
−

𝑛

2
,
1 − 𝑛

2
;

1

2
− 𝑛 − 𝑘, −

(𝛼 + 𝑛 + 𝑘)

2
, −

(𝛼 + 𝑛 + 𝑘 − 1)

2
;

  
1

4
]

×
(−1)𝑘  2𝑛+𝑘(1 + 𝛼)𝑛+𝑘𝐿𝑘

𝛼(𝑥)

𝑛! (1 + 𝛼)𝑘
 ℎ𝑛+𝑘 .                                   (49)

∞

𝑛,𝑘=0

    

Now to be able to equate the power of ℎ𝑛on both sides of the 
Series (49), we need to use the Identity (1) and finally equating the 
coefficients of ℎ𝑛on both sides. Then reuse the Relation (11) to 
achieve the following expansion of the Legendre polynomials in se-
ries of the associated Laguerre polynomials as 

∑ 𝐹32 [

−(𝑛 − 𝑘)

2
, −

(𝑛 − 𝑘 − 1)

2
;

1

2
− 𝑛, −

(𝛼 + 𝑛)

2
, −

(𝛼 + 𝑛 − 1)

2
;

 
1

4
] ×

(−𝑛)𝑘

(1 + 𝛼)𝑘

𝑛

𝑘=0

                  (50) 

Letting 𝛼 = 0 in Eq. (55) leads to the expansion of the Legendre 
polynomials in series of the simple Laguerre polynomials 𝐿𝑛(𝑥), 
that is 

𝑃𝑛(𝑥) = 2𝑛 (
1

2
)

𝑛
∑ 𝐹32 [

−(𝑛 − 𝑘)

2
, −

(𝑛 − 𝑘 − 1)

2
;

1

2
− 𝑛, −

𝑛

2
, −

(𝑛 − 1)

2
;

1

4
]

(−𝑛)𝑘

𝑘!

𝑛

𝑘=0

𝐿𝑘(𝑥),

𝑛 > 1, (1)𝑛 = 𝑛!, (1)𝑘 = 𝑘!    
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6. Expansion of the gamma function in series of the general-
ized Laguerre polynomials 

Since the generalized Laguerre polynomials are mutually or-
thogonal with respect to the weight function 𝑤(𝑥) = 𝑥𝛼𝑒−𝑥 on the 
half-line 𝑥 ∈ [0, ∞) for α > −1 which is just the integrand of the in-
tegral definition of Gamma function (6). In addition, the gamma 
function is analytic except at 𝑥 = 0, −1, −2, … , 𝑥 = ∞ where 
Γ(𝑥)has an essential singular point at 𝑥 = ∞. Therefore; one could 
expand the gamma function in terms of the generalized Laguerre 
polynomials in the interval  (0, ∞) as shown here. We start by ex-
panding the function 𝑓(𝑥) = 𝑒−𝛽𝑥 as 

𝑒−𝛽𝑥 = ∑ 𝑎𝑛𝐿𝑛
𝛼 (𝑥) 

∞

𝑛=0

 

with the condition 𝛽 > −
1

2
 to guarantee that the conditions in The-

orem 3 are hold. The coefficients 𝑎𝑛 can be computed easily similar 
to Example 2, thus 

𝑎𝑛 = 〈𝑒−𝛽𝑥, 𝐿𝑛
𝛼 (𝑥)〉 =

𝛽𝑛

(1 + 𝛽)𝑛+𝛼+1 ,

𝛽 > −
1

2
,   0 < 𝑥  < ∞                                        (51) 

Thus, one has 

𝑒−𝛽𝑥 = (𝛽 + 1)−(𝛼+1) ∑
𝛽𝑛

(1 + 𝛽)𝑛+𝛼+1 𝐿𝑛
𝛼 (𝑥)                               

∞

𝑛=0

(52) 

The next step is to multiply the Expansion (52) by the factor 
(1 + 𝛽)𝛼−1 and then integrate with respect to 𝛽 from 𝛽 = 0  to 𝛽 =
∞ to obtain 

∫ 𝑒−𝛽𝑥
∞

0

(1 + 𝛽)𝛼−1𝑑𝛽 = ∑ 𝐿𝑛
𝛼 (𝑥)

∞

𝑛=0

∫ (
𝛽

1 + 𝛽
)

𝑛∞

0

𝑑𝛽

(1 + 𝛽)2

= ∑
𝐿𝑛

𝛼 (𝑥)

𝑛 + 1
 

∞

𝑛=0

                                                          (53) 

The integral on the left hand side of Eq. (53) can be computed by 
making the substitution 𝑢 = 𝛽𝑥 to obtain, 

∫ 𝑒−𝛽𝑥
∞

0

(1 + 𝛽)𝛼−1𝑑𝛽 = 𝑥−𝛼 ∫ 𝑒−𝑢
∞

0

(𝑢 + 𝑥)𝛼−1𝑑𝑢 

Now let 𝑢 + 𝑥 = 𝑡, thus 

∫ 𝑒−𝛽𝑥
∞

0

(1 + 𝛽)𝛼−1𝑑𝛽 = 𝑥−𝛼𝑒𝑥 ∫ 𝑒−𝑡
∞

𝑥

𝑡𝛼−1𝑑𝑡 = 𝑥−𝛼𝑒𝑥Γ(𝑥, 𝛼) 

where Γ(𝑥, 𝛼) is the upper incomplete gamma function defined by 
Eq. (7). Now substituting the result of this integral back in Eq. (53) 
yields, 

Γ(𝑥, 𝛼) = 𝑥𝛼𝑒−𝑥 ∑
𝐿𝑛

𝛼 (𝑥)

𝑛 + 1
,

∞

𝑛=0

   0 < 𝑥 < ∞, α > −1                          (54) 

Letting 𝛼 = 0 in Eq. (54) leads to the expansion of the gamma 
function in series of the simple Laguerre polynomials 𝐿𝑛(𝑥), that is 

Γ(𝑥) = 𝑒−𝑥 ∑
𝐿𝑛(𝑥)

𝑛 + 1
,

∞

𝑛=0

   0 < 𝑥 < ∞                                                    (55) 

To prevent the repetition by following a similar fashion to the 
above derivation one could obtain the expansion of the lower 
incomplete gamma function γ(𝑥, 𝛼) defined by Eq. (7) in series of 
the generalized Laguerre polynomials as 

γ(𝑥, 𝛼) = 𝑥𝛼 ∑
𝐿𝑛

𝛼 (𝑥)

2𝑛+𝛼(𝑛 + 𝛼)
,

∞

𝑛=0

   0 < 𝑥 < ∞, α > 0                        (56) 

where the condition α > 0 is essential for the definition of the 
lower incomplete gamma function γ(𝑥, 𝛼). 

7. Expanding the first kind of Bessel functions in series of the 
generalized Laguerre polynomials 

Here in this section, we follow various approaches to obtain the 
series expansion of the first kind of Bessel functions in series of the 
generalized Laguerre polynomials. This approach relies on calling 
the hypergeometric representation of the expanded function. 
Therefore, using the Relation (11) in the confluent hypergeometric 
representation of the generalized Laguerre polynomials (32) yields 

𝐿𝑛 
𝛼 (𝑥) = ∑

(−1)𝑘(𝛼 + 1)𝑛𝑥𝑘

𝑘! (𝑛 − 𝑘)! (𝛼 + 1)k
          

𝑛

𝑘=0

 

Taking the summation of both sides of this equation and multiply-
ing byℎ𝑛to obtain 

∑
𝐿𝑛 

𝛼 (𝑥)

(𝛼 + 1)𝑛
ℎ𝑛

∞

𝑛=0

= ∑ ∑
(−1)𝑘𝑥𝑘ℎ𝑛

𝑘! (𝑛 − 𝑘)! (𝛼 + 1)k
   

𝑛

𝑘=0

∞

𝑛=0

 

Rearrange this double series by using the Identity (3) with replac-
ing 𝑛 → 𝑛 + 𝑘  to obtain 

∑
𝐿𝑛 

𝛼 (𝑥)

(𝛼 + 1)𝑛
ℎ𝑛

∞

𝑛=0

= (∑
ℎ𝑛

𝑛!

∞

𝑛=0

) (∑
(−1)𝑘𝑥𝑘ℎ𝑘

𝑘! (𝛼 + 1)k

∞

𝑘=0

) 

Using the notation of the generalized hypergeometric Function 
(19), yields 

∑
𝐿𝑛 

𝛼 (𝑥)

(𝛼 + 1)𝑛
ℎ𝑛

∞

𝑛=0

= 𝑒ℎ 𝐹1(−; 1 + 𝛼; −𝑥ℎ)0                                          (57) 

Now from the hypergeometric representation of the first kind of 
Bessel functions given by Eq. (24), one has 

𝐹1(−; 1 + 𝛼; −𝑥ℎ)0 = Γ(1 + 𝛼)(𝑥ℎ)−
𝛼
2𝐽𝛼(2√𝑥ℎ)                          (58) 

Finally, implementing Eq. (58) back into Eq. (57) yields 

𝐽𝛼(2√𝑥ℎ) =
𝑒−ℎ(𝑥ℎ)

𝛼
2

Γ(1 + 𝛼)
∑

𝐿𝑛 
𝛼 (𝑥)

(𝛼 + 1)𝑛
ℎ𝑛

∞

𝑛=0

                                             (59) 

 

This is the expansion of the first kind of Bessel functions in terms 
of the generalized Laguerre polynomials 𝐿𝑛 

𝛼 (𝑥). 

Letting 𝛼 = 0 in Eq. (59) leads to the expansion of the zeroth-order 
first kind Bessel functions in series of the simple Laguerre polyno-
mials𝐿𝑛(𝑥), that is 

𝐽0(2√𝑥ℎ) = 𝑒−ℎ ∑
𝐿𝑛(𝑥)

𝑛!
ℎ𝑛

∞

𝑛=0

, (1)𝑛 = 𝑛!                                         (60) 

8. Discussion and conclusion 

To conclude we have presented the series expansions of some 
well-known classical polynomials such as the Legendre and the 
Hermite polynomials in terms of the generalized and simple La-
guerre polynomials. Furthermore, because of the fact that the gen-
eralized Laguerre orthogonal polynomials are mutually orthogonal 
with respect to a weighting function, which is just the integrand of 
the gamma function, thus we also expand the first kind of Bessel 
functions and the gamma function in series of the generalized and 
simple Laguerre polynomials. To sum up, in this paper, the series 
expansions in terms of the generalized Laguerre polynomials have 
been achieved by following various approaches. For instance, re-
spectively the series expansion of the Legendre and the Hermite 
polynomials in terms of the generalized Laguerre Polynomials (46) 
and (50) are gained through the generating function approach. It 
should be noted that by a similar fashion of the derivations in Sec-
tions 4 and 5 we can gain the opposite results. That is one could 
obtain the series expansion of the generalized Laguerre polynomi-
als in series of the Hermite or Legendre polynomials respectively. 
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To achieve this goal we replace the expansion of 𝑥𝑛 in series of Her-
mite or Legendre polynomials in the generating function or (its 
equivalence) of generalized Laguerre polynomials and then doing 
similar lengthy operations as shown in Sections 4 and 5 respec-
tively. On the other hand, the series expansions of the first kind 
Bessel Functions (59) and (60) are gained by the generalized hy-
pergeometric function approach, whereas the Series expansions of 
gamma function (54), (55), and (56) are obtained directly by the 
usual way that is by calling the orthogonality and ortho-normality 
properties of the generalized and simple Laguerre polynomials 
(35). One could claim that by expanding some functions in terms of 
the generalized Laguerre polynomials, one could treat the former 
as a special case of the latter polynomials. As future work, a series 
expansion in terms of the generalized Laguerre polynomials can be 
obtained to other well-known classical polynomials, such as Che-
bychev, Jacobi, Gegenbauer polynomials, etc. In turn, the series ex-
pansion in series of the generalized Laguerre polynomials should 
bring a variety of applications for such polynomials in mathemat-
ics, physics, and engineering. 
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