
Libyan Journal of Science & Technology 13:1 (2021) 4856

The totally volume local discontinuous Galerkin method for viscous Burgers’ equations.1

Elhadi I. Elhadia, Mouad A. Fakroonb,*, Abdelhadi A. Buzghaibab

a Department of Mechanical Engineering, Faculty of Engineering, University of Benghazi, Benghazi, Libya

b Department of Aeronautical Engineering, Faculty of Aeronautical Sciences, University of Bright Star, Berega, Libya

Highlights

 The present method has a better agreement with the analytical solution in comparison with the other existing numerical
solutions.

 The proposed scheme treats effectively with strong discontinuities without producing nonphysical oscillations.
 Errors are decreasing as the number of elements is increased.

A R T I C L E I N F O A B S T R A C T

Article history:

Received 09 November 2020
Revised 10 June 2021
Accepted 13 June 2021

In this paper, the totally volume local discontinuous Galerkin TV-LDG method is proposed to
solve the viscous Burgers’ equations with appropriate initial and boundary conditions. Time
derivative is discretized by the third-order strong stability preserving Runge Kutta explicit
SSP-RK (3, 3) method. Space derivatives discretization is performed by the totally volume local
discontinuous Galerkin method. Finally, the validity of proposed scheme is demonstrated by
numerical experiments and shows that the present scheme offers better accuracy in compari-
son with other existing numerical methods. Keywords:

Burgers’ equation; Totally volume local dis-
continuous Galerkin method; strong stability
preserving Runge Kutta explicit method.

*Address of correspondence:

E-mail address: fakroonmuaz@gmail.com
M. A. Fakroon

1. Introduction

Problems of practical interest in which convection and
diffusion play an important role arise in applications as diverse as
weather-forecasting, problems of environmental pollution,
oceanography, gas dynamics, aeroacoustics, oil recovery
simulation, modeling of shallow water, transport of contaminant in
fluids, semiconductor device simulation, among many others
which could be described by partial differential equations. one of
the well-known partial differential equations employing to govern
convection-diffusion processes are viscous Burgers’ equations.
This is why devising robust, accurate, and efficient methods for
numerically solving these partial differential equations is of
considerable importance and, as expected, has attracted the
interest of many researchers.

Viscous Burgers’ equation is a non-linear conservation
equation. The numerical solution of the Navier–Stokes equations is
a challenging problem for computational fluid dynamics that
requires careful mathematical and numerical formulation. As a
simplified model of the Navier-Stokes equations, the viscous
Burgers’ equation represents many of the properties of Navier-
Stokes equations, such as non-linear convection and viscous
diffusion, leading to shock wave formation and boundary layers.
Viscous Burgers’ equation is used in computational fluid dynamics
as a simplified model for turbulence, boundary layer behavior,
shock wave formation, and mass transport.

Consider two-dimensional viscous Burgers’ equations:

1 2021 University of Benghazi. All rights reserved.1ISSN: Online 2663-1407, Print 2663-1393; National Library of Libya, Legal number:
390/2018

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝛼 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) (1)

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝛼 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) (2)

on the domain interval 𝛺 = {(𝑥, 𝑦)|𝑎 ≤ (𝑥, 𝑦) ≥ 𝑏}, 𝑡 > 0.

where 𝑢(𝑥, 𝑦, 𝑡)and 𝑣(𝑥, 𝑦, 𝑡) are transported variables and 𝛼 is
the diffusion coefficient.

The Burgers’ equation was first introduced by Bateman (1915).
It was later referred to as the Burgers’ equation after Burger
(1948) introduced this equation as a mathematical model for fluid
flow. Various powerful mathematical methods such as Cole-Hopf
transformation (Taku, 2009), the-function method (Soliman,
2006), variational iteration method (Abdou and Soliman, 2005),
and other methods have been used to solve one-dimensional vis-
cous Burgers’ equation analytically. Solving the two dimensional
viscous Burgers’ equations numerically is a natural first step to-
wards developing methods for the computation of complex flows.
Many researchers have developed various numerical schemes for
solving the Burgers’ equations to validate their algorithm. These
numerical methods include implicit methods (Bahadir, 1999), the
boundary element method (Bahadir, 2005). In addition, a fully fi-
nite-difference scheme has been introduced by Bahadir (2003) to
obtain the numerical solution of (2D) viscous Burgers’ equations.
Mittal and Jiwari (2009) applied a differential quadrature method
to solve the two dimensional viscous Burgers’ equations. The Local

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

49

discontinuous Galerkin LDG method has been introduced (Cock-
burn and Shu, 1998) to deal with nonlinear convection-diffusion
equation containing viscous terms.

In this work, we illustrate the essential ideas of the LDG method
and how we can transform high order partial differential equations
into a system of first-order partial differential equations by intro-
ducing a new auxiliary variable q to approximate the derivative of
the solution V.

The main objective of this study is to develop the LDG by using
the divergence theorem to unify the integrals of the governing
equation (boundary integral and volume integral). The unified in-
tegrals and the local solvability of all the auxiliary variables are
why the present method is called the totally volume integral local
discontinues Galerkin TV-LDG method. Since the first-order system
of equations will discretize by using the TV-LDG space discretiza-
tion method. Then the obtained system of ordinary differential
equations will be integrated in time by using the strong stability
preserving Runge-Kutta SSP-RK third-order time discretization
method (Shu and Osher, 1988).

2. The TV-LDG Method

Consider the two-dimensional time-dependent linear convec-
tion-diffusion equation:

𝜕𝑉

𝜕𝑡
+

𝜕𝑓(𝑉)

𝜕𝑥
+

𝜕𝑓(𝑉)

𝜕𝑦
= 𝛼 [

𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2] (3)

where 𝑓(𝑉) =
𝑉2

2
 is the convection flux of the vector V of the sca-

lar components 𝑢 and 𝑣.

By introducing a new auxiliary variable 𝑞 = 𝛼(𝛻. 𝑉) we can rewrite
Eq. (3) as a system of first-order equations:

𝜕𝑉

𝜕𝑡
+ 𝛻. 𝑓(𝑉) − 𝛻. 𝑞 = 0 (4)

𝑞 − 𝛼(𝛻. 𝑉) = 0 (5)

assuming we are solving these systems of Eq. (4) and Eq. (5) on in-
terval 𝛺 ∈ [𝑎, 𝑏]. We divide the domain [𝑎, 𝑏] into equally space 𝑁
elements.

First of all, the whole domain 𝛺 is divided into small computa-
tional cells 𝛺 = ⋃ 𝛺𝑗

𝑁
𝑗=1 , where 𝛺𝑗 is the subdomain called cell or

element, the length of the cell for the one-dimensional domain is
ℎ = ∆𝑥 = [𝑥𝑗+1

2
 − 𝑥𝑗−1

2
], in case of two dimensional the mesh size,

is ℎ = ∆𝑥 = ∆𝑦, then spatial discretization of the first-order system
is performed by TV-LDG method, the weak forms of the system of
Eq. (3) and Eq. (4) are obtained by the scalar multiplication of the
partial differential equations with test functions 𝑤 and 𝑝 then the
integration by parts is applied over the subdomain 𝛺𝑗 .

Discrete analogues of Eq. (3) and Eq. (4) are obtained by con-
sidering 𝑉ℎ, 𝑞ℎ, 𝑤 and 𝑝 within each element defined as:

𝑉(𝑥, 𝑦, 𝑡)ℎ = ∑ 𝑉𝑖(𝑡)𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

,

𝑞(𝑥, 𝑦)ℎ = ∑ 𝑞𝑖 𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

,

𝑤(𝑥, 𝑦)ℎ = ∑ 𝑤𝑖 𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

,

𝑝(𝑥, 𝑦)ℎ = ∑ 𝑝𝑖 𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

,

where the expansion coefficients 𝑉𝑖(𝑡), 𝑞𝑖 , 𝑤𝑖 and 𝑝𝑖 denote the de-
grees of freedom of the numerical solution and of the test function

in element 𝛺𝑗 , and the 𝑁𝑗 (shape) functions 𝜙𝑖
𝑘 are the basis of the

Lagrange polynomials Pk .

∫ 𝑤
𝜕𝑉ℎ

𝜕𝑡
𝑑𝛺𝑗

𝛺𝑗

− ∫ 𝛻𝑤(𝑓(𝑉ℎ) − 𝑞ℎ)𝑑𝛺𝑗

𝛺𝑗

+ ∮ 𝑤(𝑓 − �̂�

𝜕𝛺𝑗

) ⋅ 𝑛 𝑑𝜕𝛺𝑗

= 0 (5)

∫ 𝑝𝑞ℎ

𝛺𝑗

𝑑𝛺𝑗 + 𝛼 ∫ 𝛻𝑝 𝑉ℎ𝑑𝛺𝑗

𝛺𝑗

− 𝛼 ∮(𝑝�̂�

𝜕𝛺𝑗

) ⋅ 𝑛 𝑑𝜕𝛺𝑗 = 0 (6)

where 𝜕𝛺𝑗 the boundary of the element and 𝑛 is the unit outward

normal vector to the boundary and, all the “hat” terms 𝑓, �̂� and
�̂� are the numerical fluxes that designed to approximate the con-
vective and diffusion fluxes at the boundaries of the element 𝜕𝛺𝑗 .

The total volume integral of the numerical fluxes (Elhadi et al.,
2020) is used to unify the integrals (boundary integral and volume
integral) in Eq. (5) and Eq. (6). Hence the obtained equations can
be written as:

∫[𝑤
𝜕𝑉ℎ

𝜕𝑡
+ 𝛻 𝑤 (𝑓(𝑉ℎ) − 𝑞ℎ)

𝛺𝑗

+ 𝛻(𝑤 (𝑓 − �̂�))]𝑑𝛺𝑗 = 0 (7)

∫[𝑝 𝑞ℎ + (𝛻 𝑝) 𝑉ℎ − 𝛻(𝑝 �̂�)] 𝑑𝛺𝑗

𝛺𝑗

= 0 (8)

Now the numerical flux �̂� is the approximation of 𝑉ℎ on the
element boundaries and depend on the solution of both sides of the

element interface �̂� (𝑉𝑗+1
2

+ , 𝑉𝑗+1
2

−), where the 𝑉𝑗+1
2

+ and 𝑉𝑗+1
2

− are the

values of 𝑉ℎ at 𝑥𝑗+1
2
 from the right element 𝛺𝑗+1, and the left ele-

ment 𝛺𝑗 , respectively.

In this research work, there are two types of numerical fluxes
to be defined. Firstly, the diffusion numerical fluxes �̂� and �̂�, sec-

ondly the convection numerical flux 𝑓. Lax-Friederichs fluxes
(Toro, 1999) is used for the convection numerical flux:

𝑓 =
1

2
(𝑓(𝑉−) + 𝑓(𝑉+) − 𝛿(𝑉+ − 𝑉−))

where 𝛿 is the maximum absolute value of the eigenvalues of the
Jacobian matrix. The diffusion numerical fluxes �̂� and �̂� can be cho-
sen as central fluxes (Bassi and Rebay, 1997):

�̂�𝑗+1
2

=
1

2
(𝑉ℎ

+ + 𝑉ℎ
−)𝑗+1

2
 (9)

�̂�𝑗+1
2

=
1

2
(𝑞ℎ

+ + 𝑞ℎ
−)𝑗+1

2
 (10)

by applying the numerical integration and assembling all the ele-
mental contributions, the system of ordinary differential equations
that govern the evolution in time of the discrete solution can be
written as:

𝑀
𝑑𝑢ℎ

𝑑𝑡
= 𝑅(𝑢ℎ) (11)

where M is the mass matrix obtained after applying the numerical
integration over the cell and 𝑢ℎ is the global vector of the degrees
of freedom 𝑅(𝑢ℎ) is the residual of the process resulting from Eq.
(7) and Eq. (8).

1- 3. Time Integration

The main idea of the totally volume Integral local discontinuous
Galerkin TV-LDG method is that the auxiliary variable 𝑞 can be
solved explicitly and locally (in element 𝛺𝑗) in terms of 𝑢ℎ by in-

verting the element mass matrix inside the cell 𝛺𝑗 . Thus, the elimi-

nation of the auxiliary variable 𝑞 has been done in the Eq. (8), then
obtain the combined ordinary differential equation system for free-
doms 𝑈ℎ as follows:

𝑑

𝑑𝑡
𝑈ℎ = 𝑀−1𝑅(𝑢ℎ) = 𝐿(𝑈ℎ, 𝑡) (12)

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

50

where this ordinary differential equation appears from the dis-
cretization of the spatial derivative in the partial differential equa-
tion. This semi-discretize scheme is discretized in time by using the
third order strong stability preserving Runge-Kutta SSP-RK
method (Shu and Osher, 1988), where 𝑈𝑛 is the solution at the time
𝑡𝑛 and the solution at the next time step is 𝑈𝑛+1 which is obtained
after the 𝑠 stages, where the time marching algorithm performs by
using the three-stage third-order Runge–Kutta method as follows:

𝑈(1) = 𝑈𝑛 + 𝛥𝑡 ⋅ 𝐿(𝑈𝑛 , 𝑡𝑛) (13)

𝑈(2) =
3

4
𝑈𝑛 +

1

4
𝑈(1) +

1

4
𝛥𝑡 ⋅ 𝐿(𝑈(1), 𝑡𝑛 + 𝛥𝑡) (14)

𝑈(3) =
1

3
𝑈𝑛 +

2

3
𝑈(2) +

2

3
𝛥𝑡 ⋅ 𝐿 (𝑈(2), 𝑡𝑛 +

1

2
𝛥𝑡) (15)

4. Numerical Results

In order to illustrate the performance of the proposed scheme
for solving the viscous Burgers’ equations and justifying the accu-
racy and efficiency of the TV-LDG method, we considered two test
examples. To show the efficiency of the present method for our
problem as compared with the exact solution, we report a maxi-
mum error, which is defined as:

𝐿∞ = max‖𝑉𝑖,ℎ − 𝑉𝑖,𝑒𝑥𝑎𝑐𝑡‖

where 𝑉𝑖,𝑒𝑥𝑎𝑐𝑡 is the exact solution and 𝑉𝑖,ℎ is the numerical solution

obtained by the present method at every node in the domain.

4.1. Test Example 1

The first problem is the one dimensional viscous Burgers’ equa-
tion to test the present scheme when it deals with nonlinear time-
dependent convection-diffusion problems:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝛼

𝜕2𝑢

𝜕𝑥2 (16)

with an initial condition as:

𝑢(𝑥, 0) = 𝑢0(𝑥) = 𝑠𝑖𝑛(𝜋𝑥)

the boundary conditions:

𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0, 𝑡 > 0.

the exact solution of this problem is:

𝑢(𝑥, 𝑡) =
2𝜋𝛼 ∑ 𝑎𝑛

∞
𝑛=1 𝑒𝑥𝑝{−𝑛2𝜋2𝛼𝑡}𝑛𝑠𝑖𝑛(𝑛𝜋𝑥)

𝑎0 + ∑ 𝑎𝑛
∞
𝑛=1 𝑒𝑥𝑝{−𝑛2𝜋2𝛼𝑡}𝑐𝑜𝑠(𝑛𝜋𝑥)

where the Fourier coefficient are

𝑎0 = ∫ 𝑒𝑥𝑝{−(2𝜋𝛼)−1[1 − cos (𝜋𝑥)]}𝑑𝑥

2

0

𝑎𝑛 = 2 ∫ 𝑒𝑥𝑝{−(2𝜋𝛼)−1[1 − cos (𝑛𝜋𝑥)]}cos (𝑛𝜋𝑥)𝑑𝑥

2

0

The problem domain [0, 2] is divided into 40 equally spaced, in
the following calculation the diffusion coefficient 𝛼 is taken as (1,
0.1 and 0.01) for the linear element 𝑘 = 1 and the quadratic ele-
ment 𝑘 = 2, respectively. Comparisons are made with the exact so-
lution and numerical solutions of several existing numerical
schemes, which are fully implicit finite difference method IFDM
(Bahadir, 1999), boundary element method BEM (Bahadir, 2005),
and the numerical results, are presented in Table 1 to Table 3 for
various time levels and different diffusion coefficient 𝛼.

Table 1

Comparison of the numerical solution of u for 1D viscous Burgers equation at
different times with α= 1

Method time x=0.1 x=0.3 x=0.5 x=0.7 x=0.9

IFDM

0.05

0.17832 0.47658 0.60984 0.51165 0.20006

BEM 0.17759 0.47531 0.60851 0.51050 0.19933

TV-LDG (k = 1) 0.17807 0.47590 0.60905 0.51108 0.19982

TV-LDG (k = 2) 0.17803 0.47586 0.60907 0.51112 0.19988

Exact 0.17803 0.47586 0.60907 0.51113 0.19989

IFDM

0.1

0.11009 0.29335 0.37342 0.31144 0.12128

BEM 0.10931 0.29124 0.37070 0.30911 0.12031

TV-LDG (k = 1) 0.10956 0.29192 0.37162 0.31014 0.12068

TV-LDG (k = 2) 0.10954 0.29189 0.37158 0.30990 0.12068

Exact 0.10954 0.29190 0.37158 0.30991 0.12069

IFDM

0.2

0.04273 0.11276 0.14120 0.11574 0.04457

BEM 0.04220 0.11044 0.13809 0.11322 0.04391

TV-LDG (k = 1) 0.04215 0.11121 0.13906 0.11381 0.04380

TV-LDG (k = 2) 0.04192 0.11062 0.13847 0.11348 0.04368

Exact 0.04193 0.11062 0.13847 0.11347 0.04369

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

51

Table 2

Comparison of the numerical solution of u for 1D viscous Burgers equation at
different times with α= 0.1

Method Time x=0.1 x=0.3 x=0.5 x=0.7 x=0.9

IFDM

0.5

0.11048 0.32367 0.50447 0.57664 0.30912

BEM 0.10986 0.32191 0.50240 0.57514 0.30779

TV-LDG (k = 1) 0.10981 0.32213 0.50277 0.57578 0.30915

TV-LDG (k = 2) 0.10991 0.32219 0.50279 0.57586 0.30932

Exact 0.10992 0.32219 0.50279 0.57585 0.30935

IFDM

1

0.06689 0.19445 0.29448 0.31107 0.14769

BEM 0.06644 0.19263 0.29139 0.30711 0.14507

TV-LDG (k = 1) 0.06629 0.19275 0.29187 0.30799 0.14597

TV-LDG (k = 2) 0.06631 0.19278 0.29192 0.30810 0.14613

Exact 0.06632 0.19279 0.29192 0.30809 0.14607

IFDM

2

0.02909 0.08044 0.10939 0.09838 0.04037

BEM 0.02913 0.07951 0.10770 0.09663 0.03976

TV-LDG (k = 1) 0.02887 0.07973 0.10787 0.09681 0.03966

TV-LDG (k = 2) 0.02876 0.07946 0.10790 0.09688 0.03967

Exact 0.02876 0.07946 0.10789 0.09685 0.03969

Table 3

Comparison of the numerical solution of u for 1D viscous Burgers equa-
tion at different times with α= 0.01

Method Time x=0.1 x=0.3 x=0.5 x=0.7 x=0.9

IFDM

0.5

0.12182 0.36206 0.59079 0.79416 0.93322

BEM 0.12079 0.36113 0.59559 0.81257 0.97184

TV-LDG (k = 1) 0.12084 0.36025 0.58869 0.79350 0.93867

TV-LDG (k = 2) 0.12114 0.36027 0.58870 0.79349 0.93809

Exact 0.12114 0.36027 0.58870 0.79349 0.93811

IFDM

2

0.04367 0.13095 0.21800 0.30466 0.38024

BEM 0.043 0.12877 0.21468 0.30075 0.37452

TV-LDG (k = 1) 0.04282 0.12873 0.21450 0.29996 0.37372

TV-LDG (k = 2) 0.04296 0.12884 0.21455 0.29999 0.37325

Exact 0.04296 0.12884 0.21456 0.30000 0.37328

IFDM

4

0.02364 0.07092 0.11817 0.16499 0.17226

BEM 0.02324 0.06935 0.11550 0.16125 0.16515

TV-LDG (k = 1) 0.02310 0.06930 0.11549 0.16122 0.16674

TV-LDG (k = 2) 0.02310 0.06931 0.11549 0.16121 0.16606

Exact 0.02310 0.06931 0.11549 0.16121 0.16606

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

52

Fig. 1 to Fig. 4 show the diversities of the numerical solutions
with non-identical diffusion coefficients 𝛼 = 1, 0.1, 0.01 𝑎𝑛𝑑 0.005
at different time levels, the main observations that could be noted
are that the intensity and the speed of the wave damping are
strongly proportional to the value of the diffusion coefficient, in
contrast, the shock wave formation is rapidly generated with low
values of diffusion coefficient.

From Fig. 3 and Fig. 4 it can be clearly seen that the scheme
treats effectively with strong discontinuities without producing
nonphysical oscillations, from these features it can be inferred that
the TV-LDG method is one of the most efficient methods for solving
nonlinear partial differential equations.

Fig. 1. Numerical solution of at different times for k=2, diffusion coeffi-
cient α=1

Fig. 2. Numerical solution of at different times for k=2, diffusion coeffi-
cient α=0.1

Fig. 3. Numerical solution of at different times for k=2, diffusion co-
efficient α=0.01

Fig. 4. Numerical solution of at different times for k=2, diffusion coeffi-
cient α=0.005

The numerical simulation at fixed time 𝑡 = 0.1 and different 𝛼
in Fig. 5 and Fig. 6 are drawn. The tendency of the numerical solu-
tions toward equilibrium and uniformity with the increasing of
diffusion coefficient 𝛼 is shown in Fig. 5 and Fig. 6.

Fig. 5. Numerical solution of at time t=0.1 for k=2, and diffusion coef-
ficients (α=0.1 to 1)

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

53

Fig. 6. Numerical solution of at time t=0.1 for k=2, and diffusion co-
efficients (α=1 to 3)

4.2. Test example 2

In this numerical experiment, the system of two-dimensional
Burgers’ is considered, and the equations given in Eq. (17) and Eq.
(18) over a square domain 𝛺 = {(𝑥, 𝑦)|0 ≤ (𝑥, 𝑦) ≥ 1}

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝛼 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) (17)

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝛼 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) (18)

with the exact solution

𝑢(𝑥, 𝑦, 𝑡) = 0.75 −
0.25

[1 + 𝑒𝑥𝑝 {
4𝑦 − 4𝑥 − 𝑡

32𝛼
}]

𝑣(𝑥, 𝑦, 𝑡) = 0.75 +
0.25

[1 + 𝑒𝑥𝑝 {
4𝑦 − 4𝑥 − 𝑡

32𝛼
}]

The initial and boundary conditions are taken from the exact
solutions. The numerical results are computed by using quadratic
element k = 2 and time step length ∆t = 10−3.The numerical and
exact values of u and v at some mesh point for α = 0.01 at time lev-
els t = 0.01, 0.5, and 2.0 are reported in Tables 4-6. The tables
show that the present method gives much better results in compar-
ison to methods suggested by Bahadir (2003) and Mittal and Jiwari
(2009). To see if the numerical solutions were converging to the
exact solution the maximum error L∞ was computed. For a suffi-
ciently small mesh size h = ∆x = ∆y, a plot of log(error) versus
log(h) will produce a line, the slope of this line is the rate of conver-
gence, which means that the reduction of the error is proportional
to the refinement of the mesh size. This is generally referred to as
the rate of convergence or order of convergence. The log(L∞) error
versus log(h) is depicted in Fig. 7 using the quadratic element k =
2. Two main points should be taken away from Fig. 7. First, it can
be observed that the error is decreasing as the mesh spacing is de-
creased. Second, the approximate solution is in fact converging to
the exact solution with a proper rate. Fig. 8 reveals the evolution of
the computed solution u over the time 𝑡 = 0, 1, and 3 using linear
element k=1 and mesh size ∆𝑥 = ∆𝑦 = 0.1 .

Table 4

Comparison between the exact and the numerical solutions of Example 2, α=0.01 at t = 0.01 with mesh size h=0.05

Mesh point (x,y)

u

v

Bahadir

(2003)

Mittal

 and

 Jiwari

(2009)

Present method Exact solution Bahadir (2003)

Mittal

 and

 Jiwari

(2009)

Present method Exact solution

(0.1,0.1) 0.62310 0.62305 0.623041 0.623047

0.87688 0.87695 0.876956 0.876953

(0.5,0.1) 0.50161 0.50162 0.501622 0.501622 0.99837 0.99838 0.998378 0.998378

(0.9,0.1) 0.50000 0.50001 0.500011 0.500011 0.99998 0.99999 0.999989 0.999989

(0.3,0.3) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953

(0.7,0.3) 0.50162 0.50162 0.501622 0.501622 0.99838 0.99838 0.998378 0.998378

(0.1,0.5) 0.74827 0.74827 0.748275 0.748274 0.75172 0.75172 0.751725 0.751726

(0.5,0.5) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953

(0.9,0.5) 0.50162 0.50162 0.501622 0.501622 0.99838 0.99838 0.998378 0.998378

(0.3,0.7) 0.74827 0.74827 0.748275 0.748274 0.75173 0.75173 0.751725 0.751726

(0.7,0.7) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953

(0.1,0.9) 0.74998 0.74999 0.749988 0.749988 0.75001 0.75001 0.750012 0.750022

(0.5,0.9) 0.74827 0.74827 0.748275 0.748274 0.75173 0.75172 0.751725 0.751726

(0.9,0.9) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

54

Table 5

Comparison between the exact and the numerical solutions of Example 2, α=0.01 at t = 0.5 with mesh size h=0.05

Mesh point
(x,y)

u

v

Bahadir

(2003)

Mittal

 and

 Jiwari

(2009)

Present

method

Exact

solution

Bahadir

(2003)

Mittal

 and

 Jiwari

(2009)

Present

method

Exact

Solution

(0.1,0.1) 0.54235 0.54322 0.543323 0.543322

0.95577 0.95678 0.956679 0.956678

(0.5,0.1) 0.49964 0.50035 0.500351 0.500353 0.99827 0.99965 0.999648 0.999647

(0.9,0.1) 0.49931 0.50000 0.500003 0.500002 0.99861 1.00000 0.999998 0.999998

(0.3,0.3) 0.54207 0.54321 0.543327 0.543322 0.95596 0.95679 0.956677 0.956678

(0.7,0.3) 0.49961 0.50035 0.500352 0.500353 0.99827 0.99964 0.999647 0.999647

(0.1,0.5) 0.74130 0.74219 0.742215 0.742214 0.75699 0.75780 0.757786 0.757786

(0.5,0.5) 0.54222 0.54329 0.543322 0.543322 0.95685 0.95671 0.956679 0.956678

(0.9,0.5) 0.49997 0.50035 0.500353 0.500353 0.99903 0.99965 0.999647 0.999647

(0.3,0.7) 0.74146 0.74221 0.742216 0.742214 0.75723 0.75779 0.757784 0.757786

(0.7,0.7) 0.54243 0.54332 0.543321 0.543322 0.95746 0.95668 0.956680 0.956678

(0.1,0.9) 0.74913 0.74995 0.749946 0.749946 0.74924 0.75005 0.750054 0.750054

(0.5,0.9) 0.74201 0.74221 0.742216 0.742214 0.75781 0.75779 0.757785 0.757786

(0.9,0.9) 0.54232 0.54332 0.543325 0.543322 0.95777 0.95667 0.956678 0.956678

Table 6

Comparison between the exact and the numerical solutions of Example 2, α=0.01 at t = 2 with mesh size h=0.05

Mesh point
(x,y)

u

v

Bahadir

(2003)

Mittal

 and

 Jiwari

(2009)

Present

method

Exact

solution

Bahadir

(2003)

Mittal

 and

 Jiwari

(2009)

Present

method

Exact

solution

(0.1,0.1) 0.49983 0.50048 0.500487 0.500482

0.99826 0.99952 0.999516 0.999518

(0.5,0.1) 0.49930 0.50000 0.500002 0.500003 0.99860 1.00000 0.999997 0.999997

(0.9,0.1) 0.49930 0.50000 0.500002 0.500000 0.99861 1.00000 0.999999 0.999999

(0.3,0.3) 0.49977 0.50048 0.500490 0.500482 0.99820 0.99952 0.999514 0.999518

(0.7,0.3) 0.49930 0.50000 0.500002 0.500003 0.99860 1.00000 0.999997 0.999997

(0.1,0.5) 0.55461 0.55540 0.555647 0.555675 0.94393 0.94460 0.944349 0.944325

(0.5,0.5) 0.49973 0.50048 0.500484 0.500482 0.99821 0.99952 0.999517 0.999518

(0.9,0.5) 0.49931 0.50000 0.500003 0.500003 0.99862 1.00000 0.999997 0.999997

(0.3,0.7) 0.55429 0.55540 0.555675 0.555675 0.94409 0.94460 0.944331 0.944325

(0.7,0.7) 0.49970 0.50048 0.500480 0.500482 0.99823 0.99952 0.999519 0.999518

(0.1,0.9) 0.74340 0.74422 0.744256 0.744256 0.75500 0.75578 0.755744 0.755744

(0.5,0.9) 0.55413 0.55541 0.555671 0.555675 0.94441 0.94459 0.944332 0.944325

(0.9,0.9) 0.50001 0.50048 0.500475 0.500482 0.99846 0.99952 0.999522 0.999518

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

55

Fig. 7. The rate of convergence by using quadratic element, with different mesh size (∆𝒙 = ∆𝒚 =
𝟏

𝟏𝟎
,

𝟏

𝟐𝟎
,

𝟏

𝟒𝟎
,

𝟏

𝟖𝟎
 𝐚𝐧𝐝

𝟏

𝟏𝟔𝟎
)

(a)

b

(b)

(c)

Fig. 8. The evolution of the numerical solution for u over time. (a) at t=0; (b) at t=1 and (c) at t=3. with mesh size ∆𝑥 = ∆𝑦 =
1

10

5. Conclusions

Constructing high-order accurate totally, volume local discon-
tinuous Galerkin finite element method for the numerical solution
of the viscous Burgers’ equations on Cartesian meshes has been
made successfully. Based on the results of the present method, the
following observations and inferences can be drawn:

 The present method reveals a good capturing of disconti-
nuity when it deals with the shocking flow, which makes
the TV-LDG as a reliable method for solving more general
problems in fluid dynamics with a low diffusion coeffi-
cient.

 The proposed scheme has a unique agreement with the
analytical solution and gives lower error in comparison
with the other existing numerical solutions, in the future,

the main target is that extend this study by applying the

scheme on more complex partial differential equations.

References

Abdou, M. Soliman, A. (2005) ‘Variational iteration method for solv-
ing Burger's and coupled Burger's equations’, Journal of Com-
putational and Applied, 181, pp. 245-251.

Bateman, H. (1915) ‘Some recent researches on the motion of flu-
ids’. Monthly Weather Review, 43, pp. 163–170.

Bahadir, A. (1999) ‘Numerical solution for one-dimensional Burg-
ers’ equation using a fully implicit finite-difference method’, In-
ternational Journal of Applied Mathematics, 8, pp. 897–909.

Bahadir, A. and Mustafa, S. (2005) ‘Mixed finite difference and
boundary element approach to one-dimensional Burgers’ equa-
tion’, Applied Mathematics and Computation, 160, pp. 663–673.

Bahadir, A. (2003) ‘Fully implicit finite-difference scheme for two-
dimensional Burgers equations’, Applied Mathematics Compu-
tation, 137, pp. 131–137.

https://scholar.google.com.ly/citations?user=khqtmvUAAAAJ&hl=en&oi=sra
https://scholar.google.com.ly/citations?user=ClDPjwwAAAAJ&hl=en&oi=sra
https://www.sciencedirect.com/science/article/pii/S0377042704005825
https://www.sciencedirect.com/science/article/pii/S0377042704005825

Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856

56

Bassi, F. and Rebay, S. (1997) ‘A high-order accurate discontinuous
finite element method for the numerical solution of the com-
pressible Navier-Stokes equations’, Journal of Computational
Physics, 131, pp. 267-279.

Burgers, J.M. (1948) ‘A mathematical model illustrating the theory
of turbulence’, Advances in Applied Mechanics, 1, pp. 171-199.

Cockburn, B. and Shu, C. (1998) ‘The local discontinuous Galerkin
method for time-dependent convection-diffusion systems,
SIAM Journal on Numerical Analysis, 35, pp. 2440–2463.

Elhadi, E., Fakroon, M. and Abdelhadi, A. (2020) ‘Solving the un-
steady linear advection-diffusion equations by using the totally
volume integral of the local discontinuous Galerkin method’,
Libyan Journal of Science and Technology, 11, pp. 53-60

Mittal, R. and Jiwari, R. (2009)'Differential quadrature method for
two-dimensional Burgers'equations', International Journal for

Computational Methods in Engineering Science and Mechanics,
10, pp. 450-459.

Shu, C. and Osher, S. (1988) ‘Efficient implementation of essentially
nonoscillatory shock-capturing schemes’. Journal of Computa-
tional Physics, 77, pp. 439–471.

Soliman, A. (2006) ‘The modified extended tanh-function method
for solving Burgers-type equations’, Physica A: Statistical Me-
chanics and its Applications, 361, pp. 394-404.

Taku, O. (2009) ‘Cole–Hope transformation as a numerical tool for
the Burgers equation’, Applied Mathematics and Computation,
8, pp 107–113.

Toro, E. F. (1999) Riemann solvers and numerical methods for fluid
dynamics. 2nd edn. Springer.

https://econpapers.repec.org/article/eeephsmap/
https://econpapers.repec.org/article/eeephsmap/

