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1. Introduction 

Problems of practical interest in which convection and 
diffusion play an important role arise in applications as diverse as 
weather-forecasting, problems of environmental pollution, 
oceanography, gas dynamics, aeroacoustics, oil recovery 
simulation, modeling of shallow water, transport of contaminant in 
fluids, semiconductor device simulation, among many others 
which could be described by partial differential equations. one of 
the well-known partial differential equations employing to govern 
convection-diffusion processes are viscous Burgers’ equations. 
This is why devising robust, accurate, and efficient methods for 
numerically solving these partial differential equations is of 
considerable importance and, as expected, has attracted the 
interest of many researchers. 

Viscous Burgers’ equation is a non-linear conservation 
equation. The numerical solution of the Navier–Stokes equations is 
a challenging problem for computational fluid dynamics that 
requires careful mathematical and numerical formulation. As a 
simplified model of the Navier-Stokes equations, the viscous 
Burgers’ equation represents many of the properties of Navier-
Stokes equations, such as non-linear convection and viscous 
diffusion, leading to shock wave formation and boundary layers. 
Viscous Burgers’ equation is used in computational fluid dynamics 
as a simplified model for turbulence, boundary layer behavior, 
shock wave formation, and mass transport. 

Consider two-dimensional viscous Burgers’ equations: 
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390/2018 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝛼 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)                                                    (1) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝛼 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)                                                            (2) 

on the domain interval    𝛺 = {(𝑥, 𝑦)|𝑎 ≤ (𝑥, 𝑦) ≥ 𝑏}, 𝑡 > 0. 

where  𝑢(𝑥, 𝑦, 𝑡)and 𝑣(𝑥, 𝑦, 𝑡) are transported variables and 𝛼  is 
the diffusion coefficient. 

The Burgers’ equation was first introduced by Bateman (1915). 
It was later referred to as the Burgers’ equation after Burger 
(1948) introduced this equation as a mathematical model for fluid 
flow. Various powerful mathematical methods such as Cole-Hopf 
transformation (Taku, 2009), the-function method (Soliman, 
2006), variational iteration method (Abdou and Soliman, 2005), 
and other methods have been used to solve one-dimensional vis-
cous Burgers’ equation analytically. Solving the two dimensional 
viscous Burgers’ equations numerically is a natural first step to-
wards developing methods for the computation of complex flows. 
Many researchers have developed various numerical schemes for 
solving the Burgers’ equations to validate their algorithm. These 
numerical methods include implicit methods (Bahadir, 1999), the 
boundary element method (Bahadir, 2005). In addition, a fully fi-
nite-difference scheme has been introduced by Bahadir (2003) to 
obtain the numerical solution of (2D) viscous Burgers’ equations. 
Mittal and Jiwari (2009) applied a differential quadrature method 
to solve the two dimensional viscous Burgers’ equations. The Local 
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discontinuous Galerkin LDG method has been introduced (Cock-
burn and Shu, 1998) to deal with nonlinear convection-diffusion 
equation containing viscous terms. 

In this work, we illustrate the essential ideas of the LDG method 
and how we can transform high order partial differential equations 
into a system of first-order partial differential equations by intro-
ducing a new auxiliary variable q to approximate the derivative of 
the solution V.  

The main objective of this study is to develop the LDG by using 
the divergence theorem to unify the integrals of the governing 
equation (boundary integral and volume integral). The unified in-
tegrals and the local solvability of all the auxiliary variables are 
why the present method is called the totally volume integral local 
discontinues Galerkin TV-LDG method. Since the first-order system 
of equations will discretize by using the TV-LDG space discretiza-
tion method. Then the obtained system of ordinary differential 
equations will be integrated in time by using the strong stability 
preserving Runge-Kutta SSP-RK third-order time discretization 
method (Shu and Osher, 1988).  

2. The TV-LDG Method 

Consider the two-dimensional time-dependent linear convec-
tion-diffusion equation: 

𝜕𝑉

𝜕𝑡
+

𝜕𝑓(𝑉)

𝜕𝑥
+

𝜕𝑓(𝑉)

𝜕𝑦
= 𝛼 [

𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2]                                               (3) 

where 𝑓(𝑉) =
𝑉2

2
 is the convection flux of the vector V  of the sca-

lar components 𝑢 and 𝑣. 

By introducing a new auxiliary variable 𝑞 = 𝛼(𝛻. 𝑉) we can rewrite 
Eq. (3) as a system of first-order equations: 

𝜕𝑉

𝜕𝑡
+ 𝛻. 𝑓(𝑉) − 𝛻. 𝑞 = 0                                                                            (4) 

𝑞 − 𝛼(𝛻. 𝑉) = 0                                                                                           (5) 

assuming we are solving these systems of Eq. (4) and Eq. (5) on in-
terval  𝛺 ∈ [𝑎, 𝑏]. We divide the domain [𝑎, 𝑏] into equally space 𝑁 
elements. 

First of all, the whole domain  𝛺  is divided into small computa-
tional cells   𝛺 = ⋃ 𝛺𝑗

𝑁
𝑗=1 , where 𝛺𝑗  is the subdomain called cell or 

element, the length of the cell for the one-dimensional domain is 
ℎ = ∆𝑥 = [𝑥𝑗+1

2
 − 𝑥𝑗−1

2
], in case of two dimensional the mesh size, 

is ℎ = ∆𝑥 = ∆𝑦, then spatial discretization of the first-order system 
is performed by TV-LDG method, the weak forms of the system of 
Eq. (3) and Eq. (4) are obtained by the scalar multiplication of the 
partial differential equations with test functions 𝑤 and 𝑝 then the 
integration by parts is applied over the subdomain 𝛺𝑗 .  

Discrete analogues of Eq. (3) and Eq. (4) are obtained by con-
sidering 𝑉ℎ, 𝑞ℎ, 𝑤 and 𝑝 within each element defined as: 

𝑉(𝑥, 𝑦, 𝑡)ℎ = ∑ 𝑉𝑖(𝑡)𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

, 

𝑞(𝑥, 𝑦)ℎ = ∑ 𝑞𝑖  𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

, 

𝑤(𝑥, 𝑦)ℎ = ∑ 𝑤𝑖 𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

, 

𝑝(𝑥, 𝑦)ℎ = ∑ 𝑝𝑖 𝜙𝑖
𝑘(𝑥, 𝑦)

𝑁𝑗

𝑖=1

, 

where the expansion coefficients 𝑉𝑖(𝑡), 𝑞𝑖 , 𝑤𝑖  and 𝑝𝑖   denote the de-
grees of freedom of the numerical solution and of the test function 

in element 𝛺𝑗 , and the 𝑁𝑗 (shape) functions 𝜙𝑖
𝑘  are the basis of the 

Lagrange polynomials Pk . 

∫ 𝑤
𝜕𝑉ℎ

𝜕𝑡
𝑑𝛺𝑗

𝛺𝑗

− ∫ 𝛻𝑤(𝑓(𝑉ℎ) − 𝑞ℎ)𝑑𝛺𝑗

𝛺𝑗

+ ∮ 𝑤(𝑓 − �̂�

𝜕𝛺𝑗

) ⋅ 𝑛 𝑑𝜕𝛺𝑗

= 0   (5) 

∫ 𝑝𝑞ℎ

𝛺𝑗

𝑑𝛺𝑗 + 𝛼 ∫ 𝛻𝑝 𝑉ℎ𝑑𝛺𝑗

𝛺𝑗

− 𝛼 ∮(𝑝�̂�

𝜕𝛺𝑗

) ⋅ 𝑛 𝑑𝜕𝛺𝑗 = 0                   (6) 

where 𝜕𝛺𝑗 the boundary of the element and 𝑛 is the unit outward 

normal vector to the boundary and, all the “hat” terms 𝑓, �̂� and 
�̂� are the numerical fluxes that designed to approximate the con-
vective and diffusion fluxes at the boundaries of the element 𝜕𝛺𝑗 . 

The total volume integral of the numerical fluxes (Elhadi et al., 
2020) is used to unify the integrals (boundary integral and volume 
integral) in Eq. (5) and Eq. (6). Hence the obtained equations can 
be written as: 

∫[𝑤 
𝜕𝑉ℎ

𝜕𝑡
+ 𝛻 𝑤 (𝑓(𝑉ℎ) − 𝑞ℎ)

𝛺𝑗

+ 𝛻(𝑤 (𝑓 − �̂�))]𝑑𝛺𝑗 = 0                (7) 

∫[𝑝 𝑞ℎ + (𝛻 𝑝) 𝑉ℎ − 𝛻(𝑝 �̂�)] 𝑑𝛺𝑗

𝛺𝑗

= 0                                                 (8) 

Now the numerical flux �̂�  is the approximation of  𝑉ℎ on the 
element boundaries and depend on the solution of both sides of the 

element interface �̂� (𝑉𝑗+1
2

+ , 𝑉𝑗+1
2

− ), where the 𝑉𝑗+1
2

+  and 𝑉𝑗+1
2

−   are the 

values of 𝑉ℎ  at 𝑥𝑗+1
2
 from the right element 𝛺𝑗+1, and the left ele-

ment 𝛺𝑗 , respectively. 

In this research work, there are two types of numerical fluxes 
to be defined. Firstly, the diffusion numerical fluxes  �̂� and �̂�, sec-

ondly the convection numerical flux 𝑓. Lax-Friederichs fluxes 
(Toro, 1999) is used for the convection numerical flux: 

𝑓 =
1

2
(𝑓(𝑉−) + 𝑓(𝑉+) − 𝛿(𝑉+ − 𝑉−)) 

where 𝛿 is the maximum absolute value of the eigenvalues of the 
Jacobian matrix. The diffusion numerical fluxes �̂� and �̂� can be cho-
sen as central fluxes (Bassi and Rebay, 1997): 

�̂�𝑗+1
2

=
1

2
(𝑉ℎ

+ + 𝑉ℎ
−)𝑗+1

2
                                                                               (9) 

�̂�𝑗+1
2

=
1

2
(𝑞ℎ

+ + 𝑞ℎ
−)𝑗+1

2
                                                                             (10) 

by applying the numerical integration and assembling all the ele-
mental contributions, the system of ordinary differential equations 
that govern the evolution in time of the discrete solution can be 
written as: 

𝑀
𝑑𝑢ℎ

𝑑𝑡
= 𝑅(𝑢ℎ)                                                                                         (11) 

where M is the mass matrix obtained after applying the numerical 
integration over the cell and 𝑢ℎ is the global vector of the degrees 
of freedom 𝑅(𝑢ℎ) is the residual of the process resulting from Eq. 
(7) and Eq. (8). 

1- 3. Time Integration 

The main idea of the totally volume Integral local discontinuous 
Galerkin TV-LDG method is that the auxiliary variable 𝑞 can be 
solved explicitly and locally (in element 𝛺𝑗) in terms of 𝑢ℎ by in-

verting the element mass matrix inside the cell 𝛺𝑗 . Thus, the elimi-

nation of the auxiliary variable 𝑞 has been done in the Eq. (8), then 
obtain the combined ordinary differential equation system for free-
doms 𝑈ℎ as follows: 

𝑑

𝑑𝑡
𝑈ℎ = 𝑀−1𝑅(𝑢ℎ) = 𝐿(𝑈ℎ, 𝑡)                                                               (12)  
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where this ordinary differential equation appears from the dis-
cretization of the spatial derivative in the partial differential equa-
tion. This semi-discretize scheme is discretized in time by using the 
third order strong stability preserving Runge-Kutta SSP-RK 
method (Shu and Osher, 1988), where 𝑈𝑛 is the solution at the time 
𝑡𝑛 and the solution at the next time step is 𝑈𝑛+1 which is obtained 
after the 𝑠 stages, where the time marching algorithm performs by 
using the three-stage third-order Runge–Kutta method as follows: 

𝑈(1) = 𝑈𝑛 + 𝛥𝑡 ⋅ 𝐿(𝑈𝑛 , 𝑡𝑛)                                                                    (13) 

𝑈(2) =
3

4
𝑈𝑛 +

1

4
𝑈(1) +

1

4
𝛥𝑡 ⋅ 𝐿(𝑈(1), 𝑡𝑛 + 𝛥𝑡)                                (14) 

𝑈(3) =
1

3
𝑈𝑛 +

2

3
𝑈(2) +

2

3
𝛥𝑡 ⋅ 𝐿 (𝑈(2), 𝑡𝑛 +

1

2
𝛥𝑡)                           (15) 

4. Numerical Results 

In order to illustrate the performance of the proposed scheme 
for solving the viscous Burgers’ equations and justifying the accu-
racy and efficiency of the TV-LDG method, we considered two test 
examples. To show the efficiency of the present method for our 
problem as compared with the exact solution, we report a maxi-
mum error, which is defined as: 

𝐿∞ = max‖𝑉𝑖,ℎ − 𝑉𝑖,𝑒𝑥𝑎𝑐𝑡‖ 

where 𝑉𝑖,𝑒𝑥𝑎𝑐𝑡  is the exact solution and 𝑉𝑖,ℎ is the numerical solution 

obtained by the present method at every node in the domain. 

4.1. Test Example 1 

The first problem is the one dimensional viscous Burgers’ equa-
tion to test the present scheme when it deals with nonlinear time-
dependent convection-diffusion problems: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝛼

𝜕2𝑢

𝜕𝑥2                                                                                   (16) 

with an initial condition as: 

𝑢(𝑥, 0 )  =  𝑢0(𝑥)  =  𝑠𝑖𝑛(𝜋𝑥) 

the boundary conditions: 

𝑢(0, 𝑡 ) = 𝑢(2, 𝑡 ) = 0, 𝑡 > 0.  

the exact solution of this problem is: 

𝑢(𝑥, 𝑡) =
2𝜋𝛼 ∑ 𝑎𝑛

∞
𝑛=1 𝑒𝑥𝑝{−𝑛2𝜋2𝛼𝑡}𝑛𝑠𝑖𝑛(𝑛𝜋𝑥)

𝑎0 + ∑ 𝑎𝑛
∞
𝑛=1 𝑒𝑥𝑝{−𝑛2𝜋2𝛼𝑡}𝑐𝑜𝑠(𝑛𝜋𝑥)

 

where the Fourier coefficient are 

𝑎0 = ∫ 𝑒𝑥𝑝{−(2𝜋𝛼)−1[1 − cos (𝜋𝑥)]}𝑑𝑥

2

0

 

𝑎𝑛 = 2 ∫ 𝑒𝑥𝑝{−(2𝜋𝛼)−1[1 − cos (𝑛𝜋𝑥)]}cos (𝑛𝜋𝑥)𝑑𝑥

2

0

 

The problem domain [0, 2] is divided into 40 equally spaced, in 
the following calculation the diffusion coefficient 𝛼 is taken as (1,
0.1 and 0.01) for the linear element 𝑘 = 1 and the quadratic ele-
ment 𝑘 = 2, respectively. Comparisons are made with the exact so-
lution and numerical solutions of several existing numerical 
schemes, which are fully implicit finite difference method IFDM 
(Bahadir, 1999), boundary element method BEM (Bahadir, 2005), 
and the numerical results, are presented in Table 1 to Table 3 for 
various time levels and different diffusion coefficient 𝛼. 

Table 1 

Comparison of the numerical solution of u for 1D viscous Burgers equation at 
different times with α= 1  

Method time x=0.1 x=0.3 x=0.5 x=0.7 x=0.9 

IFDM 

0.05 

0.17832 0.47658 0.60984 0.51165 0.20006 

BEM 0.17759 0.47531 0.60851 0.51050 0.19933 

TV-LDG (k = 1) 0.17807 0.47590 0.60905 0.51108 0.19982 

TV-LDG (k = 2) 0.17803 0.47586 0.60907 0.51112 0.19988 

Exact 0.17803 0.47586 0.60907 0.51113 0.19989 

IFDM 

0.1 

0.11009 0.29335 0.37342 0.31144 0.12128 

BEM 0.10931 0.29124 0.37070 0.30911 0.12031 

TV-LDG (k = 1) 0.10956 0.29192 0.37162 0.31014 0.12068 

TV-LDG (k = 2) 0.10954 0.29189 0.37158 0.30990 0.12068 

Exact 0.10954 0.29190 0.37158 0.30991 0.12069 

IFDM 

0.2 

0.04273 0.11276 0.14120 0.11574 0.04457 

BEM 0.04220 0.11044 0.13809 0.11322 0.04391 

TV-LDG (k = 1) 0.04215 0.11121 0.13906 0.11381 0.04380 

TV-LDG (k = 2) 0.04192 0.11062 0.13847 0.11348 0.04368 

Exact 0.04193 0.11062 0.13847 0.11347 0.04369 
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Table 2 

Comparison of the numerical solution of u for 1D viscous Burgers equation at 
different times with α= 0.1  

Method Time x=0.1 x=0.3 x=0.5 x=0.7 x=0.9 

IFDM 

0.5 

0.11048 0.32367 0.50447 0.57664 0.30912 

BEM 0.10986 0.32191 0.50240 0.57514 0.30779 

TV-LDG (k = 1) 0.10981 0.32213 0.50277 0.57578 0.30915 

TV-LDG (k = 2) 0.10991 0.32219 0.50279 0.57586 0.30932 

Exact 0.10992 0.32219 0.50279 0.57585 0.30935 

IFDM 

1 

0.06689 0.19445 0.29448 0.31107 0.14769 

BEM 0.06644 0.19263 0.29139 0.30711 0.14507 

TV-LDG (k = 1) 0.06629 0.19275 0.29187 0.30799 0.14597 

TV-LDG (k = 2) 0.06631 0.19278 0.29192 0.30810 0.14613 

Exact 0.06632 0.19279 0.29192 0.30809 0.14607 

IFDM 

2 

0.02909 0.08044 0.10939 0.09838 0.04037 

BEM 0.02913 0.07951 0.10770 0.09663 0.03976 

TV-LDG (k = 1) 0.02887 0.07973 0.10787 0.09681 0.03966 

TV-LDG (k = 2) 0.02876 0.07946 0.10790 0.09688 0.03967 

Exact 0.02876 0.07946 0.10789 0.09685 0.03969 

 

Table 3 

Comparison of the numerical solution of u for 1D viscous Burgers equa-
tion at different times with α= 0.01  

Method Time x=0.1 x=0.3 x=0.5 x=0.7 x=0.9 

IFDM 

0.5 

0.12182 0.36206 0.59079 0.79416 0.93322 

BEM 0.12079 0.36113 0.59559 0.81257 0.97184 

TV-LDG (k = 1) 0.12084 0.36025 0.58869 0.79350 0.93867 

TV-LDG (k = 2) 0.12114 0.36027 0.58870 0.79349 0.93809 

Exact 0.12114 0.36027 0.58870 0.79349 0.93811 

IFDM 

2 

0.04367 0.13095 0.21800 0.30466 0.38024 

BEM 0.043 0.12877 0.21468 0.30075 0.37452 

TV-LDG (k = 1) 0.04282 0.12873 0.21450 0.29996 0.37372 

TV-LDG (k = 2) 0.04296 0.12884 0.21455 0.29999 0.37325 

Exact 0.04296 0.12884 0.21456 0.30000 0.37328 

IFDM 

4 

0.02364 0.07092 0.11817 0.16499 0.17226 

BEM 0.02324 0.06935 0.11550 0.16125 0.16515 

TV-LDG (k = 1) 0.02310 0.06930 0.11549 0.16122 0.16674 

TV-LDG (k = 2) 0.02310 0.06931 0.11549 0.16121 0.16606 

Exact 0.02310 0.06931 0.11549 0.16121 0.16606 
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Fig. 1 to Fig. 4 show the diversities of the numerical solutions 
with non-identical diffusion coefficients 𝛼 = 1, 0.1, 0.01 𝑎𝑛𝑑 0.005 
at different time levels, the main observations that could be noted 
are that the intensity and the speed of the wave damping are 
strongly proportional to the value of the diffusion coefficient, in 
contrast, the shock wave formation is rapidly generated with low 
values of diffusion coefficient. 

From Fig. 3 and Fig. 4 it can be clearly seen that the scheme 
treats effectively with strong discontinuities without producing 
nonphysical oscillations, from these features it can be inferred that 
the TV-LDG method is one of the most efficient methods for solving 
nonlinear partial differential equations. 

 

 

 

 

Fig. 1. Numerical solution of at different times for k=2, diffusion coeffi-
cient α=1 

 

 

Fig. 2. Numerical solution of at different times for k=2, diffusion coeffi-
cient α=0.1 

 
Fig. 3. Numerical solution of at different times for k=2, diffusion co-
efficient α=0.01 

 
Fig. 4. Numerical solution of at different times for k=2, diffusion coeffi-
cient α=0.005 

The numerical simulation at fixed time 𝑡 = 0.1 and different 𝛼 
in Fig. 5 and Fig. 6 are drawn. The tendency of the numerical solu-
tions toward equilibrium and uniformity with the increasing of 
diffusion coefficient 𝛼  is shown in Fig. 5 and Fig. 6. 

 

Fig. 5. Numerical solution of at time t=0.1 for k=2, and diffusion coef-
ficients (α=0.1 to 1) 
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Fig. 6.  Numerical solution of at time t=0.1 for k=2, and diffusion co-
efficients (α=1 to 3) 

4.2. Test example 2 

In this numerical experiment, the system of two-dimensional 
Burgers’ is considered, and the equations given in Eq. (17) and Eq. 
(18) over a square domain 𝛺 = {(𝑥, 𝑦)|0 ≤ (𝑥, 𝑦) ≥ 1} 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝛼 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)                                                  (17) 

 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝛼 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)                                                  (18) 

with the exact solution 

𝑢(𝑥, 𝑦, 𝑡) = 0.75 −
0.25

[1 + 𝑒𝑥𝑝 {
4𝑦 − 4𝑥 − 𝑡

32𝛼
}]

 

𝑣(𝑥, 𝑦, 𝑡) = 0.75 +
0.25

[1 + 𝑒𝑥𝑝 {
4𝑦 − 4𝑥 − 𝑡

32𝛼
}]

 

The initial and boundary conditions are taken from the exact 
solutions. The numerical results are computed by using quadratic 
element k = 2 and time step length ∆t = 10−3.The numerical and 
exact values of u and v at some mesh point for α = 0.01 at time lev-
els t =  0.01, 0.5, and 2.0 are reported in Tables 4-6. The tables 
show that the present method gives much better results in compar-
ison to methods suggested by Bahadir (2003) and Mittal and Jiwari 
(2009).  To see if the numerical solutions were converging to the 
exact solution the maximum error L∞ was computed. For a suffi-
ciently small mesh size h = ∆x = ∆y, a plot of log(error) versus 
log(h) will produce a line, the slope of this line is the rate of conver-
gence, which means that the reduction of the error is proportional 
to the refinement of the mesh size. This is generally referred to as 
the rate of convergence or order of convergence. The log(L∞) error 
versus log(h) is depicted in Fig. 7 using the quadratic element k = 
2. Two main points should be taken away from Fig. 7. First, it can 
be observed that the error is decreasing as the mesh spacing is de-
creased. Second, the approximate solution is in fact converging to 
the exact solution with a proper rate. Fig. 8 reveals the evolution of 
the computed solution u over the time 𝑡 =  0, 1, and 3 using linear 
element k=1  and mesh size ∆𝑥 = ∆𝑦 = 0.1 .  

 

 

Table 4 

Comparison between the exact and the numerical solutions of Example 2, α=0.01 at t = 0.01 with mesh size h=0.05 

Mesh point (x,y) 

u 

  

v 

Bahadir  

(2003) 

Mittal 

 and 

 Jiwari  

(2009) 

Present method Exact solution Bahadir (2003) 

Mittal 

 and 

 Jiwari  

(2009) 

Present method Exact solution 

(0.1,0.1) 0.62310 0.62305 0.623041 0.623047 

  

0.87688 0.87695 0.876956 0.876953 

(0.5,0.1) 0.50161 0.50162 0.501622 0.501622 0.99837 0.99838 0.998378 0.998378 

(0.9,0.1) 0.50000 0.50001 0.500011 0.500011 0.99998 0.99999 0.999989 0.999989 

(0.3,0.3) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953 

(0.7,0.3) 0.50162 0.50162 0.501622 0.501622 0.99838 0.99838 0.998378 0.998378 

(0.1,0.5) 0.74827 0.74827 0.748275 0.748274 0.75172 0.75172 0.751725 0.751726 

(0.5,0.5) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953 

(0.9,0.5) 0.50162 0.50162 0.501622 0.501622 0.99838 0.99838 0.998378 0.998378 

(0.3,0.7) 0.74827 0.74827 0.748275 0.748274 0.75173 0.75173 0.751725 0.751726 

(0.7,0.7) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953 

(0.1,0.9) 0.74998 0.74999 0.749988 0.749988 0.75001 0.75001 0.750012 0.750022 

(0.5,0.9) 0.74827 0.74827 0.748275 0.748274 0.75173 0.75172 0.751725 0.751726 

(0.9,0.9) 0.62311 0.62305 0.623041 0.623047 0.87689 0.87695 0.876956 0.876953 

 

 

 

 



Elhadi et al. /Libyan Journal of Science & Technology 13:1(2021) 4856 

54 

 

Table 5 

Comparison between the exact and the numerical solutions of Example 2, α=0.01 at t = 0.5 with mesh size h=0.05 

Mesh point 
(x,y) 

u 

  

v 

Bahadir  

(2003) 

Mittal 

 and 

 Jiwari  

(2009) 

Present  

method 

Exact  

solution 

Bahadir  

(2003) 

Mittal 

 and 

 Jiwari  

(2009) 

Present  

method 

Exact  

Solution 

(0.1,0.1) 0.54235 0.54322 0.543323 0.543322 

  

0.95577 0.95678 0.956679 0.956678 

(0.5,0.1) 0.49964 0.50035 0.500351 0.500353 0.99827 0.99965 0.999648 0.999647 

(0.9,0.1) 0.49931 0.50000 0.500003 0.500002 0.99861 1.00000 0.999998 0.999998 

(0.3,0.3) 0.54207 0.54321 0.543327 0.543322 0.95596 0.95679 0.956677 0.956678 

(0.7,0.3) 0.49961 0.50035 0.500352 0.500353 0.99827 0.99964 0.999647 0.999647 

(0.1,0.5) 0.74130 0.74219 0.742215 0.742214 0.75699 0.75780 0.757786 0.757786 

(0.5,0.5) 0.54222 0.54329 0.543322 0.543322 0.95685 0.95671 0.956679 0.956678 

(0.9,0.5) 0.49997 0.50035 0.500353 0.500353 0.99903 0.99965 0.999647 0.999647 

(0.3,0.7) 0.74146 0.74221 0.742216 0.742214 0.75723 0.75779 0.757784 0.757786 

(0.7,0.7) 0.54243 0.54332 0.543321 0.543322 0.95746 0.95668 0.956680 0.956678 

(0.1,0.9) 0.74913 0.74995 0.749946 0.749946 0.74924 0.75005 0.750054 0.750054 

(0.5,0.9) 0.74201 0.74221 0.742216 0.742214 0.75781 0.75779 0.757785 0.757786 

(0.9,0.9) 0.54232 0.54332 0.543325 0.543322 0.95777 0.95667 0.956678 0.956678 

 

 

Table 6 

Comparison between the exact and the numerical solutions of Example 2, α=0.01 at t = 2 with mesh size h=0.05 

Mesh point 
(x,y) 

u 

  

v 

Bahadir  

(2003) 

Mittal 

 and 

 Jiwari  

(2009) 

Present  

method 

Exact  

solution 

Bahadir  

(2003) 

Mittal 

 and 

 Jiwari  

(2009) 

Present  

method 

Exact  

solution 

(0.1,0.1) 0.49983 0.50048 0.500487 0.500482 

  

0.99826 0.99952 0.999516 0.999518 

(0.5,0.1) 0.49930 0.50000 0.500002 0.500003 0.99860 1.00000 0.999997 0.999997 

(0.9,0.1) 0.49930 0.50000 0.500002 0.500000 0.99861 1.00000 0.999999 0.999999 

(0.3,0.3) 0.49977 0.50048 0.500490 0.500482 0.99820 0.99952 0.999514 0.999518 

(0.7,0.3) 0.49930 0.50000 0.500002 0.500003 0.99860 1.00000 0.999997 0.999997 

(0.1,0.5) 0.55461 0.55540 0.555647 0.555675 0.94393 0.94460 0.944349 0.944325 

(0.5,0.5) 0.49973 0.50048 0.500484 0.500482 0.99821 0.99952 0.999517 0.999518 

(0.9,0.5) 0.49931 0.50000 0.500003 0.500003 0.99862 1.00000 0.999997 0.999997 

(0.3,0.7) 0.55429 0.55540 0.555675 0.555675 0.94409 0.94460 0.944331 0.944325 

(0.7,0.7) 0.49970 0.50048 0.500480 0.500482 0.99823 0.99952 0.999519 0.999518 

(0.1,0.9) 0.74340 0.74422 0.744256 0.744256 0.75500 0.75578 0.755744 0.755744 

(0.5,0.9) 0.55413 0.55541 0.555671 0.555675 0.94441 0.94459 0.944332 0.944325 

(0.9,0.9) 0.50001 0.50048 0.500475 0.500482 0.99846 0.99952 0.999522 0.999518 
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Fig. 7. The rate of convergence by using quadratic element, with different mesh size (∆𝒙 = ∆𝒚 =
𝟏

𝟏𝟎
,

𝟏

𝟐𝟎
,

𝟏

𝟒𝟎
,

𝟏

𝟖𝟎
 𝐚𝐧𝐝 

𝟏

𝟏𝟔𝟎
) 

 

(a) 

 

 

b 

(b) 

 

 

(c) 

Fig. 8. The evolution of the numerical solution for u over time. (a) at t=0; (b) at t=1 and (c) at t=3. with mesh size ∆𝑥 = ∆𝑦 =
1

10
   

5. Conclusions 

Constructing high-order accurate totally, volume local discon-
tinuous Galerkin finite element method for the numerical solution 
of the viscous Burgers’ equations on Cartesian meshes has been 
made successfully. Based on the results of the present method, the 
following observations and inferences can be drawn: 

 The present method reveals a good capturing of disconti-
nuity when it deals with the shocking flow, which makes 
the TV-LDG as a reliable method for solving more general 
problems in fluid dynamics with a low diffusion coeffi-
cient. 

  The proposed scheme has a unique agreement with the 
analytical solution and gives lower error in comparison 
with the other existing numerical solutions, in the future, 

the main target is that extend this study by applying the 

scheme on more complex partial differential equations. 
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