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1. Introduction 

Choudhary (1988) discussed ‘An Extension of Knopp's Core 
Theorem’ here the purpose of the author is to generalize Knopp's 
core theorem. Also, for corresponding work, we refer to Orhan 
(1990) in which the author discussed ‘Sublinear Functionals and 
Knopp's Core Theorem’ here the author is concerned with the ine-
qualities involving certain sublinear functionals on the space of 
bounded sequences. Such inequalities being analogs of Knopp's 
core theorem. 

2. Preliminaries  

Let   ℓ∞ =  { 𝑥 = (𝑥𝑘 ): 𝑠𝑢𝑝𝑘|𝑥𝑘| < ∞ }, be the space of all 
bounded sequences, with ∥ x ∥= 𝑠𝑢𝑝𝑘  |𝑥𝑘|, and 

𝑐 = { 𝑥 = (𝑥𝑘): lim
𝑘

𝑥𝑘 = 𝑙 , 𝑙 ∈ ℂ}, the space of convergent se-

quences. 

Definition (2.1): An infinite matrix 𝐴 = (𝑎𝑛𝑘)𝑛,𝑘=1
∞  is said to be 

regular if it transforms convergent sequences into convergent se-
quences with the same limit. That is, 𝐴𝑥 ∈  𝑐 , 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 =
(𝑥𝑘)𝑘=1

∞  ∈ 𝑐 with lim 𝐴𝑥 = lim 𝑥, where 

𝐴𝑥 = (𝐴𝑛(𝑥))𝑛=1
∞     𝑎𝑛𝑑   𝐴𝑛(𝑥) =  ∑ 𝑎𝑛𝑘

∞
𝑘=1 𝑥𝑘 . The well-known 

Knopp's core theorem states that: In order that 𝐿(𝐴𝑥) ≤ 𝐿(𝑥) for 

every 𝑥 ∈ ℓ∞, it is necessary and sufficient that A should be regu-
lar and almost positive, where  𝐿(𝑥) = lim sup|𝑥| 𝑎𝑛𝑑 𝐿(𝐴𝑥) =
lim sup|𝐴𝑥|. This section also deals with necessary preliminaries, 
which are needed for our result in Sections 3 and 4. We list the fol-
lowing functionals defined on ℓ∞ (Cooke, 1950; Das, 1987; Devi, 
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1976). ℓ(𝑥) = 𝑙𝑖𝑚𝑘 𝑖𝑛𝑓𝑥𝑘; (𝑥) =  𝑙𝑖𝑚𝑘 𝑠𝑢𝑝𝑥𝑘  𝑞(𝑥) = 𝑙𝑖𝑚𝑘  inf |𝑥𝑘|; 
𝑄(𝑥) = 𝑙𝑖𝑚𝑘  sup |𝑥𝑘| 𝑤(𝑥) = 𝑖𝑛𝑓{ 𝐿(𝑥 + 𝑧) ∶   𝑧 ∈   𝑏𝑠  }; ∥ 𝑥 ∥=
 𝑠𝑢𝑝𝑘 |𝑥𝑘| where 𝑏𝑠 denote the space of all bounded sequence 𝑥 =
(𝑥𝑘) such that 𝑠𝑢𝑝𝑛| ∑ 𝑥𝑘|   < + ∞𝑛

𝑘=0  further, we have 

ℓ∗(𝑥) = 𝑙𝑖𝑚𝑛 𝑖𝑛𝑓𝑠𝑢𝑝𝑖
1

𝑛+1
  ∑ 𝑥𝑟

𝑖+𝑛
𝑟=𝑖 ; 

𝐿∗(𝑥) = 𝑙𝑖𝑚𝑛𝑠𝑢𝑝𝑠𝑢𝑝𝑖  
1

𝑛+1
∑ 𝑥𝑟

𝑖+𝑛
𝑟=𝑖 ; 𝑤∗(𝑥) = 𝑖𝑛𝑓 {𝐿∗(𝑥 + 𝑧) ∶  𝑧 ∈

 𝑏𝑠 }. We note the following inequalities (Ahmed, Mursaleen and 
Khan, 1996; Devi, 1976; Kuttner and Maddox, 1983; Maddox, 1979; 
Orhan, 1990; Simons, 1969) ℓ ≤ 𝑤 ≤ 𝐿 ≤ ∥ ⋅  ∥; 𝑤 ≤ 𝑄 ≤  ∥ ⋅ ∥; 
𝐿 ≤ 𝑄  ;   ℓ ≤ 𝑞 ≤ 𝑄; ℓ ≤ ℓ∗ ≤ 𝐿∗ ≤ 𝐿; 𝑤∗ ≤ 𝐿∗, the functionals 
which are marked with * are of special interest to us in section 3 
and we call them as *-functionals. In fact, these are related to the 
concept of the Banach limit. It is well-know that the functional 

𝑞(𝑥) = 𝑖𝑛𝑓𝑛1 ,   𝑛2 ,   …..   𝑛𝑟      
𝑙𝑖𝑚𝑚    𝑠𝑢𝑝

1 

𝑟
  ∑ 𝑥𝑚+𝑛𝑖

𝑟
𝑖=1  is sublinear on ℓ∞. 

If 𝑞(𝑥) = −𝑞(−𝑥) = 𝑠, then 𝑥 is said to be almost convergent to 
𝑠 (Lorentz, 1948). It was also shown in (Das and Mishra, 1981) that  
𝑞(𝑥) =  𝐿∗(𝑥). If 𝑓 𝑎𝑛𝑑  𝑔 are any two of the above functionals, we 
shall write 𝑓𝐴 ≤ 𝑔𝐵 to denote that, for every ∈  ℓ∞ , 𝐴𝑥 𝑎𝑛𝑑 𝐵𝑥 are 
defined and bounded and 𝑓𝐴(𝑥) ≤ 𝑔𝐵(𝑥). A and B are infinite ma-
trices, where 𝐴 = (𝑎𝑛𝑘)𝑛,𝑘=1

∞  , 𝐵 = (𝑏𝑛𝑘)𝑛,𝑘=1
∞  . Some preliminaries 

about Fourier series: Let 𝑓 be L-integrable and periodic with period 
2𝜋, and let the Fourier series of 𝑓 be 

  1

2
 𝑎0   +  ∑(𝑎𝑘  cos 𝑘𝑥 + 𝑏𝑘  sin 𝑘𝑥 )                                           (2.1)

∞

𝑘=1
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and the derived series 

∑ 𝑘(𝑏𝑘 cos 𝑘𝑥 −  𝑎𝑘 sin 𝑘𝑥 )

∞

𝑘=1

                                                            (2.2) 

We write 

𝜙𝑥(𝑡) =  𝜙(𝑓, 𝑡) = {
𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡),   0 < 𝑡 ≤ 𝜋 ,        

𝑓(𝑥 + 0) − 𝑓(𝑥 − 0),   𝑡 = 0  ,             
 

and    ℎ𝑥(𝑡) =   
𝜙𝑥  (𝑡)

4 sin 1  
2 𝑡

 . A partial sum of the derived Fourier series 

of 𝑓 is given by  

𝑠𝑘
′ (𝑥) =

1

𝜋
  ∫ 𝜙𝑥  (𝑡) [ ∑ 𝑚 sin 𝑚𝑡] 𝑑𝑡,

𝑘

𝑚=1

𝜋

0

 

           = − 
1

𝜋
 ∫ 𝜙𝑥(𝑡) 

𝑑

𝑑𝑡

𝜋

0
 [

sin ( 𝑘 + 
1  

2
 )  𝑡

2 sin  
1

2
  𝑡

 ] 𝑑𝑡, 

             = 𝐼𝑘    +    
2

𝜋
  ∫ sin( 𝑘 +   

1

2

𝜋

0
 )  𝑡  𝑑ℎ𝑥 (𝑡)                               (2.3) 

Where 𝐼𝑘 =   
1

𝜋 
 ∫ ℎ𝑥(𝑡)

𝜋

0
 cos 1

2
 𝑡  

sin(  𝑘 +  
1
2

  )  𝑡  

sin 
1
2

  𝑡
𝑑𝑡, some preliminaries 

definitions, and results are used in Section 3.  

Definition (2.2): The matrix 𝐴 = (𝑎𝑛𝑘)is p-regular if and only if 

lim
𝑛

 ∑  𝑎𝑛𝑘 𝑦(𝑘) =  lim
𝑘

𝑦(𝑘) ,   𝑓𝑜𝑟 𝑎𝑙𝑙   (𝑦(𝑘)) ∈  𝑐(𝑌)𝑘  , when our se-

quences are taken in the p-normed space  , which we shall take to 
be ℓ𝑝(𝑋), with 0 < 𝑝 < 1. Thus 𝑦 = (𝑦𝑘 ) ∈ 𝑌 means that 𝑦𝑘  ∈

 𝑋  for all k and ∥ 𝑦 ∥ = ∑ ∥ 𝑦𝑘 ∥𝑝  <  ∞ , where spaces 𝑐(𝑌)  defined 
by (Maddox, 1988) and ℓ𝑝(𝑋) also defined by (Maddox, 1980). 

Theorem 2.1: (Maddox, 1992) The infinite matrix  𝐴 = (𝑎𝑛𝑘) is p-
regular if and only if 

(i) lim
𝑛

 𝑎𝑛𝑘 = 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ≥ 1, 

(ii) lim
𝑛

∑ 𝑎𝑛𝑘  =  1∞
𝑘=1  

(iii) 𝑠𝑢𝑝𝑛 ∑ |𝑎𝑛𝑘|𝑝 < ∞,    0 < 𝑝 < 1.𝑘  

Theorem 2.2: (Jordan's Convergence Criterion, 1881) If 𝑓(𝑥) is 
bounded variation in some interval (𝑎 , 𝑏), then its Fourier series 
converges at every point of the interval. Its sum is 𝑓(𝑥) at a point 
of continuity and [ 𝑓(𝑥 + 0) + 𝑓(𝑥 − 0)]/2  at a point of discontinu-
ity. 

Theorem 2.3: (Banach Weak Convergence Theorem, 1932 and 

Mursaleen, 2014): It states that ∫ 𝑔𝑛   𝑑ℎ𝑥 = 0  (𝑛 →
1

0

 ∞) 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ𝑥 ∈  𝐵𝑉[0,1] , If and only if ∥ 𝑔𝑛 ∥ <
𝑀  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛  𝑎𝑛𝑑  𝑔𝑛  → 0 𝑎𝑠  𝑛 → ∞  . where 𝐵𝑉 [0,1] space of all 
function of bounded variation on [ 0 , 1]. 

3. Knopp's Core like theorems 

In order to prove our results, we shall need the following lem-
mas. Throughout this section, the matrix  𝐵 is taken as the normal 
matrix. 

Lemma A: (Choudhary, 1988), In order that whenever 𝐵𝑥 is 
bounded, (𝐴𝑥)𝑛 should be defined for fixed 𝑛, if and only if 

𝑐𝑛𝑘 = ∑ 𝑎𝑛𝑗  𝑏𝑗𝑘
−1  𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑘 ;                                          (3.1)

∞

𝑗=𝑘
 

∑ |𝑐𝑛𝑘| < ∞ ;                                                                                           (3.2)𝑘   

And for any fixed n, 

∑ | ∑ 𝑎𝑛𝑗  

∞

𝑗=𝐽+1

𝑏𝑗𝑘
−1 |  → 0 ( 𝐽 → ∞)                                             (3.3)

𝐽

𝑘=0
 

If these conditions hold then, for bounded 𝐵𝑥 

(𝐴𝑥)𝑛 = ∑ 𝑐𝑛𝑘   𝑦𝑘 = (𝐶𝑦)𝑛𝑘 ,       𝑤ℎ𝑒𝑟𝑒    𝑦𝑘 = (𝐵𝑥)𝑘                  (3.4)  

Lemma B: (Orhan, 1990), 𝐿∗ 𝐴 ≤ 𝐿∗ if and only if 𝐴 is f-regular and 

lim 
𝑛

𝑠𝑢𝑝𝑖   ∑ | 
1

𝑛+1
   ∑ 𝑎𝑟𝑘  

𝑖+𝑛

𝑟=𝑖
𝑘

| = 1,                                                      (3.5) 

We prove the following results:  

Theorem 3.1: For any matrix 𝐴 = (𝑎𝑛𝑘), in order that, whenever 
𝐵𝑥 is bounded, 𝐴𝑥 should exist and bounded and satisfy  

𝐿∗(𝐴𝑥) ≤ 𝐿∗(𝐵𝑥),                                                                                     (3.6) 

It is necessary and sufficient that 

𝐶 = 𝐴𝐵−1, 𝑒𝑥𝑖𝑠𝑡𝑠                                                                                     (3.7)  

𝐶  is f-regular ;                                                                                          (3.8) 

lim
𝑛

𝑠𝑢𝑝𝑖  ∑  | 
1

𝑛+1
𝑘

 ∑ 𝑐𝑟𝑘

𝑖+𝑛

𝑟=𝑖

 | = 1,                                                         (3.9) 

for any fixed n , 

 ∑ | ∑ 𝑎𝑛𝑗  
∞
𝑗=𝐽+1 𝑏𝑗𝑘

−1 | → 0 ( 𝐽 → ∞)
𝐽
𝑘=0 ,                                         (3.10) 

where 𝐵𝑥 is B-transform of 𝑥 = (𝑥𝑘). That is 

𝐵𝑥 = (𝐵𝑛(𝑥))  𝑤ℎ𝑒𝑟𝑒  𝐵𝑛(𝑥) =  ∑ 𝑏𝑛𝑘
∞
𝑘=1 𝑥𝑘 . 

Proof. Let the conditions (3.7)-(3.10) hold. Then (3 .7), (3.8) and 
(3.9) imply that conditions of Lemma A are satisfied and hence, 
(3.4) holds; moreover 𝐶𝑦 is bounded for  𝑦 ∈ ℓ∞ . Further, by 
Lemma B, conditions (3.8) and (3.9) together give 𝐿∗(𝐶𝑦) ≤
𝐿∗(𝑦)  𝑓𝑜𝑟  𝑦 ∈ ℓ∞  . Putting 𝑦 = 𝐵𝑥 we get (3.6). Conversely, sup-
pose that (3.6) holds and assume that (𝐴𝑥)𝑛 exists for every 𝑛 
whenever 𝐵𝑥 = :  𝑦 is bounded. Then by Lemma A, it follows that 
the conditions (3 .7) and (3.10) hold, also (3.2) of Lemma A holds 
for every 𝑛. Further, for every 𝑦 ∈ ℓ∞ , (3.4) holds. Therefore by 
(3.6) we have 𝐿∗(𝐶𝑦) ≤  𝐿∗(𝑦), 𝑦 ∈ ℓ∞ and hence by Lemma B, it 
follows that (3.8) and (3.9) hold. This completes the proof of the 
theorem. 

Corollary 3.2: For a row-finite matrix 𝐴, 𝐿∗(𝐴𝑥) ≤ 𝐿∗(𝐵𝑥),
𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 ∈ ℓ∞ if and only if (3.8) and (3.9) hold.  

Remark: For a row-finite matrix 𝐴, the expression inside the mod-
ulus in (3.10) is 0 for sufficiently large J (and all k). Thus (3.10) is 
necessarily satisfied and we get Corollary (3.2). 

Theorem 3.3: In order that, whenever 𝐵𝑥 is bounded, 𝐴𝑥 should 
exists and satisfy 

𝐿∗(𝐴𝑥) ≤ 𝑤∗(𝐵𝑥),                                                                                 (3.11) 

if and only if conditions (3.7)-(3.10) of Theorem 3.1 hold. 

Proof. Sufficiency follows on the same lines as in the proof of The-
orem 3.1. For necessity, let  𝐴𝑥 be defined whenever 𝑦 ≔ 𝐵𝑥 be 
bounded. Using Lemma A, we get (3.4), i.e. 𝐴𝑥 = 𝐶𝑦 . 

Now 𝑤∗(𝐵𝑥) ≔  inf   {𝐿∗ (𝐵𝑥 + 𝑧): 𝑧 ∈ 𝑏𝑠  } ≤  𝐿∗ (𝐵𝑥 + 𝑧). Taking 
𝑧 = 0, we have 𝑤∗(𝐵𝑥) ≤ 𝐿∗(𝐵𝑥). By (3.11), it follows that 
𝐿∗(𝐴𝑥) ≤ 𝐿∗(𝐵𝑥) which is (3 .6) of Theorem 3.1 and hence necessity 
follows. This completes the proof of the Theorem. The following re-
sult is a consequence of the above theorem. 

Corollary 3.4: (Orhan, 1990), For a row-finite matrix 𝐴, 𝐿∗(𝐴𝑥) ≤
𝑤∗(𝐵𝑥);  𝑥 ∈ 𝑏𝑠 If and only if (3.8) and (3 .9) of Theorem 3.1 hold. 
By taking 𝐵 = 𝐼 (identity matrix) in Corollary (3.4) we have the re-
quired result. 

Theorem 3.5: (Orhan, 1990), Let 𝑤∗be sublinear functional de-
fined by 𝑤∗(𝑥). Then for a row finite matrix 𝐴, 𝐿∗(𝐴𝑥) ≤
𝑤∗(𝑥)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 ∈ 𝑏𝑠 if and only if  𝐴 is almost positive and f-regu-
lar. 
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4. A-summability of a class of derived Fourier series 

In this section, we find necessary and sufficient condition for A-
summability of the sequence (𝑠𝑘

′ (𝑥)).  

Theorem 4.1: Let  𝐴 = (𝑎𝑛𝑘) be a p-regular matrix. Then, for each 
𝑥 ∈ [−𝜋 , 𝜋] for which ℎ𝑥(𝑡) ∈ 𝐵𝑉 [0, 𝜋], the sequence (𝑠𝑘

′ (𝑥)) is A-
summable to ℎ𝑥(0+) if and only if 

∑ 𝑎𝑛𝑘  sin(𝑘 + 1

2𝑘 )𝑡 → 0 ,   𝑛 → +∞, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑡 ∈ [ 0 , 𝜋 ],      (4.1)  

Proof. Since ℎ𝑥(𝑡) ∈ 𝐵𝑉 [ 0 , 𝜋] and ℎ𝑥(𝑡) → ℎ𝑥(0+)   𝑎𝑠   𝑡 → ∞ , 
ℎ𝑥(𝑡) cos 1

2
𝑡  has the same properties. Therefore, by Jordan's Con-

vergence Criterion for Fourier series 𝐼𝑘 → ℎ𝑥(0+) 𝑎𝑠  𝑘 → ∞. Now 
by (2.3), we have  

∑ 𝑎𝑛𝑘  𝑠𝑘
′∞

𝑘=1 (𝑥) = ∑ 𝑎𝑛𝑘  𝐼𝐾𝑘 + 2

𝜋
 ∫ [ ∑ 𝑎𝑛𝑘  𝑘 sin(𝑘 + 1

2

𝜋

0
) 𝑡 ] 𝑑ℎ𝑥(𝑡) =

𝐽1 + 𝐽2  , 𝑠𝑎𝑦. Since 𝐴 is p-regular, condition (ii) of Theorem 2.1 im-
plies that 𝐽1 → ℎ𝑥(0+)   𝑎𝑠   𝑛 → ∞. Therefore, we have to show that 
condition (4.1) holds if and only if 𝐽2 → 0   𝑎𝑠  𝑛 → ∞. Now, in par-

ticular, if we choose the sequence 𝑔𝑛 = { ∑ 𝑎𝑛𝑘𝑘 sin(𝑘 +
1 

2
) 𝑡  }  𝑓𝑜𝑟 𝑎𝑛𝑦  𝑡 ∈ ℜ, then ∥ 𝑔𝑛 ∥=∥ ∑ 𝑎𝑛𝑘𝑘 sin( 𝑘 + 1 

2
) 𝑡 ∥ ≤

𝑠𝑢𝑝𝑛  ∑ | 𝑎𝑛𝑘 |𝑝  < ∞𝑘  , by condition (iii) of Theorem 2.1;  and  𝑔𝑛 →
0 , by condition (i) of Theorem 2.1. Hence by Banach Weak Conver-
gence Theorem, 

lim
𝑛

∫ ∑ 𝑎𝑛𝑘𝑘
1

0
sin(𝑘 + 1

2 
) 𝑡 𝑑ℎ𝑥(𝑡) = 0. If and only if condition (4.1) 

holds, i.e. (𝑠𝑘
′ (𝑥)) is A-summable to ℎ𝑥(0+) if and only if condition 

(4.1) holds. This completes the proof of the Theorem. 

5. Conclusion 

In Section 3, our results also generalized results due 
(Choudhary, 1988)  
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