Faculty of Science - University of Benghazi
Libyan Journal of Science \& Technology
journal home page: www.sc.uob.edu.ly/pages/page/77

Some applications of infinite matrices on some sequence spaces.

Qamaruddin H. Nizamuddin, Mohamed A. Muftah*

Department of Mathematics, Faculty of Arts and Science-Al-Abyar, University of Benghazi, Libya.

Highlights

- By using different new functional (* -functionals) some inequalities have been proved here like Knopp's core theorems. It is the extension of Knopp's core theorems.
- Summability of Fourier series and derived Fourier series has been done earlier by various method, here we have used pregular matrices for this purpose.

ARTICLE INFO

Article history:

Received 12 July 2020
Revised 15 June 2021
Accepted 17 June 2021

Keywords:

Knopp's core theorem, sublinear functionals, infinite matrices, almost convergence, Banach limit.
*Address of correspondence:
E-mail address: Mohamed.muftah@uob.edu.ly
M. A. Muftah

ABSTRACT

In this paper, we find some applications of infinite matrices. We prove some results analogues to Knopp's core theorem. Furthermore, we have applied p-regular matrices to find the sum of the derived Fourier series.

1. Introduction

Choudhary (1988) discussed 'An Extension of Knopp's Core Theorem' here the purpose of the author is to generalize Knopp's core theorem. Also, for corresponding work, we refer to Orhan (1990) in which the author discussed 'Sublinear Functionals and Knopp's Core Theorem' here the author is concerned with the inequalities involving certain sublinear functionals on the space of bounded sequences. Such inequalities being analogs of Knopp's core theorem.

2. Preliminaries

Let $\ell_{\infty}=\left\{x=\left(x_{k}\right): \sup _{k}\left|x_{k}\right|<\infty\right\}$, be the space of all bounded sequences, with $\|\mathrm{x}\|=\sup _{k}\left|x_{k}\right|$, and
$c=\left\{x=\left(x_{k}\right): \lim _{k} x_{k}=l, l \in \mathbb{C}\right\}$, the space of convergent sequences.
Definition (2.1): An infinite matrix $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ is said to be regular if it transforms convergent sequences into convergent sequences with the same limit. That is, $A x \in c$, for all $x=$ $\left(x_{k}\right)_{k=1}^{\infty} \in c$ with $\lim A x=\lim x$, where
$A x=\left(A_{n}(x)\right)_{n=1}^{\infty}$ and $A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}$. The well-known Knopp's core theorem states that: In order that $L(A x) \leq L(x)$ for every $x \in \ell_{\infty}$, it is necessary and sufficient that A should be regular and almost positive, where $L(x)=\lim \sup |x|$ and $L(A x)=$ $\lim \sup |A x|$. This section also deals with necessary preliminaries, which are needed for our result in Sections 3 and 4. We list the following functionals defined on ℓ_{∞} (Cooke, 1950; Das, 1987; Devi,
1976). $\ell(x)=\lim _{k} \inf x_{k} ;(x)=\lim _{k} \operatorname{supx}_{k} q(x)=\lim _{k} \inf \left|x_{k}\right| ;$ $Q(x)=\lim _{k} \sup \left|x_{k}\right| \quad w(x)=\inf \{L(x+z): z \in b s\} ;\|x\|=$ $\sup _{k}\left|x_{k}\right|$ where $b s$ denote the space of all bounded sequence $x=$ $\left(x_{k}\right)$ such that $\sup _{n}\left|\sum_{k=0}^{n} x_{k}\right|<+\infty$ further, we have
$\ell^{*}(x)=\lim _{n} \inf \sup _{i} \frac{1}{n+1} \sum_{r=i}^{i+n} x_{r} ;$
$L^{*}(x)=\lim _{n} \operatorname{supsup}_{i} \frac{1}{n+1} \sum_{r=i}^{i+n} x_{r} ; \quad w^{*}(x)=\inf \left\{L^{*}(x+z): z \in\right.$ $b s$ \}. We note the following inequalities (Ahmed, Mursaleen and Khan, 1996; Devi, 1976; Kuttner and Maddox, 1983; Maddox, 1979; Orhan, 1990; Simons, 1969) $\ell \leq w \leq L \leq\|\cdot\| ; w \leq Q \leq\|\cdot\|$; $L \leq Q ; \ell \leq q \leq Q ; \ell \leq \ell^{*} \leq L^{*} \leq L ; w^{*} \leq L^{*}$, the functionals which are marked with * are of special interest to us in section 3 and we call them as *-functionals. In fact, these are related to the concept of the Banach limit. It is well-know that the functional $q(x)=\inf _{n_{1}, n_{2}, \ldots, n_{r}} \lim _{m} \sup \frac{1}{r} \sum_{i=1}^{r} x_{m+n_{i}}$ is sublinear on ℓ_{∞}. If $q(x)=-q(-x)=s$, then x is said to be almost convergent to s (Lorentz, 1948). It was also shown in (Das and Mishra, 1981) that $q(x)=L^{*}(x)$. If f and g are any two of the above functionals, we shall write $f A \leq g B$ to denote that, for every $\in \ell_{\infty}, A x$ and $B x$ are defined and bounded and $f A(x) \leq g B(x) . A$ and B are infinite matrices, where $A=\left(a_{n k}\right)_{n, k=1}^{\infty}, B=\left(b_{n k}\right)_{n, k=1}^{\infty}$. Some preliminaries about Fourier series: Let f be L-integrable and periodic with period 2π, and let the Fourier series of f be
$\frac{1}{2} a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)$
and the derived series
$\sum_{k=1}^{\infty} k\left(b_{k} \cos k x-a_{k} \sin k x\right)$
We write
$\phi_{x}(t)=\phi(f, t)=\left\{\begin{array}{l}f(x+t)-f(x-t), \quad 0<t \leq \pi \\ f(x+0)-f(x-0), \quad t=0,\end{array}\right.$
and $h_{x}(t)=\frac{\phi_{x}(t)}{4 \sin \frac{1}{2} t}$. A partial sum of the derived Fourier series of f is given by

$$
\begin{align*}
s_{k}^{\prime}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(t)\left[\sum_{m=1}^{k} m \sin m t\right] d t \\
& =-\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(t) \frac{d}{d t}\left[\frac{\sin \left(k+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t}\right] d t \\
& =I_{k}+\frac{2}{\pi} \int_{0}^{\pi} \sin \left(k+\frac{1}{2}\right) t d h_{x}(t) \tag{2.3}
\end{align*}
$$

Where $I_{k}=\frac{1}{\pi} \int_{0}^{\pi} h_{x}(t) \cos \frac{1}{2} t \frac{\sin \left(k+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t$, some preliminaries definitions, and results are used in Section 3.

Definition (2.2): The matrix $A=\left(a_{n k}\right)$ is p-regular if and only if
$\lim _{n} \sum_{k} a_{n k} y^{(k)}=\lim _{k} y^{(k)}$, for all $\left(y^{(k)}\right) \in c(Y)$, when our sequences are taken in the p-normed space, which we shall take to be $\ell_{p}(X)$, with $0<p<1$. Thus $y=\left(y_{k}\right) \in Y$ means that $y_{k} \in$ X for all k and $\|y\|=\sum\left\|y_{k}\right\|^{p}<\infty$, where spaces $c(Y)$ defined by (Maddox, 1988) and $\ell_{p}(X)$ also defined by (Maddox, 1980).

Theorem 2.1: (Maddox, 1992) The infinite matrix $A=\left(a_{n k}\right)$ is pregular if and only if
(i) $\lim _{n} a_{n k}=0$ for each $k \geq 1$,
(ii) $\lim _{n} \sum_{k=1}^{\infty} a_{n k}=1$
(iii) $\sup _{n} \sum_{k}\left|a_{n k}\right|^{p}<\infty, \quad 0<p<1$.

Theorem 2.2: (Jordan's Convergence Criterion, 1881) If $f(x)$ is bounded variation in some interval (a, b), then its Fourier series converges at every point of the interval. Its sum is $f(x)$ at a point of continuity and $[f(x+0)+f(x-0)] / 2$ at a point of discontinuity.

Theorem 2.3: (Banach Weak Convergence Theorem, 1932 and Mursaleen, 2014): It states that $\int_{0}^{1} g_{n} d h_{x}=0(n \rightarrow$ $\infty)$ for all $h_{x} \in B V[0,1]$, If and only if $\left\|g_{n}\right\|<$ M for all n and $g_{n} \rightarrow 0$ as $n \rightarrow \infty$. where $B V[0,1]$ space of all function of bounded variation on $[0,1]$.

3. Knopp's Core like theorems

In order to prove our results, we shall need the following lemmas. Throughout this section, the matrix B is taken as the normal matrix.

Lemma A: (Choudhary, 1988), In order that whenever $B x$ is bounded, $(A x)_{n}$ should be defined for fixed n, if and only if
$c_{n k}=\sum_{j=k}^{\infty} a_{n j} b_{j k}^{-1}$ exists for all k;
$\sum_{k}\left|c_{n k}\right|<\infty ;$
And for any fixed n,
$\sum_{k=0}^{J}\left|\sum_{j=J+1}^{\infty} a_{n j} b_{j k}^{-1}\right| \rightarrow 0(J \rightarrow \infty)$
If these conditions hold then, for bounded $B x$
$(A x)_{n}=\sum_{k} c_{n k} y_{k}=(C y)_{n}, \quad$ where $y_{k}=(B x)_{k}$
Lemma B: (Orhan, 1990), $L^{*} A \leq L^{*}$ if and only if A is f-regular and
$\lim _{n} \sup _{i} \sum_{k}\left|\frac{1}{n+1} \sum_{r=i}^{i+n} a_{r k}\right|=1$,
We prove the following results:
Theorem 3.1: For any matrix $A=\left(a_{n k}\right)$, in order that, whenever $B x$ is bounded, $A x$ should exist and bounded and satisfy
$L^{*}(A x) \leq L^{*}(B x)$,
It is necessary and sufficient that
$C=A B^{-1}$, exists
C is f-regular;
$\lim _{n} \sup _{i} \sum_{k}\left|\frac{1}{n+1} \sum_{r=i}^{i+n} c_{r k}\right|=1$,
for any fixed n,

$$
\begin{equation*}
\sum_{k=0}^{J}\left|\sum_{j=J+1}^{\infty} a_{n j} b_{j k}^{-1}\right| \rightarrow 0(J \rightarrow \infty) \tag{3.10}
\end{equation*}
$$

where $B x$ is B-transform of $x=\left(x_{k}\right)$. That is

$$
B x=\left(B_{n}(x)\right) \text { where } B_{n}(x)=\sum_{k=1}^{\infty} b_{n k} x_{k}
$$

Proof. Let the conditions (3.7)-(3.10) hold. Then (3.7), (3.8) and (3.9) imply that conditions of Lemma A are satisfied and hence, (3.4) holds; moreover $C y$ is bounded for $y \in \ell_{\infty}$. Further, by Lemma B, conditions (3.8) and (3.9) together give $L^{*}(C y) \leq$ $L^{*}(y)$ for $y \in \ell_{\infty}$. Putting $y=B x$ we get (3.6). Conversely, suppose that (3.6) holds and assume that $(A x)_{n}$ exists for every n whenever $B x=: y$ is bounded. Then by Lemma A, it follows that the conditions (3.7) and (3.10) hold, also (3.2) of Lemma A holds for every n. Further, for every $y \in \ell_{\infty}$, (3.4) holds. Therefore by (3.6) we have $L^{*}(C y) \leq L^{*}(y), y \in \ell_{\infty}$ and hence by Lemma B, it follows that (3.8) and (3.9) hold. This completes the proof of the theorem.

Corollary 3.2: For a row-finite matrix $A, L^{*}(A x) \leq L^{*}(B x)$, for all $x \in \ell_{\infty}$ if and only if (3.8) and (3.9) hold.
Remark: For a row-finite matrix A, the expression inside the modulus in (3.10) is 0 for sufficiently large J (and all k). Thus (3.10) is necessarily satisfied and we get Corollary (3.2).

Theorem 3.3: In order that, whenever $B x$ is bounded, $A x$ should exists and satisfy
$L^{*}(A x) \leq w^{*}(B x)$,
if and only if conditions (3.7)-(3.10) of Theorem 3.1 hold.
Proof. Sufficiency follows on the same lines as in the proof of Theorem 3.1. For necessity, let $A x$ be defined whenever $y:=B x$ be bounded. Using Lemma A, we get (3.4), i.e. $A x=C y$.

Now $w^{*}(B x):=\inf \left\{L^{*}(B x+z): z \in b s\right\} \leq L^{*}(B x+z)$. Taking $z=0$, we have $w^{*}(B x) \leq L^{*}(B x)$. By (3.11), it follows that $L^{*}(A x) \leq L^{*}(B x)$ which is (3.6) of Theorem 3.1 and hence necessity follows. This completes the proof of the Theorem. The following result is a consequence of the above theorem.

Corollary 3.4: (Orhan, 1990), For a row-finite matrix $A, L^{*}(A x) \leq$ $w^{*}(B x) ; x \in b s$ If and only if (3.8) and (3.9) of Theorem 3.1 hold. By taking $B=I$ (identity matrix) in Corollary (3.4) we have the required result.

Theorem 3.5: (Orhan, 1990), Let w^{*} be sublinear functional defined by $w^{*}(x)$. Then for a row finite matrix $A, L^{*}(A x) \leq$ $w^{*}(x)$ for all $x \in b s$ if and only if A is almost positive and f-regular.

4. A-summability of a class of derived Fourier series

In this section, we find necessary and sufficient condition for Asummability of the sequence $\left(s_{k}^{\prime}(x)\right)$.

Theorem 4.1: Let $A=\left(a_{n k}\right)$ be a p-regular matrix. Then, for each $x \in[-\pi, \pi]$ for which $h_{x}(t) \in B V[0, \pi]$, the sequence $\left(s_{k}^{\prime}(x)\right)$ is Asummable to $h_{x}\left(0_{+}\right)$if and only if
$\sum_{k} a_{n k} \sin \left(k+\frac{1}{2}\right) t \rightarrow 0, \quad n \rightarrow+\infty$, for every $t \in[0, \pi]$,
Proof. Since $h_{x}(t) \in B V[0, \pi]$ and $h_{x}(t) \rightarrow h_{x}\left(0_{+}\right)$as $t \rightarrow \infty$, $h_{x}(t) \cos \frac{1}{2} t$ has the same properties. Therefore, by Jordan's Convergence Criterion for Fourier series $I_{k} \rightarrow h_{x}\left(0_{+}\right)$as $k \rightarrow \infty$. Now by (2.3), we have
$\sum_{k=1}^{\infty} a_{n k} s_{k}^{\prime}(x)=\sum_{k} a_{n k} I_{K}+\frac{2}{\pi} \int_{0}^{\pi}\left[\sum_{k} a_{n k} \sin \left(k+\frac{1}{2}\right) t\right] d h_{x}(t)=$ $J_{1}+J_{2}$, say. Since A is p-regular, condition (ii) of Theorem $2.1 \mathrm{im}-$ plies that $J_{1} \rightarrow h_{x}\left(0_{+}\right)$as $n \rightarrow \infty$. Therefore, we have to show that condition (4.1) holds if and only if $J_{2} \rightarrow 0$ as $n \rightarrow \infty$. Now, in particular, if we choose the sequence $g_{n}=\left\{\sum_{k} a_{n k} \sin (k+\right.$ $\left.\left.\frac{1}{2}\right) t\right\}$ for any $t \in \Re$, then $\left\|g_{n}\right\|=\left\|\sum_{k} a_{n k} \sin \left(k+\frac{1}{2}\right) t\right\| \leq$ $\sup _{n} \sum_{k}\left|a_{n k}\right|^{p}<\infty$, by condition (iii) of Theorem 2.1; and $g_{n} \rightarrow$ 0 , by condition (i) of Theorem 2.1. Hence by Banach Weak Convergence Theorem,
$\lim _{n} \int_{0}^{1} \sum_{k} a_{n k} \sin \left(k+\frac{1}{2}\right) t d h_{x}(t)=0$. If and only if condition (4.1)
holds, i.e. $\left(s_{k}^{\prime}(x)\right)$ is A-summable to $h_{x}\left(0_{+}\right)$if and only if condition (4.1) holds. This completes the proof of the Theorem.

5. Conclusion

In Section 3, our results also generalized results due (Choudhary, 1988)

References

Ahmed, Z. U., Mursaleen, M. and Khan, Q.A . (1996) 'Generalized almost convergence and Knopp's core theorem', Math. Slovaca, 46 (2), pp. 245-253.
Banach, S. (1932) 'Theorie des operations Lineaires', Warsaw.
Bell, H. T. (1973) 'Order summability and almost convergence', Proc. Am. Math. Soc., 38, pp. 548-552.

Choudhary, B. (1988) 'An extension of Knopp's core theorem', J. of Math. Analysis and Applications, 132, pp. 226-233.
Cooke, R. G. (1950) 'Infinite Matrices and Sequence Spaces' MC Millan.
Das, G. and Mishra, S. K. (1981) 'A note of a theorem of Maddox on strong almost convergence', Math. Proc. Camp. Phil. Soc., 89, pp. 393-396.

Das, G. (1987) 'Sublinear functional and a class of conservative matrices', Bull. Inst. Math. Acad. Sinica, 15, pp. 89-106

Devi, S. L. (1976) 'Banach limits and infinite matrices'.. J. London Math. Soc, 12, pp. 397-401.
Jordan, C. (1881) 'Sur la série de fourier', Comptes Rendus de l'Académie des Sciences Paris, 2, pp. 228-230.
Kuttner, B. and Maddox, I. J. (1983) 'Inequalities between functional on the bounded sequence', Indian J. Math, 12, pp. 1-10.
Lorentz, G. G. (1948) 'A contribution to the theory of divergent sequences, Acta Math, 80, pp. 167-190.
Maddox, I. J. (1979) 'Some analogs of Knopp's core theorem', Intern. J. Math. And Math. Sci, 2, pp. 605-614

Maddox, I. J. (1980) 'Infinite Matrices of Operators', Lecture Notes in Mathematics 780, Springer Verlag.
Maddox, I. J. (1988) Elements of Functional Analysis, Cambridge University Press.
Maddox, I, J. (1992) 'Generalized Toeplitz Matrices', Analysis, 12, pp. 335-342
Mursaleen, M. (2014) 'Applied Summability Methods', Heidelberg, Springer, 2014.
Orhan, C. (1990) 'Sublinear functional and Knopp's core theorem', Intern. J. Math. And Math. Sci, 13, pp. 461-468.
Simons, S. (1969) 'Banach limits, infinite matrices, and sublinear functionals', J. Math. Analys. Appl, 26, pp. 640-655.
Steiglitz, M. (1973) 'Eine Verallgemeinerung des Begriffs der Fastkonvergenz', Math. Jpn., 18, pp. 53-70

