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1. Introduction 

The magnetic fields in plasma confinement devices 
approximately describe magnetic surfaces, since this is a 
condition for good confinement. It is well known that systems 
possessing closed magnetic surfaces consist topologically of 
nested tubes of flux (Hazeltine et al., 1992). The exact fields are 
thus conveniently described in terms of perturbations of an 
idealized equilibrium field, which possesses magnetic surfaces. 
Present equilibrium and stability analyses use magnetic 
coordinates based on the existence of these surfaces (Wesson et 
al,. 1987; White et al,. 1982). 

It is the purpose of this paper to show how the magnetic 
geometry of a tokamak with poloidal divertor can be 
approximated by hyperbolic magnetic fields and magnetic 
surfaces function  𝜓. The shapes of the magnetic field geometry in 
the scrap-off layer (SOL) of a tokamak with divertor affect the 
profiles of electron density 𝑛𝑒(𝜓 ) and electron temperature 
𝑇𝑒(𝜓 ). It has been shown that the electron density and 
temperature decrease smoothly with distance from their 
maximum values at the separatrix (Alhasi et al., 1992b; White et 
al., 1982; Taylor, 1974).  

To this end the coordinate system is that of toroidal geometry, 
which is suitable to most promising fusion reactors mainly 
tokomaks. A simple torus shown in Fig. 1 and Fig. 2 depicts the 
toroidal geometry of a tokomak reactor and the divertor field 
lines configuration in the poloidal cross section respectively. 
Where the toroidal axis vertical by convention; it is encircled by 
the magnetic axes, a single toroidal field line that generally locates 
the peak of the plasma current and plasma density profiles as 
function of 𝜓 the radial distance. The magnetic axis also identified 
with the toroidal direction parameter (𝜉) (Hazeltine et al., 1992). 
Similarly, closed poloidal curves encircling the magnetic axis, 
indicate the local poloidal direction (𝜃) (Alhasi, 2016; Wesson et 
al., 1987). 

In this work, we use an analytical model with cylindrical 
magnetic geometry to present the argument, noting that it can be 
readily generalized to toroidal geometry where the magnetic 
equilibrium is available. The generalization produces no 
qualitative change in the result (Loarte et al., 1992; Callen, 1991). 

 
Fig.1. General toroidal coordinates 

Firstly, an analytical solution for the magnetic field B 
produced by current filaments and the related magnetic surface 
function  𝜓 are given. Secondly, the use of 𝜓

 
as a coordinate in this 

system is explored, and its hyperbolic form is given. Thirdly, the 
simple character of the plasma drift velocity 𝜐𝐷 for this coordinate 
is derived. 

 
Fig. 2. Divertor field line configuration, seen in poloidal cross-section. 
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2. Magnetic field structure of poloidal divertor 

We consider magnetic field structure of the simplest 
distribution of currents that presents the characteristics of a 
poloidal divertor. This is the case of two equal currents (I) along 
two infinite conductors at a vertical distance (b) from the origin of 
coordinates, which is at the x-point position. A uniform toroidal 
field 𝐵𝑇 in the direction shown created by external coils is 
necessary for stability and balance of the effect of the plasma 
current (𝐼𝑃) (Shimomura et al., 1983), see Fig. 3. 

 

Fig. 3. Layout of the magnetic geometry used in the analytical model 
for the poloidal divertor. 

For magnetic structure distribution of two conductors 
carrying current (I) at 𝑥 = 0, 𝑧 = ±𝑏 we obtain the field strength 
at (𝑥, 𝑧), see Fig. 4: 
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Therefore the total  𝐵𝑧  component is; 

𝐵𝑧 =
𝜇0𝐼𝑥

2𝜋
{

1

𝑥2+(𝑏+𝑧)2 +
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Fig. 4. Layout geometry used to show the structure of the 
magnetic field components in (𝑥, 𝑧) plane. 

Similarly the total 𝐵𝑥  component is; 

𝐵𝑥 =
𝜇0𝐼

2𝜋
{

(𝑏−𝑧)

𝑥2+(𝑏−𝑧)2
−

(𝑏+𝑧)

𝑥2+(𝑏+𝑧)2
}                                                               (5) 

The field components  𝐵𝑧 and 𝐵𝑥  satisfy the following relations; 

𝐵𝑧 =
𝜕𝜓

𝜕𝑥
, and 𝐵𝑥 = −

𝜕𝜓

𝜕𝑧
                                                                             (6) 

where 𝜓 =
𝜇0𝐼

4𝜋
{ln[𝑥2 + (𝑏 + 𝑧)2] + ln[𝑥2 + (𝑏 − 𝑧)2]}                  (7) 

Since only the derivatives of 𝜓 are defined, we can add any 
constant to it. It is convenient to take ψ = 0 at the x-point where 

(𝑥 = 0, 𝑧 = 0). So, if we add a constant to 𝜓 equal to −
𝜇0𝐼

2𝜋
ln 𝑏, 

then we can write: 

𝜓 =
𝜇0𝐼

4𝜋
ln

[𝑥2+(𝑏+𝑧)2][𝑥2+(𝑏−𝑧)2]

𝑏4                                                               (8a)  

The hyperbolic nature for the magnetic field surfaces near a 
divertor separatrix can be shown, if we write it as (Alhasi, 2016; 
Alhasi, 1995): 

𝜓 =
𝜇0𝐼

4𝜋
ln Λ , where Λ =

1

𝑏4
[𝑥2 + (𝑏 + 𝑧)2][𝑥2 + (𝑏 − 𝑧)2]        (8b) 

The magnetic surfaces are given by: 

(i)-Λ = 1 implies 𝜓 = 0 , the separatrix. 

(ii)- 0 <  Λ < 1 implies 𝜓 < 0, negative inside the separatrix 
(private flux region). 

(iii)- Λ > 1 implies 𝜓 > 0 , positive outside the separatrix (shared 
flux region). Rewriting Eq. (8b) for Λ as 

𝑥2 = 𝑏√4𝑧2 + 𝑏2Λ  − (𝑏2 + 𝑧2)
 
                                                            (9) 

Let Λ ≤ 1 and ≪ 𝑏 , that is in the private region inside the 
separatix, then we can this as: 

𝑥2 ≅ 𝑏2  Λ
1

2 (1 +
2𝑧2

𝑏2Λ
1
2

)  − (𝑏2 + 𝑧2) ≅ 𝑏2 (Λ
1

2 − 1) + 𝑧2              (10) 

Thus, roughly we have: 𝑥2 − 𝑧2 ≅ 𝑏2 (Λ
1

2 − 1)                               (11) 

using Eq. (8a) we obtain: Λ = 𝑒𝑥𝑝
4𝜋𝜓

𝜇0𝐼
 

                                              (12) 

expanding the exponential in Eq. (12) we get 

 Λ ≈ 1 +
4𝜋𝜓

𝜇0𝐼
                                                                                               (13) 

Taking the square root of both sides of Eq. (13) and expand once 
more to have: 

 Λ
1

2 − 1 ≈
2𝜋

𝜇0𝐼
𝜓                                                                                           (14) 

Substituting this into Eq. (11) gives that, the magnetic surfaces 
near the x-point are approximately hyperbolic as:  

𝑥2 − 𝑧2 ≅
2𝜋𝑏2

𝜇0𝐼
𝜓                                                                                       (15) 

3. Magnetic flux surfaces 

Since 𝜓 is positive for 𝑧 = 0 , |𝑥| ≥ 0, that is in the shared flux 
region, and negative for 𝑥 = 0 , |𝑧| ≥ 0, that is in the private flux 
region, (Rusbridge, 1992; Alhasi, 2007). The field components 𝐵𝑧  
and  𝐵𝑥 

are determined from 𝜓, this allow the interpretation
 
of 𝜓 

as: 

a-The 𝜓 satisfies the following identity (Alhasi, 1995; Woods, 
1987): 

(𝑩 ∙ 𝛁)𝜓 = 𝐵𝑥
𝜕𝜓

𝜕𝑥
+ 𝐵𝑧

𝜕𝜓

𝜕𝑧
= 𝐵𝑥𝐵𝑧 − 𝐵𝑧𝐵𝑥 = 0                                  (16) 

which implies that 𝜓 is constant along field lines and can be used 
as a coordinate to distinguish them. 

b-The vector magnetic potential A defined by  𝐁 = 𝛁 × 𝐀 can 
be related to 𝜓. In an axisymmetric system with no variation in 
the toroidal direction 𝜉 (which incidentally coincide with the axial 
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coordinate of the cylindrical system in this representation). As we 

have 
𝜕

𝜕𝜉
= 0, thus; 

𝐵𝑥 =
𝜕𝐴𝜉

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝜉
  and    𝐵𝑧 =

𝜕𝐴𝑥

𝜕𝜉
−

𝜕𝐴𝜉

𝜕𝑥
 , which implies that            (17) 

𝐵𝑥 =
𝜕𝐴𝜉

𝜕𝑧
= −

𝜕𝜓

𝜕𝑧
 and 𝐵𝑧 = −

𝜕𝐴𝜉

𝜕𝑥
=

𝜕𝜓

𝜕𝑥
                                                (18) 

from which we obtain: 𝜓 = −𝐴𝜉                                                          (19) 

c- If  𝐵𝑥 vanishes, at  z = 0, then the magnetic field B is normal 
to x-axis, and the flux contained between the origin and a field line 

say 𝜓 = 𝜓0 is ∫ 𝐵𝑧𝑑𝑥
𝑥0

0
, 𝑥0 is the x-coordinate where the field line 

crosses the axis. But, since 𝐵𝑧 ≡
𝜕𝜓

𝜕𝑥
 , we get: 

𝑓𝑙𝑢𝑥 = ∫
𝜕𝜓

𝜕𝑥
𝑑𝑥 = ∆𝜓

𝑥0

0
                                                                           (20) 

Therefore, 𝜓(0) =0, and ∆𝜓 = 𝜓0. Thus, 𝜓0 represents the flux 
(strictly flux per unit axial length) contained between the field line 
labeled by  𝜓0 and the separatrix. The separatrix  𝜓 = 0 is the field 
line, which passes the x-point twice, see Fig. 5. 

 

Fig. 5. Sketch depicts the field line path of integration. 

d- Field line coordinates 

Properly the value of 𝜓 defines a flux surfaces rather than line, 
since in an ideal conductors (without ends) everything is 
independent of 𝜉, and a given field line traces out a surface, 
cylindrical in the general sense, as 𝜉 is varied. In general, any field 
line in any magnetic field structure requires two functions of 
position, say 𝛼 and 𝛽 to defined it uniquely (Hazeltine et al., 1992; 
Woods, 1987). These can always be chosen so that the magnetic 
field B is given by:  

𝑩 = 𝛁α × 𝛁𝛽                                                                                              (21) 

In this cylindrical geometry the field lines are intersections of 
surfaces of constant 𝜓 and surfaces of constant 𝜉. We choose, 

𝛼 = 𝜓 and 𝛽 = 𝜉, hence 𝛁𝛽 = 𝛁𝜉 = 𝑘̂, where 𝑘̂ is a unit vector in 
the 𝜉- direction. Thus: 

𝑩 = 𝛁ψ × 𝛁ξ = 𝛁ψ × k̂                                                                          (22) 

e-The use of 𝜓
 
 as a coordinate: 

Many expressions which would be very complicated if 
expressed in terms of special coordinate becomes simple if 
expressed in terms of 𝜓, and in many cases the effect is to take 
account automatically of the variation of field strength along a line 
of force. To show this effect, consider the drift velocity of charged 
particle due to an electric field normal to the magnetic field B 
(Alhasi, 2010; Rusbridge, 1992). Assume B is constant so that E 
must be derived from scalar potential, 𝑬 = −𝛁𝜙. We assume 𝜙 to 
be constant on a field line (often true when a plasma is present) 
so 𝜙 must be a function only of the coordinates 𝜓 and 𝜉 which are 
constant on a field line, (Woods, 1987; Wesson et al., 1987). 

Consider when 𝜙 is independent of 𝜉, and  𝜙 = 𝜙(𝜓). Then at 
any particular place, we can see that: 

𝐸 = −
𝑑𝜙

𝑑𝑛
                                                                                                      (23) 

Where 𝑑𝑛 is an element length normal to B and 𝜉. Therefore the 
drift velocity can be given as (Alhasi, 1992a; Rusbridge, 1992): 

𝜐𝐷 =
𝐸

𝐵
= −

1

𝐵

𝑑𝜙

𝑑𝑛
= −

𝑑𝜙

𝑑𝜓
                                                                          (24) 

Hence we can always write = 𝑑𝜓, we see that since 𝜙 = 𝜙(𝜓) 
where 𝜐𝐷 is a function of 𝜓 only and is constant along a field line. 
Now assume 𝜙

 
to be constant in any cross-section, but to vary 

with 𝜉, and 𝜙 = 𝜙(𝜉). This gives rise to a drift normal to B but in 
the cross-sectional plane normal to 𝜉 , we call this the 𝜓-direction. 
The drift velocity is: 

 𝜐𝐷 = −
1

𝐵

𝑑𝜙

𝑑𝜉
                                                                                                (25) 

which is not constant along a field line. We can also write: 

𝐵𝜐𝐷 = 𝐵
𝑑𝑛

𝑑𝑡
=

𝑑𝜓

𝑑𝑡
 so that   

𝑑𝜓

𝑑𝑡
= −

𝑑𝜙

𝑑𝜉
                                                  (26) 

This quantity is constant along a field line. Thus in a given 
time particles move through a fixed flux difference irrespective of 
where they are on the field line, and all particles starting together 
on one field line finish together on another (Alhasi, 1995; 
Rusbridge, 1992). 

4. Conclusion 

In this work, we have derived the hyperbolic structure of the 
magnetic field lines, and the magnetic surfaces coordinates. This is 
created by the introduction of the so-called magnetic poloidal 
divertor due to two current carrying conductors inside the 
tokamak chamber. The simple expression for vector magnetic 
potential and the drift velocity in this coordinates is obtained, 
which will be very complicated otherwise. The study of the 
multipole filaments magnetic surface function and their solutions 
by the Green's method, and the method of images, which gave our 
solution for Eq. (7) as special case is lengthily and deferred to 
future work (Hazeltine et al., 1992; Taylor, 1974). 
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