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In this paper, the scheme of constructing high-order accurate totally volume discontinuous 
finite element method for the numerical solution of the 1D Euler equations is extended to 2D 
Euler equations on Cartesian meshes. In the present work, the boundary integral fluxes are 
transformed into volume integral by applying divergence theorem to the boundary integral of 
the Riemann fluxes. Therefore, the totally volume discontinuous finite element is independent 
on the boundary integral fluxes at the element boundaries as opposed to the classical discon-
tinuous Galerkin method. The accuracy is obtained by applying high-order polynomial approx-
imations within elements using the tensor product of Lagrange polynomial. For temporal in-
tegration, strong stability preserving Runge-Kutta method SSPRK (3, 3) is applied. The scheme 
is stabilized by using Streamline Upwind Petrov Galerkin (SUPG) stabilization technique. For 
the spatial discretization, the polynomial of order 1and 2 are used, the shape function is con-
structed for the master (computational) element after applying the coordinate transformation 
for the physical domain, the transformation for the governing equations is performed to get it 
in the function of computational Cartesian, then the governing equations are put in conserva-
tive form. The numerical results of applying totally volume integral discontinuous Galerkin 
method for two-dimensional Euler equations presented in this paper show that the scheme is 
very accurate, fast, and effective even with shock appearance. 
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1. Introduction 

The original discontinuous Galerkin method (DG) was intro-
duced by (Reed and Hill, 1973) for solving the neutron transport 
(linear hyperbolic equations). There are several methods that use 
DG formulation to discretize the governing equations. A major de-
velopment of the DG method was realized by Cockburn and Shu, 
1989; Cockburn and Shu, 1990; Cockburn and Shu, 1998; Cock-
burn, 1991 and Cockburn et al. 2009), these papers introduced and 
developed the well-known Runge-Kutta discontinuous Galerkin 
(RKDG) method and the local discontinuous Galerkin (LDG), which 
is an extension of RKDG for solving the convection-diffusion prob-
lems like the Navier-Stokes equations. In general, the LDG method 
treats the solutions of the second or higher spatial derivatives. The 
basic idea of LDG is to rewrite the original equations as large sys-
tems of first-order differential equations and then discretize them 
by using RKDG method. In this work, we extend the previous work 
of constructing high order accurate totally volume discontinuous 
Galerkin for the numerical solution of the 1D Euler equations (El-
hadi and Rustum, 2017) to 2D Euler equations on Cartesian 
meshes. 

2. Totally volume discontinuous Galerkin formulation 

2.1. Space discretization 

For the numerical solution of Euler equations by using TVI-DG 
the Euler equations can be written in a conservative form as in clas-
sical DG. Euler equations in the conservative form are written as  
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𝜕𝑸

𝜕𝑡
+ ∇. 𝐹(𝑄) = 0                                                                                        (1) 

With fitted initial-boundary conditions. Where Q is a vector of con-
servative variables and F(Q) is a vector of fluxes in two dimensions 
with its Cartesian components f(Q) and g(Q). The conservative var-
iables Q and the Cartesian components f(Q) and g(Q) of the flux F(Q) 
are expressed as: 

𝑄 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑒

] . . , 𝑓(𝑄) = [

𝜌

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌ℎ𝑢

] . . , 𝑔(𝑄) [

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌ℎ𝑣

]                          (2) 

where 𝜌 is the fluid density u and v are the velocity components, p 
is the pressure, e is the total internal energy per unit mass, and the 
total enthalpy per unit mass h can be defined as ℎ = 𝑒 + 𝑝/𝜌. By 
assuming that the fluid is a perfect gas, then p can be estimated as 
𝑝 = (𝛾 − 1)𝜌(𝑒 − 𝑢2/2), where 𝛾 is the specific heat ratio of the 
fluid. By multiplying by a ‘‘weight function’’ w, integrating over the 
domain Ω, and performing integration by parts we get the weak 
form of the problem:

 
∫ 𝑤

𝜕𝑄

𝜕𝑡𝛺

𝑑𝛺 + ∮ 𝑤𝐹(𝑄). 𝒏𝑑𝛤
𝛤

− ∫ ∇w. F(Q)dΩ
𝛺

= 0                   (3) 

where 𝛤 indicates the boundary of element E and 𝛺 is the volume 
of the element. By subdividing the domain 𝛺 into non-overlapping 
elements E, 𝛺 = ⋃ 𝛺ℎ

𝑁
𝑗=1   and by assuming functions 𝑄ℎ and 𝑤ℎ , 
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defined within each element, given as the linear  combination of n 
shape functions 𝛷𝑖   

𝑄ℎ(𝑋, 𝑡) = ∑ 𝑄𝑖

𝑛

𝑖=1

(𝑡)𝛷𝑖(𝑋)                                                                       (4) 

𝑤ℎ(𝑋) = ∑ 𝑤𝑖

𝑛

𝑖=1

𝛷𝑖(𝑋)                                                                                (5) 

The coefficients 𝑄𝑖 and 𝑤𝒊 indicate the degrees of freedom of the 
numerical solution of the state variable and the test function for 
every element E. Eq. (3) is valid to each element 𝛺ℎ, applying Eq. 
(3) to each element over the entire domain yields: 

∫ [𝑤ℎ
𝛺ℎ

𝜕𝑄ℎ

𝜕𝑡
− ∇𝑤ℎ. 𝐹(𝑄ℎ)]𝑑𝛺ℎ + ∫ 𝑤ℎ

𝛤ℎ

𝐹(𝑄ℎ). 𝒏 𝑑𝛤ℎ = 0           (6) 

where 𝛤ℎ denotes the boundary of the element E and n is an out-
ward vector normal to the boundary. Since the weight function con-
sists of a linear combination of shape n functions, Eq. (6) is valid for 
each shape function in the weight function, by replacing the weight 
function with any of its shape functions yields to  

∫ [𝛷𝑖
𝛺ℎ

𝜕𝑄ℎ

𝜕𝑡
− ∇𝛷𝑖 . 𝐹(𝑄ℎ)]𝑑𝛺ℎ + ∫ 𝛷𝑖

𝛤ℎ

𝐹(𝑄ℎ). 𝒏 𝑑𝛤ℎ = 0              (7) 

a system of n equations is constructed. The flux that appeared at 
the last term can be replaced by the numerical flux due to disconti-
nuity at the interface between the elements, so the 𝐹(𝑄ℎ). 𝒏 is re-
placed by numerical flux function 𝐹𝑢(𝑄ℎ

−, 𝑄ℎ
+) which depends on the 

internal interface state 𝑄ℎ
−, and on the neighboring element inter-

face state 𝑄ℎ
+ , and on the direction n normal to the interface in this 

work the Lax flux (LF) is applied at the boundaries with the follow-
ing formulation: 

𝑓𝑢(𝑄+, 𝑄−) = 0.5[𝑓(𝑄+) + 𝑓(𝑄−) − 𝛼(𝑄+ − 𝑄−)]                           (8) 

where 𝛼 is an estimate of the biggest eigenvalue of the Jacobian 
matrix (Toro, 1999). 

In order to unify the integrals (surface integral and volume in-
tegral), the totally volume integral of the upwind flux scheme for 
DG method is used for this purpose. This can be achieved by using 
the relation between surface and volume integrals for any vector B, 
which is given by the divergence theorem as: 

∯ 𝐵. 𝒏𝑑𝛤
𝑠

=∰ ∇. 𝐵𝑑𝑉
𝑉

                                                                          (9) 

where Γ and V are the surface and volume of the problem domain. 
The totally volume integral DG method is obtained by applying 

the divergence theorem to the last term of Eq. (7) and rearrange-
ment to give the following form  

∫ [𝛷𝑖
𝛺ℎ

𝜕𝑄ℎ

𝜕𝑡
− ∇𝛷𝑖 . 𝐹(𝑄ℎ) + ∇(𝛷𝑖𝐹𝑢(𝑄ℎ))]𝑑𝛺ℎ = 0                       (10) 

where 𝐹(𝑄ℎ) is the physical flux and 𝐹𝑢(𝑄ℎ) is numerical flux, both 
physical and numerical flux can be approximated by a polynomial 
of order n as done for the 𝑄ℎ and 𝑤ℎ  

𝐹(𝑄ℎ) = ∑ 𝐹𝑖
𝑛
𝑖=1 (𝑄ℎ)𝛷𝑖,𝐹𝑢 = ∑ 𝐹𝑢,𝑖

𝑛
𝑖=1 𝛷𝑖                                          (11) 

For two dimensions the Eq. (10) can be written as 

∫ [𝛷𝑖
𝛺ℎ

𝜕𝑄ℎ

𝜕𝑡
−

𝜕𝛷𝑖

𝜕𝑥
𝑓(𝑄ℎ) + 𝛷𝑖

𝜕𝑓𝑢(𝑄ℎ)

𝜕𝑥
+

𝜕𝛷𝑖

𝜕𝑥
𝑓𝑢(𝑄ℎ) −

𝜕𝛷𝑖

𝜕𝑦
𝑔(𝑄ℎ)

+ 𝛷𝑖

𝜕𝑔𝑢(𝑄ℎ)

𝜕𝑦
+

𝜕𝛷𝑖

𝜕𝑦
𝑔𝑢(𝑄ℎ)]𝑑𝑥𝑑𝑦 = 0         (12) 

By assembling all the elemental contributions, the system of or-
dinary differential equations which govern the evolution in time of 
the discrete solution can be written as: 

𝑀
𝑑𝑄

𝑑𝑡
= 𝑅(𝑄)                                                                                             (13) 

𝑑𝑄

𝑑𝑡
= 𝐿                                                                                                         (14) 

where,  

𝐿(𝑄) = 𝑀−1𝑅(𝑄)                                                                                     (15) 

where M denotes the mass matrix, Q is the global vector of the num-
ber of degrees of freedom, and R(Q) is the residual vector. In order 
to describe the geometry of the elements and define the shape func-
tions employed in this work, 2D Quadrilateral Elements are em-
ployed in the present work. The shape functions are written by us-
ing Lagrangian functions for normalizing elements after applying 
coordinate transformation in order of getting the master element. 

2.2. Temporal discretization   

In the present work high order Runge-Kutta method 
SSPRK(3,3) is used to approximate the solution of the ODE (semi-
discrete equation) of the form: 

𝑑𝑄

𝑑𝑡
= 𝐿(𝑄)                                                                                                  (16) 

The RK (3,3) can be expressed in the following form: 

𝑄(1) = 𝑄(𝑚) + ∆𝑡 𝐿(𝑄(𝑚))                                                                  (17𝑎) 

𝑄(2) =  
3

4
𝑄(𝑚) +

1

4
[𝑄(1) + 𝐿(𝑄(1))]                                                 (17𝑏) 

𝑄(𝑚+1) =
1

3
𝑄(𝑚) +

2

3
[𝑄(2) + 𝐿(𝑄(2))]                                             (17𝑐) 

where 𝑄(𝑚) is the solution at a time 𝑡𝑚 and 𝑄(𝑚+1) is the solution 
at the next step of time after the intermediate m steps are applied. 
The formulation of Courant number (CFL) used in this work can be 
written as: 

CFL = ∆𝑡 ∑
𝜆𝑖

∆𝑥𝑖

𝑖=𝑑

𝑖=1

                                                                                      (18) 

where d is the number of coordinates dimension, λ is the absolute 
maximum eigenvalue of the Jacobian matrix and ∆𝑥 is the maxi-
mum length of the element, ∆𝑡 is the time step size. 

2.4. The Stabilization technique 

The main idea is to use the Taylor series expansion of the 
weighting functions along with the streamline directions. Thus, in 
the streamline upwind, the weighting function is perturbed by the 
term acting along with the characteristic directions. This is realized 
by additional term to the weighting function (test function) Thus 
for the weighting function as defined in Eq. (5) with the perturba-
tion can be written as in Nowakowski et al. (2011): 

𝑤ℎ(𝑋) = ∑[

𝑛

𝑖=1

𝛷𝑖(𝑋) + 𝛽∆𝑡𝜆. ∇𝛷𝑖(𝑋)]                                                (19) 

where 𝜆 is the absolute maximum eigenvalue of the governing 
equation ∆𝑡 is the time step. Substituting into Eq. (10) for two di-
mensions by assembling all the elemental contributions the system 
of ordinary differential equations, which govern the evolution in 
time of the discrete solution, can be obtained : 

∫ [𝛷𝑖
𝛺ℎ

𝜕𝑄ℎ

𝜕𝑡
−

𝜕𝛷𝑖

𝜕𝑥
𝑓(𝑄ℎ) + 𝛷𝑖

𝜕𝑓𝑢(𝑄ℎ)

𝜕𝑥
+

𝜕𝛷𝑖

𝜕𝑥
𝑓𝑢(𝑄ℎ) −

𝜕𝛷𝑖

𝜕𝑦
𝑔(𝑄ℎ)

+ 𝛷𝑖

𝜕𝑔𝑢(𝑄ℎ)

𝜕𝑦
+

𝜕𝛷𝑖

𝜕𝑦
𝑔𝑢(𝑄ℎ) + 𝛽∆𝑡𝜆𝑥

2
𝜕𝛷𝑖

𝜕𝑥

𝜕𝑄ℎ

𝜕𝑥

+ 𝛽∆𝑡𝜆𝑦
2

𝜕𝛷𝑖

𝜕𝑦

𝜕𝑄ℎ

𝜕𝑦
]𝑑𝑥𝑑𝑦 = 0                             (20) 
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The last equation has the stabilization parameters 𝛽∆𝑡𝜆𝑥
2  and 

𝛽∆𝑡𝜆𝑦
2  which means the solution is stable with suitable stabiliza-

tion parameters, where 𝜆𝑥 and 𝜆𝑦  are the maximum eigenvalues in 

x and y directions, respectively Nowakowski et al. (2011). 

2.3. The Numerical results  

Three numerical problems are selected to test the performance 
of the numerical scheme; the tests are also used to illustrate some 
typical wave patterns resulting from the solution of the problems, 
which are the Riemann problems. In order to test the effectiveness 
of the scheme, three different behavior of problems is considered: 
problem with the exact solution, problem with initial discontinuity 
(Riemann problem), and the problem with shock formation. Both 
the initial data and the results shown in the following figures are in 
terms of primitive variables. In all cases, the ratio of specific heat is 
1.4. 

2.3.1. Test example 1 

The first example is the two dimensional Euler equations pro-
posed in (Jiang and Shu, 1996) with initial conditions presented as:  

(𝜌, 𝑢, 𝑣, 𝑝) = (1. +.2 sin(𝜋(𝑥 + 𝑦)) , 0.7,0.3,1. ) 

The exact solution is given as 𝜌(𝑥, 𝑦, 𝑡) = 1. +.2 sin(𝜋((𝑥 + 𝑦) −
(𝑢 + 𝑣) 𝑡)), with 𝑢 = 0.7, 𝑣 = 0.3. The domain of the problem is 
[0,4] ×[0,4]. The domain is divided into equal elements, ∆𝑥 = ∆𝑦 =
1 10⁄ , 1 20⁄ , 1 40⁄ , 1 80⁄   and 1 160⁄ . Table. 1 shows the time steps 
with corresponding size steps for different orders of polynomials. 
The TVI-DG are applied with a polynomial of order 1 and 2. The 
numerical results are calculated at time equals 2. 

Table 1  

Time steps with corresponding size steps for 
a different order of polynomials 

 k=1 k=2 

∆𝑥 = ∆𝑦 ∆𝑡 ∆𝑡 

1/20 1/50 1/100 

1/40 1/100 1/200 

1/80 1/200 1/400 

1/160 1/400 1/800 

Table 2 shows the 𝐿1, 𝐿∞  norms and the order of accuracy 
when 𝑘 = 1 and RK (3, 3) are performed at t=2, the flux used at the 
boundaries is LF, the data contained in the table displays the effec-
tiveness and the accuracy of the method. The table uses two signif-
icant indicators to show the effectiveness of the scheme, error and 
the order of accuracy; it is observed that the order of accuracy is 
greater than the order of the polynomial by about 1.53, which 
means that the rate of convergence of the scheme is acceptable. 

Table 2  

The errors 𝐿1, 𝐿∞ and order of accuracy for 2D Euler equations with 
periodic boundary conditions at t = 2 by using a polynomial of or-
der k =1, with Lax flux 

N(number of elements) 𝐿1 Order 𝐿∞ Order 
100 1.90e-2  3.53e-2  

400 2.22e-3 3.10 5.82e-3 2.60 

1600 4.15e-4 2.42 1.21e-3 2.26 

6400 9.80e-5 2.08 2.76e-4 2.13 

 

Table 3 shows that the 𝐿1, 𝐿∞  norms and the order of accuracy 
when 𝑘 = 2 and RK (3, 3) are applied at t=2, the flux used at the 
boundaries is LF, The data achieved in the table shows that the 
scheme works effectively. The order of accuracy is greater than the 
order of the polynomial, which means that the rate of convergence 
of the scheme is satisfactory. 

Table 3  

The errors 𝐿1, 𝐿∞ and order of accuracy for 2D Euler equations with pe-
riodic boundary conditions at t = 2 by using a polynomial of order k =2 

N(number of elements) 𝐿1 Order 𝐿∞ Order 

100 5.91e-3  1.19e-2  

400 1.09e-3 2.44 2.19e-3 2.44 

1600 1.97e-4 2.47 3.97e-4 2.46 

6400 2.92e-5 2.75 5.8e-5 2.78 

Table 4 shows the computational time of the present TVI-DG 
method in comparison with the computational time that was 
achieved in Elhadi (2011). The current CPU time is obtained using 
(Intel(R) Core(TM) i5-4200M CPU@ 2.5 GHz (4 CPUs) 4096 RAM). 
It can be seen that the present method CPU time is extremely quick 
in comparison with NDG method. These results are obtained when 
𝑘 = 2 and RK (3,3) are applied at 𝑡 = 2, the flux used at the bound-
aries is LF. 

Table 4  

The CPU time in seconds for the 2D Euler equations with the periodic 

boundary conditions at t = 2 using the polynomial of order k = 2  

N(number of elements) CPU(S) ,NDG CPU(S) ,TVI-DG 
100 4.65 0.6 

400 37.88 4.55 

1600 303.44 36.28 

6400 2507.02 292.13 

 
Fig. 1. Comparison of 𝑳𝟏 errors of the k=1, and 2 for test 4 at t=2, 
with LF, for 100, 400, 1600, and 6400 elements 

 
Fig. 2. Comparison of 𝐿∞ errors of the k =1 and 2 for test 4 at t=2, 
with LF, for 100, 400, 1600, and 6400 elements 

Fig. 1 and Fig. 2 show the errors of 𝐿1 and 𝐿∞ for the test prob-
lem at different mesh sizes with k=1 and k=2, the figures reveal that 
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all errors decrease whether with increasing of the order of polyno-
mials or with decreasing of mesh size, these results indicate the ef-
fectiveness of the TVI-DG method. 

2.3.2. Test example 2 

The second test example is a Mach 3 wind tunnel step (forward-
facing step problem) in two dimension flow cases. It was initially 
proposed in (Woodward and Colella, 1984). The present computa-
tional results are obtained by using N equally elements of the size 
∆𝑥 = ∆𝑦 = 1 160⁄  with corresponding time step 𝛥𝑡=1 12800⁄ . The 
boundary conditions applied are the supersonic inflow from the 
left and the supersonic outflow to the right, while the slip boundary 
conditions (reflecting boundary conditions) are performed for the 
upper and lower and the face at the forward step. The initial data is 
presented as (ρ, u, v, p) = (1.4, 3, 0, 1.) The numerical boundary flux 
is performed by using the LF. The time discretization is applied by 
using RK (3, 3) for the TVI-DG of the polynomials of orders k = 1. 

2.3.2. Test example 2 

The second test example is a Mach 3 wind tunnel step (forward-
facing step problem) in two dimension flow cases. It was initially 
proposed in (Woodward and Colella, 1984). The present computa-
tional results are obtained by using N equally elements of the size 
∆𝑥 = ∆𝑦 = 1 160⁄  with corresponding time step 𝛥𝑡=1 12800⁄ . The 
boundary conditions applied are the supersonic inflow from the 
left and the supersonic outflow to the right, while the slip boundary 
conditions (reflecting boundary conditions) are performed for the 
upper and lower and the face at the forward step. The initial data is 
presented as (ρ, u, v, p) = (1.4, 3, 0, 1.) The numerical boundary flux 
is performed by using the LF. The time discretization is applied by 
using RK (3, 3) for the TVI-DG of the polynomials of orders k = 1. 

 
Fig. 3. The density contours for the forward facing step problem, Δx = Δy = 
1/160, k =1, t = 0.5 

 
Fig. 4. The density contours for the forward facing step problem, Δx = Δy = 
1/160, k =1, t =1 

 

 
Fig. 5. The density contours for the forward facing step prob-
lem, Δx = Δy = 1/160, k =1, t =1.5 

 

Fig. 6. The density contours for the forward facing step problem, Δx 
= Δy = 1/160, k =1, t =2 

 

Fig. 7. The density contours for the forward facing step problem, Δx 
= Δy = 1/160, k =1, t =2.5 

 

 

Fig. 8. The density contours for the forward facing step problem, 
Δx = Δy = 1/160, k =1, t =3 

 

Fig. 9. The density contours for the forward facing step problem, 
Δx = Δy = 1/160, k =1, t = 3.5 

 

Fig. 10. The density contours for the forward facing step problem, 
Δx = Δy = 1/160, k =1, t = 4 

Figures from Fig. 3 to Fig. 10 show the density contours 
(30,0.2365-5.647), (30,0.268-7.564), (30,0.2805-7.717), 
(30,0.2668-6.65), (30,0.2668-6.602), (30,0.2673-6.383), (30,0.27-
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6.5) and (30,0.275-6.1) for the forward-facing step problem by us-
ing TVI-DG at t=0.5,1,1.5,2,2.5,3 , 3.5and 4 by using polynomial of 
order k=1 with mesh size of ∆𝑥 = ∆𝑦 = 1 160⁄ , LF flux is applied at 
the boundaries. The figures display the behavior of the solution at 
different times, the figures reveal the gradualism of formation, re-
flections, and the interactions of shock lines at the lower, facing, 
and the upper walls. 

 

Fig. 11. The density contours for the forward facing problem, 
∆𝑥 = ∆𝑦 = 1 160⁄ , 𝑘 = 2, 𝛽 = 2.5, 𝑡 = 4 

Fig. 11 displays the density contour (30, 0.25-6.1) for the for-
ward-facing step problem by using TVI-DG at t = 4, k = 2 with a 
mesh size of∆x = ∆y = 1 160⁄ , LF flux is applied at the boundaries. 
The main observation is that the shock width is thinner than in Fig. 
10. In addition, the second reflection of shock waves on the upper 
wall occurs at a position about x = 2.4.  

2.3.3. Test example 3 

The third example is considered as two dimensional Riemann 
problem which is introduced in Brio et al. (2011). Initial data can 
be written as: 

𝐼𝑓  1 ≤ 𝑥 ≤ 2    𝑎𝑛𝑑  1 ≤ 𝑦 ≤ 2    (𝜌, 𝑢, 𝑣, 𝑝) = (0.5312,0,0,0.4) 

𝐼𝑓  0 ≤ 𝑥 ≤ 1    𝑎𝑛𝑑  1 ≤ 𝑦 ≤ 2    (𝜌, 𝑢, 𝑣, 𝑝) = (1,0.7276,0,1) 

𝐼𝑓  0 ≤ 𝑥 ≤ 1    𝑎𝑛𝑑  1 ≤ 𝑦 < 2    (𝜌, 𝑢, 𝑣, 𝑝) = (0.8,0,0,1) 

𝐼𝑓  1 ≤ 𝑥 ≤ 2    𝑎𝑛𝑑  0 ≤ 𝑦 < 0    (𝜌, 𝑢, 𝑣, 𝑝) = (1,0,0.7276,1) 

The proposed problem consists initially of two contact discon-
tinuities and two shock waves, one of the contact discontinuities 
occurs between the third and second quadrants and the other ex-
ists between the third and fourth quadrants. Density contours at 
t=0 (initial) are displayed in Fig. 12 TVI-DG is applied with the or-
der of polynomial k=1, with mesh size ∆𝑥 = ∆𝑦 = 1 400⁄  with cor-
responding Time step ∆𝑡 = 1/4000. RK (3,3) is used for temporal 
discretization, the numerical flux at boundaries performed is  LF. 
The results are obtained at the time, t=0.52. 

 

Fig. 12. The density contours 29  ρ:(0.53-1.71) for test 
example 3 at t=0 

 

Fig. 13. The density contours 30  𝝆: (𝟎. 𝟓𝟑 − 𝟏. 𝟕𝟏) obtained 
using RK-TVI, ∆𝑥 = ∆𝑦 = 1/400,  RK (3, 3), LF, t=0.52 

Fig. 13 shows the pattern of the solution, the main observation 
is that the interaction of two shocks that is occurred between the 
second and first quadrants and the shock that is existed between 
the first and fourth quadrants. In addition, the contact lines en-
counter the sonic circle of constant state in the third quadrant and 
bend to the end in spirals inside the subsonic area of the circle’s 
portion lying in this quadrant. Due to interaction between the Mach 
shocks the three pairs of shocks have appeared so, the subsonic 
zone is surrounded by two joining Mach shocks and the reflected 
shocks. The last observation is that the shocks that appeared are 
thin reflecting the strength of the scheme. 

3. Conclusions  

Constructing high-order accurate totally volume discontinuous 
finite element method for the numerical solution of the 2D Euler 
equations as an extension of 1D Euler equations on cartesian 
meshes has been made successfully. The boundary integral fluxes 
are transformed into volume integral by applying divergence theo-
rem to the boundary integral of the Riemann fluxes. The numerical 
results are obtained by applying totally volume integral discontin-
uous Galerkin method for different problems that involve smooth 
solution, initial discontinuity (Riemann problem), and shock for-
mation. Based on the results of the present study, the following ob-
servations and inferences can be drawn: 

1. The totally volume discontinuous Galerkin (TVI-DG) works 
very efficiently for the considered test problems, whether 
shock appears or not. Furthermore, the analysis of the results 
for the Riemann problems in 2D, which is consisted of different 
types of discontinuities like shock waves and contact also their 
reflections and interactions show that the scheme plainly de-
scribes the behavior of the solution with all its details.  

2. The stabilization parameter 𝛽 depends on the type of intensity 
of the discontinuity, the mesh size, and the time step used. The 
main observation is that the stabilization parameter 𝛽 has to be 
minimum, because its main function is to capture the oscilla-
tions, and if the stabilization factor 𝛽 is larger than the required 
value to keep the solution smooth, the solution will be less ac-
curate. 

3. As for the speed of getting the solution, the TVI-DG is faster than 
NDG by about nine times which is considered a satisfactory re-
sult, this acceleration is a result of the disappearance of bound-
ary integral over the cell and transfers it to the integral over the 
volume which makes the implementation of the code more suit-
able to get the fast and accurate solution. 
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