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We employ Schauder fixed-point Theorem to prove the existence of at least one positive con-
tinuous solution of the quadratic integral equation  

𝑥(𝑡) = 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠,        𝑡 ∈ [0, 𝑇]  

𝑡

0

 

Moreover, the maximal and the minimal solutions of the last equation are also proved. Keywords: 

Urysohn quadratic integral equation, Carathéo-
dary functions, monotonic nonincreasing, maximal 
and minimal solutions, Lebesgue integrable func-
tions 
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1. Introduction 

The study of integral equations is one of the most important 
topics that researchers are interested in, it arises in many scientific 
fields for instance engineering, and mathematical and scientific 
analysis. The first who mentioned the term integral equations is Du 
Bois-Reymond (1888). As a result, a lot of interest appeared from 
researchers, and the most important of these researchers are La-
place, Fourier, Poission, Liouville, and Able. Upadhyay et al., (2015) 
provided some special types of integral equations. The quadratic 
integral equation is a special form of integral equations. The initial 
study appeared by Chandrasekhar (1947). More appearance of 
Quadratic integral equation was in the theory of radiative transfer, 
kinetic theory of gases, in the theory of neutron transport, and in 
the traffic theory, see Argyros (1985), Banaś et al. (2007), El-Sayed 
et al. (2008). 

Due to the importance of the quadratic integral equation, re-
searchers are interested in studying the existence of its solution, 
and one of the most important methods that have been used to 
prove the existence of the solution of the quadratic integral equa-
tion is fixed-point theory. Uses of fixed-point theory appeared in 
many scientific articles for a wealth of reference material on the 
subject, we refer to Elmabrok et al. (2018), Khalili et al. (2019), Rao, 
et al. (2020) and the references in them. 

Recently, El- Sayed, et al. (2008) considered the quadratic inte-
gral equation 
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𝑥(𝑡) = 𝑎(𝑡) + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

∫ 𝑔(𝑠, 𝑥(𝑠))𝑑𝑠                                 (1.1)

𝑡

0

 

They proved the existence of at least one continuing positive solu-
tion; also, they proved the existence of the maximal and minimal 
solutions. 

Mohamed et al. (2014) discussed the quadratic integral equation 

𝑥(𝑡) = 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠,   𝑡 ∈ [0, 𝑇]  (1.2)

𝑡

0

 

and show that it has a unique positive continuous solution by using 
Banach fixed point Theorem. 

The purpose of this study is mainly concerned with at least ex-
ists one continuing positive solution of Eq (1.2), and the existence 
of the solutions of the maximal and minimal by means of the 
Schauder fixed-point Theorem, in which we provide new 
conditions that match the requirements of the theory. Also, this 
article is a scientific addition for every researcher interested in 
studying quadratic integral equations, as it sheds light on the 
possibility of using different methods to prove the existence of 
maximal and minimal solutions to integral equations and obtain 
the same results according to the standards and conditions 
imposed for each problem. This article has been organized as fol-
lows: Section 2 provides the basic definitions as well as the most 
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important theories of the Time scale which will need it, and Section 
3 contains the main results. 

2. Preliminaries 

We present a collection of auxiliary facts in this section which 
are further required. Let 𝐼 = [0, 𝑇], and  𝐿1 = 𝐿1[0, 𝑇] be Lebesgue's 
Space integrable functions on 𝐼. Since we are searching for at least 
exists one continuing positive solution of Eq (1.2), it is natural to 
assume that 

I. 𝑎 ∶ 𝐼 = [0, 𝑇] → 𝑅+ is continuous,      𝑎 = sup
𝑡∈[0,𝑇]

|𝑎(𝑡)|.   

II.  𝑓𝑖 ∶ [0, 𝑇] × [0, 𝑇] × 𝑅+ → 𝑅+  

are Carathéodary functions ( i.e. measurable in (𝑡, 𝑠) for all 𝑥 ∈ 𝑅+ 
and continuous in 𝑥 for almost all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇]) and there 
exist the functions   𝑚𝑖(𝑡, 𝑠)  such that  

|𝑓𝑖(𝑡, 𝑠, 𝑥)| ≤ 𝑚𝑖(𝑡, 𝑠),      𝑖 = 1,2  

and ∫ 𝑚𝑖(𝑡, 𝑠)𝑑𝑠 ≤ 𝑀𝑖 ,     𝑖 = 1,2,
𝑡

0
  𝑡 ∈ [0, 𝑇]. Moreover 𝑓𝑖 , 𝑖 = 1,2 

are monotonic nonincreasing in 𝑡 ∈ [0, 𝑇]. 

Now, we state the main theories that will have an effective role to 
reach the desired result 

Theorem 2.1 Schauder fixed-point Theorem (Geobel et al., 
1990) 

Let Ψ be a convex subset of a Banach space ℬ, Suppose  ℱ: 𝛹 → 𝛹 
is compact, continuous. Then ℱ has at least one fixed-point in Ψ. 

Theorem 2.2 Arzela-Ascoli Theorem (Kolmogorov et al., 1975) 

Let ℧ be a compact metric space and 𝐶(℧) be the Banach space of 
real or complex-valued continuous functions normed by  

‖𝑓‖ = max
𝑡∈℧

|𝑓(𝑡)|.    

If ℵ = {𝑓𝑛} is a sequence in 𝐶(℧) such that  𝑓𝑛  is uniformly bounded 
and equi-continuous. Then the closure of ℵ is compact. 

Theorem 2.3 Lebesgue Dominated Convergence Theorem 
(Kolmogorov et al., 1975) 

Let {ℓ𝑛} be a sequence of functions converging to a limit ℓ on 𝐴, and 
suppose that 

|ℓ𝑛(𝑡)| ≤ ∅(𝑡), 𝑡 ∈ 𝐴, 𝑛 = 1, 2, 3, ……. 

Where ∅ is an integrable function on 𝐴. Then ℓ is integrable on 𝐴 
and  

lim
𝑛→∞

∫ ℓ𝑛(𝑡) 𝑑𝜇

𝐴

= ∫ ℓ(𝑡) 𝑑𝜇.

𝐴

 

Lastly, we provide the next definition, introduced by Lakshmikan-
tham et al. (1969) which will be needed later in this paper. 

Definition 2.4 Let 𝑐(𝑡) be a solution of the quadratic integral equa-
tion Eq (1.1). Then 𝑐(𝑡) is said to be a maximal solution of Eq (1.1) 
if every solution 𝑥(𝑡) of Eq (1.1) satisfies the inequality. 

𝑥(𝑡) < 𝑐(𝑡), 𝑡 ∈ [0, 𝑇].                                                                           (2.1) 

A minimal solution 𝑛(𝑡) can be defined similarly by reversing the 
inequality (2.1) i.e 

𝑥(𝑡) > 𝑛(𝑡), 𝑡 ∈ [0, 𝑇].   

3. Main result 

We introduce and prove the main result in this section. Allow 
𝐶 =  𝐶[0, 𝑇] to be the continuous functions space on I and set 𝑆 by 

𝑆 = {𝑥 ∈ 𝐶: 0 < 𝑥 ≤ 𝑟}  ⊂  𝐶[0, 𝑇],  where 𝑟 = 𝑎 + 𝑀1𝑀2. 

It is obvious that 𝑆 is closed, convex, bounded, and nonempty. 

 

Theorem 3.1 

Suppose (I) and (II) are satisfied, then Eq (1.2) has at least one 
continuing positive solution 𝑥 ∈ 𝐶[0, 𝑇]. 

Proof 

Define the mapping  𝐹  by  

𝐹𝑥(𝑡) = 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠                     (3.1)

𝑡

𝑜

 

let 𝑥 ∈ 𝑆, then 

|𝐹𝑥(𝑡)| = |𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

𝑜

| 

               ≤ |𝑎(𝑡)| + ∫|𝑓1(𝑡, 𝑠, 𝑥(𝑠))|

𝑡

0

𝑑𝑠 ∫|𝑓2(𝑡, 𝑠, 𝑥(𝑠))|

𝑡

0

𝑑𝑠 

               ≤ |𝑎(𝑡)| + ∫ 𝑚1(𝑡, 𝑠)

𝑡

0

𝑑𝑠 ∫ 𝑚2(𝑡, 𝑠)

𝑡

0

𝑑𝑠 

               ≤ 𝑎 + 𝑀1𝑀2 = 𝑟. 

This leads that 𝐹 and {𝐹(𝑥)} is uniformly bounded. 

Let 𝑡1, 𝑡2 ∈ [0, 𝑇], 𝑡1 < 𝑡2 and |𝑡2 − 𝑡1| ≤ 𝛿, then 

|𝐹𝑥(𝑡2) − 𝐹𝑥(𝑡1)| = |𝑎(𝑡2) − 𝑎(𝑡1) 

     + ∫ 𝑓1(𝑡2, 𝑠, 𝑥(𝑠))

𝑡2

0

𝑑𝑠 ∫ 𝑓2(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

0

 

     − ∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠 ∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠| 

     = |𝑎(𝑡2) − 𝑎(𝑡1) 

           +[∫ 𝑓1(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡1

0

+ ∫ 𝑓1(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

𝑡1

] ∫ 𝑓2(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

0

 

               − ∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠 ∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠| 

                              ≤ |𝑎(𝑡2) − 𝑎(𝑡1)| 

                              + |∫ 𝑓1(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠
𝑡1

0 ∫ 𝑓2(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠
𝑡2

0
 

                              +∫ 𝑓1(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠
𝑡2

𝑡1
∫ 𝑓2(𝑡2, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

0
 

                             − ∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠 ∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠| 

                               ≤ |𝑎(𝑡2) − 𝑎(𝑡1)| 

                                   + |∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡1

0

∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

0

 

                                   + ∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

𝑡1

∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

0

 

                                  − ∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠 ∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠| 
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                                   ≤ |𝑎(𝑡2) − 𝑎(𝑡1)| 

                                   + |∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡1

0

[ ∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

0

− ∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))

𝑡1

0

𝑑𝑠] 

                                    + ∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

𝑡1

∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡2

0

| 

                                    ≤ |𝑎(𝑡2) − 𝑎(𝑡1)| 

                                   + ∫ |𝑓1(𝑡1, 𝑠, 𝑥(𝑠))|𝑑𝑠 ∫ |𝑓2(𝑡1, 𝑠, 𝑥(𝑠))|𝑑𝑠
𝑡2

𝑡1

𝑡1

0
 

                                  + ∫ |𝑓2(𝑡1, 𝑠, 𝑥(𝑠))|
𝑡2

0
𝑑𝑠 ∫ |𝑓1(𝑡1, 𝑠, 𝑥(𝑠))|

𝑡2

𝑡1
𝑑𝑠 

                                  ≤ |𝑎(𝑡2) − 𝑎(𝑡1)| 

                                    + ∫ 𝑚1(𝑡, 𝑠)

𝑡1

0

𝑑𝑠 ∫ 𝑚2(𝑡, 𝑠)

𝑡2

𝑡1

𝑑𝑠 

                                   + ∫ 𝑚2(𝑡, 𝑠)

𝑡2

0

𝑑𝑠 ∫ 𝑚1(𝑡, 𝑠)

𝑡2

𝑡1

𝑑𝑠. 

That tells us 𝐹{𝑥} is eque-continuous on [0, 𝑇]. Using Arzela-Ascoli 
Theorem, we found that 𝐹 is compact. 

Now we show that  𝐹: 𝑆 → 𝑆 is continuous. Let {𝑥𝑛} ⊂   𝑆, and  
𝑥𝑛 → 𝑥, then 

𝐹𝑥𝑛(𝑡) = 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥𝑛(𝑠))

𝑡

0

𝑑𝑠 ∫ 𝑓2(𝑡, 𝑠, 𝑥𝑛(𝑠))

𝑡

0

𝑑𝑠 

lim
𝑛→∞

𝐹𝑥𝑛(𝑡) = lim
𝑛→∞

𝑎(𝑡) + lim
𝑛→∞

{ ∫ 𝑓1(𝑡, 𝑠, 𝑥𝑛(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥𝑛(𝑠))𝑑𝑠

𝑡

0

}. 

Now  

𝑓𝑖(𝑡, 𝑠, 𝑥𝑛𝑘
) → 𝑓𝑖(𝑡, 𝑠, 𝑥),        𝑖 = 1,2. 

Also 

|𝑓𝑖(𝑡, 𝑠, 𝑥𝑛𝑘
)| ≤ 𝑚𝑖(𝑡, 𝑠),        𝑖 = 1,2. 

By the use of Theorem 2.3, we have 

𝐹𝑥(𝑡) = lim
𝑛𝑘→∞

𝐹𝑥𝑛𝑘
(𝑡)

= 𝑎(𝑡) + ∫ lim
𝑛𝑘→∞

𝑓1(𝑡, 𝑠, 𝑥𝑛𝑘
(𝑠))

𝑡

0

𝑑𝑠 ∫ lim
𝑛𝑘→∞

𝑓2(𝑡, 𝑠, 𝑥𝑛𝑘
(𝑠))

𝑡

0

𝑑𝑠 

𝐹𝑥(𝑡) = 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

. 

Then 𝐹𝑥𝑛(𝑡) → 𝐹𝑥(𝑡). Which leads to 𝐹 be continuous. 

Since all requisites of Theorem 2.1 are satisfied, then the mapping 
𝐹 has at least one continuing positive solution 𝑥 ∈ 𝐶[0, 𝑇],  the 
proof is complete. 

Corollary 3.2 Assume that 𝑓, 𝑔 ∶ [0, 𝑇] × 𝑅+ → 𝑅+ are 𝐿1- 
Carathéodary functions with |𝑓| ≤ 𝑚1𝑎𝑛𝑑 |𝑔| ≤ 𝑚2, then Eq (1.1) 
has at least one continuing positive solution. 

Now we want to prove the existence of maximal and minimal solu-
tions. We will present the following lemma. 

Lemma 3.3 Let 𝑓𝑖(𝑡, 𝑠, 𝑥),   𝑖 = 1,2 satisfy the assumption (II) and 
𝑥(𝑡), 𝑦(𝑡) are two continuous functions on [0, 𝑇] satisfying  

𝑥(𝑡) ≤ 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 ∫ 𝑓2(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠        , 𝑡 ∈ [0, 𝑇]

𝑡

0

𝑡

0

 

𝑦(𝑡) ≥ 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠 ∫ 𝑓2(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠     , 𝑡 ∈ [0, 𝑇]

𝑡

0

𝑡

0

 

and one of them is strict. 

If 𝑓𝑖 ,    𝑖 = 1,2  are monotonic non-decreasing in 𝑥, then  

𝑥(𝑡) < 𝑦(𝑡),       𝑡 > 0                                                                             (3.2) 

Let the conclusion (3.2) be false, then there exists 𝑡1 such that  

𝑥(𝑡1) = 𝑦(𝑡1),         𝑡1 > 0 

and 

𝑥(𝑡) < 𝑦(𝑡),     0 < 𝑡 < 𝑡1. 

From the monotonicity of 𝑓1, 𝑓2 in 𝑥, we get 

𝑥(𝑡1) ≤ 𝑎(𝑡1) + ∫ 𝑓1(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡1

0

∫ 𝑓2(𝑡1, 𝑠, 𝑥(𝑠))𝑑𝑠,    𝑡 ∈ [0, 𝑇]

𝑡1

0

 

< 𝑎(𝑡1) + ∫ 𝑓1(𝑡1, 𝑠, 𝑦(𝑠))𝑑𝑠

𝑡1

0

∫ 𝑓2(𝑡1, 𝑠, 𝑦(𝑠))𝑑𝑠,        𝑡 ∈ [0, 𝑇] 

𝑡1

0

 

𝑥(𝑡1) < 𝑦(𝑡1) which contradicts the fact that 𝑥(𝑡1) = 𝑦(𝑡1). Then  

𝑥(𝑡) < 𝑦(𝑡). 

Now, we will introduce the next theorem to show the maximal 
and minimal solutions of Eq (1.2). 

Theorem 3.4  

Let the assumptions (I) and (II) of Theorem 2.1 be satisfied. If 
𝑓1(𝑡, 𝑠, 𝑥), 𝑓2(𝑡, 𝑠, 𝑥) are monotonic non-decreasing in 𝑥 for each 𝑡 ∈
[0, 𝑇], then the maximal and minimal solutions of Eq (1.2) exist.  

Proof.  

Firstly, we will prove the existence of the maximal solution of Eq 
(1.2). Let 𝜖 > 0 be given, and consider  

𝑥𝜖(𝑡) ≤ 𝑎(𝑡) + ∫ 𝑓1𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑠))𝑑𝑠,   𝑡 ∈ [0, 𝑇]          (3.3)

𝑡

0

 

where  

𝑓𝑖𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑡)) = 𝑓𝑖(𝑡, 𝑠, 𝑥𝜖(𝑡)) + 𝜖,     𝑖 = 1,2. 

Clearly, the functions 𝑓𝑖𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑡)),    𝑖 = 1,2 are 𝐿1- Carathéodary 

functions, therefore (3.3) has a solution on 𝐶[0, 𝑇]. Let 𝜖1, 𝜖2 such 
that 0 < 𝜖2 < 𝜖1 < 𝜖, then 

 𝑥𝜖2
(𝑡) = 𝑎(𝑡) + ∫ 𝑓1𝜖2

(𝑡, 𝑠, 𝑥𝜖2
(𝑠)) 𝑑𝑠

𝑡

0

∫ 𝑓2𝜖2
(𝑡, 𝑠, 𝑥𝜖2

(𝑠)) 𝑑𝑠

𝑡

0

 

 = 𝑎(𝑡) + ∫(𝑓1(𝑡, 𝑠, 𝑥𝜖2
(𝑠)) + 𝜖2)𝑑𝑠

𝑡

0

∫(𝑓2(𝑡, 𝑠, 𝑥𝜖2
(𝑠)) + 𝜖2)𝑑𝑠      (3.4) 

𝑡

0

 

also 

𝑥𝜖1
(𝑡) = 𝑎(𝑡) + ∫ 𝑓1𝜖1

(𝑡, 𝑠, 𝑥𝜖1
(𝑠)) 𝑑𝑠

𝑡

0

∫ 𝑓2𝜖1
(𝑡, 𝑠, 𝑥𝜖1

(𝑠)) 𝑑𝑠 

𝑡

0

 

          = 𝑎(𝑡) + ∫(𝑓1(𝑡, 𝑠, 𝑥𝜖1
(𝑠)) + 𝜖1)𝑑𝑠

𝑡

0

∫(𝑓2(𝑡, 𝑠, 𝑥𝜖1
(𝑠)) + 𝜖1)𝑑𝑠 

𝑡

0
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𝑥𝜖1
 >  𝑎(𝑡) + ∫ 𝑓1 (𝑡, 𝑠, 𝑥𝜖1

(𝑠)) 𝑑𝑠

𝑡

0

∫ 𝑓2 (𝑡, 𝑠, 𝑥𝜖1
(𝑠)) 𝑑𝑠  (3.5)  

𝑡

0

 

Applying Lemma 3.3 on (3.4) and (3.5), we have 

𝑥𝜖2
(𝑡) < 𝑥𝜖1

(𝑡)       𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇]. 

As previously shown, 𝑥𝜖(𝑡) is equi-continuous and uniformly 
bounded. Then, by using Arzela- Ascoli theorem, a decreasing se-
quence 𝜖𝑛 exists such that 𝜖𝑛 → 0 𝑎𝑠 𝑛 → ∞, and lim

𝑛→∞
𝑥𝜖𝑛

(𝑡) exists 

uniformly in [0, 𝑇] and denote the limit by q(t). 

Since 𝑓𝑖𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑡)) ,   𝑖 = 1,2 is continued in the third argument, 

we get 

𝑓𝑖𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑡)) → 𝑓𝑖(𝑡, 𝑠, 𝑥(𝑡))   as  𝑛 → ∞,    𝑖 = 1,2. 

And 

𝑞(𝑡) = lim
𝑛→∞

𝑥𝜖𝑛
(𝑡) =  𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑞(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑞(𝑠))𝑑𝑠

𝑡

0

 

which implies that  𝑞(𝑡) is a solution of Eq (1.2). 

Finally, we will prove that 𝑞(𝑡) has the maximal solution of Eq (1.2). 
let 𝑥(𝑡) be any solution of Eq (1.2), then  

 𝑥(𝑡) = 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠                      (3.6)

𝑡

0

 

also 

 𝑥𝜖(𝑡) = 𝑎(𝑡) + ∫ 𝑓1𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑠))𝑑𝑠 

𝑡

0

 

 𝑥𝜖(𝑡)   = 𝑎(𝑡) + ∫(𝑓1(𝑡, 𝑠, 𝑥𝜖(𝑠)) + 𝜖)𝑑𝑠

𝑡

0

∫(𝑓2(𝑡, 𝑠, 𝑥𝜖(𝑠)) + 𝜖)𝑑𝑠   

𝑡

0

 

 𝑥𝜖(𝑡)   > 𝑎(𝑡) + ∫ 𝑓1(𝑡, 𝑠, 𝑥𝜖(𝑠))𝑑𝑠

𝑡

0

∫ 𝑓2(𝑡, 𝑠, 𝑥𝜖(𝑠))𝑑𝑠.  (3.7) 

𝑡

0

 

Applying Lemma 3.3 on (3.6) and (3.7), we get 

𝑥(𝑡) < 𝑥ϵ(𝑡),      𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇]. 

it is clear that 𝑥ϵ(t) tends to q(t) uniformly in [0, T] as 𝜖 → ∞, from 
the uniqueness of the maximal solution, see Lakshmikantham, et al. 
(1969). By the same steps, we can show the Eq (1.2) has the mini-
mal solution. We set that  

𝑓𝑖𝜖
(𝑡, 𝑠, 𝑥𝜖(𝑡)) = 𝑓𝑖(𝑡, 𝑠, 𝑥𝜖(𝑡)) − 𝜖,     𝑖 = 1,2 

and show the minimal solution exists. 

Corollary 3.5 

Let the functions 𝑓 and 𝑔 be non-decreasing in the second argu-
ment and the assumptions of Corollary 3.2 are satisfied. Then Eq 
(1.1) has maximal and minimal solutions. 

 

 

4. Conclusion 

This article contains three main parts. The first part is a histor-
ical overview of the topic and shows the importance of the quad-
ratic integral equations. The second part details the assumptions 
and theories used to obtain the desired result. The final part pro-
vides the main result. As introducing Theorem 3.1 to attain the the-
ory's conditions, we use Theorem 2.2 that showed that 𝐹 in Eq (3.1) 
is compact. We also employ Theorem 2.3 to prove that 𝐹 is contin-
uous, which helps us achieve at least one continuing positive solu-
tion of Eq (1.2). Furthermore, we provide Theorem 3.4 to show the 
solutions of the maximal and minimal of Eq (1.2) with the help of 
Lemma 3.3 and Theorem 2.2. 
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