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We employ the fixed point theorem of Krasnoselskii, to show the existence and uniqueness of 
periodic solutions of the nonlinear neutral differential equation: 

𝑑

𝑑𝑡
𝑥(𝑡) = −𝑎(𝑡)𝑥(𝑡) +

𝑑

𝑑𝑡
∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))

𝑝

𝑖=1

+ ∫ (𝐷(𝑡, 𝑠)𝑓(𝑥(𝑠)) + ℎ(𝑠))𝑑𝑠
𝑡

−∞

 

By modifying the given neutral differential equation into an equivalent integral equation using 
lemma (2.1). This is done by constructing appropriate operators, one is a contraction and the 
other is compact, which allow us to prove the existence of periodic solutions. In addition, we 
used the Banach fixed-point theorem to guarantee a unique periodic solution. 
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1. Introduction 

Over the last few decades, the fixed-point theorem was a useful 
tool to show the existence and uniqueness of solutions in broad 
range of mathematical problems. One of the captivating results is a 
fixed point theorem of Krasnoselskii which is established in 1958 
(Krasnoselskii M. A., 1958). This theory is characterized by com-
bining both Banach contraction principle, "which named after the 
polish mathematician Stefan Banach in 1922, known as BCP. BCP is 
one of the most important results in analysis and considered as the 
main source of metric fixed point theory" (Banach, 1922) to gether 
with Schauder’s fixed point theorem. "which is produced by the fa-
mous scholer J. Schauder in 1930, it has a big effect on the fixed 
point theory"(Schauder, 1930). Krasnoselskii theorem attracted a 
lot of scholars and researchers in this area. Solutions of neutral dif-
ferential equations by using a periodic solution has been studied by 
a wide range of scholers, see )Krasnosel’skii, 1954; HOA and 
SCHMITT, 1995; Burton, 1998; Burton and Kirk, 1998; Raffoul, 
2003; Maroun and Raffoul, 2005( 

The authors (Althubiti, Makhzoum and Raffoul, 2013) studied 
the existence of periodic solutions of the nonlinear of differential 
equations: 

𝑑

𝑑𝑡
𝑥(𝑡) = −𝑎(𝑡)𝑥(𝑡) +

𝑑

𝑑𝑡
𝑄 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))

+ ∫ 𝐷(𝑡, 𝑠)𝑓(𝑥(𝑠))𝑑𝑠,
𝑡

−∞

 

This paper discusses the existence and uniqueness of periodic 
solutions of the form: 

𝑑

𝑑𝑡
𝑥(𝑡) = −𝑎(𝑡)𝑥(𝑡) +

𝑑

𝑑𝑡
∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))

𝑝

𝑖=1

+ ∫ (𝐷(𝑡, 𝑠)𝑓(𝑥(𝑠))
𝑡

−∞

+ ℎ(𝑠))𝑑𝑠                                                       (1.1) 

By assuming 𝑎 (𝑡) is a continuous real-valued function. 
Taking into consideration     𝑄: ℝ × ℝ → ℝ 𝑎𝑛𝑑  𝐷: ℝ × ℝ →
ℝ   𝑎𝑛𝑑    𝑓: ℝ → ℝ  𝑎𝑛𝑑 ℎ: ℝ → ℝ are continuous functions. 

The neutral term  
𝑑

𝑑𝑡
∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))

𝑝
𝑖=1  in (1.1) pro-

duces non-linearity in the derivative term, which is more 
general compared to the neutral term   provided in [4]. 
Also, Eq. (1.1) contains a non-constant function 𝑔(𝑡) as the 
delay term unlike other studies, where they are dealing 
with constant delay. So we provide new conditions to con-
struct the mappings to employ fixed point theorems. 

Krasnoselskii’s fixed-point theorem asks for 𝑧 = 𝐴𝑧 + 𝐵𝑧  
yields 𝑧 ∈ 𝑀 where 𝑀 is a convex set and 𝐴𝑧 is continuous and com-
pact. 𝐵𝑧 is a contraction. The technique used in this paper is mu-
tated (1.1) into an integral equation that help us to create two map-
pings and it is the requirement of the fixed point theorem of  Kras-
noselskii and this done in lemma(2.1).Thereafter, as shown in 
lemma (3.2) and lemma (3.3) we proved that 𝐴𝑧 is continuous and 
compact. 𝐵𝑧 is a contraction. It enabled us to apply Krasnoselskii's 
theorem and to grant us to prove the existence of periodic solu-
tions. At the end, we show the uniqueness of the periodic solution 
by using the contraction mapping principle. This article organized 
as follows: section 2 presents the assumptions that will be used in 
the later sections; also, it provides lemma 2 which transforms (1.1) 
to an integral equation and section 3 the main results have been 
presented.  

2. Preliminaries 

This section introduces some significant notations. We start by 
supposing that for 𝑇 > 0 define 𝐶𝑇 be the set of all continuous sca-
lar functions 𝑥 (𝑡), periodic in t of the period. Afterwards (𝐶𝑇 ; ‖. ‖) 
is a Banach space with the supremum norm 

‖𝑥‖ = 𝑠𝑢𝑝𝑡∈[0,𝑇]|𝑥| 

It is appropriate to assume the following conditions 
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𝑎(𝑡 +  𝑇) =  𝑎(𝑡), 𝑔(𝑡 +  𝑇) =  𝑔(𝑡),
𝐷(𝑡 , 𝑥 )
=  𝐷(𝑡 + 𝑇, 𝑥)                                                       (2.1) 

With 𝑔 (𝑡) being scalar, continuous, and 𝑔 (𝑡)  >  0. Also, we as-
sume that 

  ∫ 𝑎(𝑠)𝑑𝑠 > 0                   
𝑇

0
                                                                      (2.2) 

We also assume that the function 𝑄 (𝑡, 𝑥) is periodic in t of period 
T, 

𝑄(𝑡, 𝑥) = 𝑄(𝑡 + 𝑇, 𝑥)                                                                              (2.3) 

As long as we are looking for periodic solutions, it is necessary 
to assume 𝑄(𝑡, 𝑥)𝑎𝑛𝑑 𝑓(𝑥) globally Lipschitz functions. So for 
𝐸1 𝑎𝑛𝑑 𝐸2 are positive constants such that, 

∑ |𝑄𝑖(𝑡, 𝑥) − 𝑄𝑖(𝑡, 𝑦)|
𝑝

𝑖=1
≤ 𝐸1‖𝑥 − 𝑦‖                                            (2.4) 

and, 

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐸2‖𝑥 − 𝑦‖                                                                  (2.5) 

Also, there is 𝐸3, 𝐸4 such that, 

∫ |𝐷(𝑡, 𝑠)|
𝑡

−∞

𝑑𝑠 ≤ 𝐸3 < ∞, ℎ(𝑠) ≤ 𝐸4                                        (2.6) 

Now, the following lemma helps to convert (1.1) to an equivalent 
integral equation. 

Lemma 2.1. If  𝑥 (𝑡) ∈ 𝐶𝑇 , and the conditions (2.1) and (2.3) hold. 
Then 𝑥 (𝑡) is a solution of Eq. (1.1) if and only if 

𝑥(𝑡) = ∑ 𝑄𝑖(𝑡, 𝑥(𝑡 − 𝑔(𝑡))) + (1 − 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑇

0 )−1
𝑝

𝑖=1
 

[∫ −𝑎(𝑢) ∑ 𝑄𝑖 (𝑢, 𝑥(𝑢 − 𝑔(𝑢))) 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢

𝑝

𝑖=1

𝑡

𝑡−𝑇

+     ∫ ∫ (𝐷(𝑢, 𝑠)𝑓(𝑥(𝑠))
𝑢

−∞

𝑡

𝑡−𝑇

+ ℎ(𝑠)) 𝑑𝑠 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢] 

Proof. Let 𝑥 (𝑡)  ∈ 𝐶𝑇 be a solution of (1.1). By writing (1.1) as 

𝑑

𝑑𝑡
[𝑥(𝑡) − ∑ 𝑄

𝑝

𝑖=1

(𝑡, 𝑥(𝑡 − 𝑔(𝑡)))]

= −𝑎(𝑡)𝑥(𝑡) + ∫ [𝐷(𝑡, 𝑠)𝑓(𝑥(𝑠)) + ℎ(𝑠)]𝑑𝑠
𝑡

−∞

 

Adding 𝑎 (𝑡) ∑ 𝑄 ((𝑡, 𝑥(𝑡 − 𝑔(𝑡)))
𝑝
𝑖=1  to both sides of the last equa-

tion we obtain 

𝑑

𝑑𝑡
[𝑥(𝑡) − ∑ 𝑄

𝑝

𝑖=1

(𝑡, 𝑥(𝑡 − 𝑔(𝑡)))]

=  −𝑎(𝑡)[𝑥(𝑡) − ∑ 𝑄 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))

𝑝

𝑖=1

]

−  𝑎(𝑡) ∑ 𝑄 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))

𝑝

𝑖=1

+ ∫ [𝐷(𝑡, 𝑠)𝑓(𝑥(𝑠)) + ℎ(𝑠)]𝑑𝑠
𝑡

−∞

(2.7) 

Multiply both sides of (2.7) by  𝑒∫ 𝑎(𝑘)𝑑𝑘
𝑡

0 , and then integrate from 
𝑡 −  𝑇 𝑡𝑜 𝑡 to get 

[𝑥(𝑡) − ∑ 𝑄𝑖 (𝑡, 𝑥(𝑡 − 𝑔(𝑡)))
𝑝
𝑖=1 ]𝑒∫ 𝑎(𝑘)𝑑𝑘

𝑡

0 − [𝑥(𝑡 − 𝑇) −

∑ 𝑄𝑖(𝑡 − 𝑇, 𝑥(𝑡 − 𝑇 − 𝑔(𝑡 − 𝑇)))]𝑒∫ 𝑎(𝑘)𝑑𝑘
𝑡−𝑇

0
𝑝
𝑖=1  = 

∫ [−𝑎(𝑢) ∑ 𝑄𝑖 (𝑢, 𝑥(𝑢 − 𝑔(𝑢)))
𝑝
𝑖=1

𝑡

𝑡−𝑇
+ ∫ (𝐷(𝑢, 𝑠)𝑓(𝑥(𝑠)) +

𝑢

−∞

ℎ(𝑠))𝑑𝑠]𝑒∫ 𝑎(𝑘)𝑑𝑘
𝑢

0 𝑑𝑢  

By dividing both sides of the above equation by  𝑒∫ 𝑎(𝑘),
𝑡

0  and due to 
the fact, that 𝑥(𝑡) is a periodic function of period T and using Eqs. 
(2.1), (2.3) we arrive at 

[∫ −𝑎(𝑢) ∑ 𝑄𝑖 (𝑢, 𝑥(𝑢 − 𝑔(𝑢))) 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢

𝑝

𝑖=1

𝑡

𝑡−𝑇

+            ∫ ∫ (𝐷(𝑢, 𝑠)𝑓(𝑥(𝑠))
𝑢

−∞

𝑡

𝑡−𝑇

+ ℎ(𝑠)) 𝑑𝑠 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢] 

3. Existence and uniqueness of periodic solutions  

In this section, we will present the state of Krasnoselskii's fixed-
point theorem and apply this theorem to prove the existence of a 
periodic solution. 

Theorem 3.1. (Krasnoselskii). Let  ℳ be a closed bounded convex 
nonempty subset of a Banach space (ℬ, ‖ . ‖). suppose that 𝐴 and 𝐵 
map ℳ into ℳ such that 

(i) 𝑥, 𝑦 ∈ ℳ, implies 𝐴𝑥 +  𝐵𝑦 ∈  ℳ, 

(ii) 𝐴 is continuous and 𝐴ℳ is contained in a compact set subset of 
ℳ,   

(iii) 𝐵 is a contraction mapping. 

Then there exists 𝑧 ∈ ℳ with 𝑧 =  𝐴𝑧 +  𝐵𝑧. 

As theorem 3.1 states there are two mappings, one is a contrac-
tion and the other is compact. Therefore, we will define the opera-
tor 𝑃: 𝐶𝑇 → 𝐶𝑇 by 

(𝑃𝜑)(𝑥) = ∑ 𝑄𝑖 (𝑡, 𝜑(𝑡 − 𝑔(𝑡))) + (1−𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑇

0 )
−1𝑝

𝑖=1
 

 [∫ −𝑎(𝑢) ∑ 𝑄𝑖 (𝑢, 𝜑(𝑢−𝑔(𝑢))) 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢                         (3.1)

𝑝

𝑖=1

𝑡

𝑡−𝑇

 

  + ∫ ∫ (𝐷(𝑢, 𝑠)𝑓(𝜑(𝑠)) + ℎ(𝑠)) 𝑑𝑠 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢]
𝑢

−∞

𝑡

𝑡−𝑇
 

And by rewriting (3.1) as follows  

(𝑃𝜑)(𝑡) =  (𝐵𝜑)(𝑡) +  (𝐴𝜑)(𝑡), 

Where 𝐴, 𝐵 ∶  𝐶𝑇 → 𝐶𝑇 are given by 

(𝐵𝜑)(𝑡) = ∑ 𝑄𝑖(𝑡, 𝜑

𝑝

𝑖=1

(𝑡 − 𝑔(𝑡)))                                                       (3.2) 

And, 

(𝐴𝜑)(𝑡) = 

(1_𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑇

0 )−1[∫ −𝑎(𝑢) ∑ 𝑄𝑖 (𝑢, 𝜑(𝑢_𝑔(𝑢))) 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢    

𝑝

𝑖=1

𝑡

𝑡−𝑇

                                                                   (3.3)     

+ ∫ ∫ (𝐷(𝑢, 𝑠)𝑓(𝜑(𝑠)) + ℎ(𝑠)) 𝑑𝑠 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢]
𝑢

−∞

𝑡

𝑡−𝑇

 

The goal here is to show that (𝐵𝜑) (𝑡) is contraction and (𝐴𝜑) (𝑡) 
is compact. The analysis is introduced in these two lemmas 

Lemma 3.2. If 𝐵 is given by (3.2) with 𝐸1 <  1, and (2.4) hold, then 
𝐵 is a contraction. 

 Proof. Let B be defined by (3.2). Then for  𝜑, 𝜓 ∈ 𝐶𝑇  we have 

‖(𝐵𝜑)(𝑡) − (𝐵𝜓)(𝑡)‖ = 𝑠𝑢𝑝𝑡∈[0,𝑇]|(𝐵𝜑)(𝑡) − (𝐵𝜓)(𝑡)| 
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= 𝑠𝑢𝑝𝑡∈[0,𝑇] ∑|𝑄𝑖(𝑡, 𝜑(𝑡 − 𝑔(𝑡)))  −  𝑄𝑖(𝑡, 𝜓(𝑡 − 𝑔(𝑡)))|

𝑝

𝑖=1

 

By using (2.4), then  

≤ 𝐸1𝑠𝑢𝑝𝑡∈[0,𝑇]‖𝜑(𝑡 − 𝑔(𝑡)) − 𝜓(𝑡 − 𝑔(𝑡)) ‖ 

As  𝐸1 < 1. Therefore, B defines a contraction. 

Before showing Lemma 3.3. It is appropriate to the following nota-
tions: 

𝜏 = 𝑚𝑎𝑥𝑡∈[0,𝑇] |(1 − 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑇

0 )−1|, 𝜌 = 𝑚𝑎𝑥𝑡∈[0,𝑇]|𝑎(𝑡)|, 𝜈 =

𝑚𝑎𝑥𝑢∈[𝑡−𝑇,𝑡]𝑒
− ∫ 𝑎(𝑘)𝑑𝑘

𝑡

𝑢  

Lemma 3.3. If 𝐴 is defined by (3.3), then A is continuous and the 
image of 𝐴 is contained in a compact set. 

Proof. We will start by proving 𝐴 is continuous we define 𝐴 as (3.3). 
Let 𝜑, 𝜓 ∈ 𝐶𝑇,  

for a given 𝜀 > 0, take 𝛿 =
𝜀

Ν
  with 𝛮 = 𝜏𝜈𝑇[𝜌𝐸1 + 𝐸2𝐸3], now for 

‖𝜑 − 𝜓‖ < 𝛿, and by using (2.4) into (3.3) ,we get  

‖𝐴𝜑 − 𝐴𝜓‖ ≤ 𝜏𝜈𝑇[𝜌𝐸1 + 𝐸2𝐸3]‖𝜑 − 𝜓‖ ≤ Ν‖𝜑 − 𝜓‖ ≤ Ν𝛿 ≤ 𝜀. 

This is show that A is continuous. The second step is showing 𝐴 is 
a compact set using Ascoli-Arzela's theorem [5] which states that 
for 𝐴 ⊂  𝛸, 𝐴 is compact if and only if 𝐴 is bounded, and equicon-
tinuous. 

Let Ω = {𝜑 ∈ 𝐶𝑇: ‖𝜑‖ ≤ 𝛶}, where 𝛶 is any fixed positive constant, 
from (2.4) , (2.5) we have, 

∑|𝑄𝑖(𝑡, 𝑥)|

𝑝

𝑖=1

= ∑ |𝑄𝑖(𝑡, 𝑥) − 𝑄𝑖(𝑡, 0) + 𝑄𝑖(𝑡, 0)|
𝑝

𝑖=1
 

≤ ∑[|𝑄𝑖(𝑡, 𝑥 ) − 𝑄𝑖(𝑡, 0)| + |𝑄𝑖(𝑡, 0)|

𝑝

𝑖=1

] 

≤ 𝐸1‖𝑥‖ + 𝛼 

where α=𝑠𝑢𝑝𝑡∈[0,𝑇] ∑ |𝑄𝑖(𝑡, 0)|𝑝
𝑖=1 .  

In the same way, 

|𝑓(𝑥)| = |𝑓(𝑥) − 𝑓(0)| 

≤ |𝑓(𝑥) − 𝑓(0)| 

≤ 𝐸2‖𝑥‖. 

Taking into consideration, 𝑓(0) = 0. Let  𝜑𝑛 ∈ 𝛺  where 𝑛 is a pos-
itive integer with  

𝐿 = 𝜏𝜈𝑇[𝜌𝐸1(𝛶 + 𝛼) + 𝛶𝐸2𝐸3+𝐸4] where 𝐿 > 0, Therefore, 

‖𝐴𝜑𝑛
‖ = 

|(1−𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑇

0 )−1[∫ −𝑎(𝑢) ∑ 𝑄𝑖 (𝑢, 𝜑𝑛(𝑢−𝑔(𝑢))) 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢

𝑝

𝑖=1

𝑡

𝑡−𝑇

+ ∫ ∫ (𝐷(𝑢, 𝑠)𝑓(𝜑𝑛(𝑠)) + ℎ(𝑠)) 𝑑𝑠 𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢
𝑢

−∞

𝑡

𝑡−𝑇

]| 

≤ 𝑚𝑎𝑥𝑡∈[0,𝑇]|(1_𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑇

0 )−1 ∫ [
𝑡

𝑡−𝑇

_ 𝑎(𝑢) ∑ 𝑄𝑖 (𝑢, 𝜑𝑛(𝑢_𝑔(𝑢)))

𝑝

𝑖=1

+ ∫ (𝐷(𝑢, 𝑠)𝑓(𝜑𝑛(𝑠))
𝑢

−∞

+ ℎ(𝑠))𝑑𝑠]𝑒− ∫ 𝑎(𝑘)𝑑𝑘
𝑡

𝑢 𝑑𝑢| 

≤ 𝜏𝜈 ∫ [𝜌𝐸1(‖𝜑𝑛‖ + 𝛼) + ∫ |𝐷(𝑢, 𝑠)𝑓(𝜑𝑛(𝑠)) + ℎ(𝑠)|𝑑𝑠
𝑢

−∞

]
𝑡

𝑡−𝑇

𝑑𝑢 

≤ 𝜏𝜈 ∫ [𝜌𝐸1(‖𝜑𝑛‖ + 𝛼) + 𝐸2𝐸3‖𝜑𝑛‖+𝐸4]
𝑡

𝑡−𝑇

𝑑𝑢 

 ≤ 𝜏𝜈𝑇[𝜌𝐸1(‖𝜑𝑛‖ + 𝛼) + 𝐸2𝐸3‖𝜑𝑛‖+𝐸4] 

 ≤ 𝜏𝜈𝑇[𝜌𝐸1(Υ + 𝛼) + Υ𝐸2𝐸3+𝐸4]  ≤ 𝐿. 

This is showing that A is bounded. To prove A is equicontinuous we 
need to find  (𝐴𝜑𝑛)′(𝑡) and prove that it is uniformly bounded. 
Therefore, after derivative (3.3) with using (2.2), (2.3) we get, 

(𝐴𝜑𝑛)′(𝑡) = −𝑎(𝑡)𝐴(𝜑𝑛(𝑡)) +  𝑎(𝑡) ∑ 𝑄𝑖 (𝑢, 𝜑𝑛(𝑢 − 𝑔(𝑢)))

𝑝

𝑖=1

+ ∫ (𝐷(𝑡, 𝑠)𝑓(𝜑𝑛(𝑠)) + ℎ(𝑠))𝑑𝑠
𝑡

−∞

 

The above expression yields ‖(𝐴𝜑𝑛)′‖  ≤ 𝑍 where Z is some posi-
tive constant. Hence, by Ascoli-Arzela's theorem 𝐴𝜑 is compact. 

Theorem 3.4. Suppose the hypothesis of Lemma 2.4. Let 
α=𝑠𝑢𝑝𝑡 [[0,𝑇] ∑ |𝑄𝑖(𝑡, 0)|𝑝

𝑖=1    and, suppose (2.1)-(2.6) hold. Let J be a 

positive constant satisfying the inequality   

𝜏𝜈𝑇[𝜌𝐸1(𝐽 + 𝛼) + 𝐸2𝐸3𝐽+𝐸4] + 𝐸1𝐽 + 𝛼 ≤ 𝐽 

Let ℳ =  {𝜑 ∈ 𝐶𝑇: ‖𝜑‖ ≤ 𝐽}. Then Eq. (1.1) has a solution in ℳ. 

Proof: First of all, we will define ℳ =  {𝜑 ∈ 𝐶𝑇: ‖𝜑‖ ≤ 𝐽}, and by 
knowing that A is continuous and AM is contained in a compact set. 
Also, the mapping B is a contraction from lemma (3.2), (3.3) and it 
is clear that 𝐴, 𝐵: 𝐶𝑇 → 𝐶𝑇. The aim is showing that   ‖𝐴𝜑 + 𝐵𝜓‖ ≤

𝐽. Let𝜑, 𝜓 ∈ ℳ, with ‖𝜑‖, ‖𝜓‖ ≤ 𝐽. Then, 

‖𝐴𝜑 + 𝐵𝜓‖ ≤  ‖𝐴𝜑‖ + ‖𝐵𝜓‖ 

Lemma 3.3 says that, 

‖𝐴𝜑𝑛
‖ ≤  𝜏𝜈𝑇[𝜌𝐸1(‖𝜑𝑛‖ + 𝛼) + 𝐸2𝐸3‖𝜑𝑛‖+𝐸4] 

Therefore, 

‖𝐴‖ + ‖𝐵‖ ≤  𝜏𝜈𝑇[𝜌𝐸1(‖𝜑𝑛‖ + 𝛼) + 𝐸2𝐸3‖𝜑𝑛‖+𝐸4] + 𝐸1‖𝜓‖ + 𝛼 

≤  𝜏𝜈𝑇[𝜌𝐸1(𝐽 + 𝛼) + 𝐸2𝐸3𝐽+𝐸4] + 𝐸1𝐽 + 𝛼 ≤ 𝐽 

This is proving all conditions of Theorem 3.1. Thus, there exists a 
fixed-point z in ℳ. By Lemma 2.1, this fixed point is a solution of 
(1.1). Hence, (1.1) has a T-periodic solution. 

Theorem 3.5. Let (2.1)-(2.6) hold if  

𝐸1+𝜏𝜈𝑇(𝜌𝐸1) + 𝑇𝐸3𝐸2 < 1 

Then Eq. (1.1) has a unique T-periodic solution.. 

Proof. We define 𝑃 as (3.1). Let  𝜑, 𝜓𝜖 𝐶𝑇, in view of (3.1) we have, 

‖𝑃𝜑−𝑃𝜓‖ < [𝐸1+𝜏𝜈𝑇(𝜌𝐸1) + 𝑇𝐸3𝐸2]‖𝜑 − 𝜓‖. 

This completes the proof of Theorem 3.5. 

4. Conclusion 

In this paper, we convert the nonlinear neutral Eq. (1.1) into an 
integral equation, and then we apply the Krasnoselskii’s fixed-
point theorem, which guarantee the existence of periodic solutions 
of the resulting equation. Obtaining the integral equation enables 
us to create two mappings, one is a contraction and the other is 
completely continuous. This allows us to benefit from the contrac-
tion mapping principle to prove the uniqueness of periodic solu-
tions of the nonlinear neutral Eq. (1.1) according to the Krasno-
selskii’s fixed point. 
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