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Highlights 

• Circular, spherical and torus data have many special and innovative characteristics, both in terms of modeling and statis-
tical manipulations. 

• Bivariate von Mises (BvMST) and toroidal wrapped Gaussian or normal (TWNT) distributions on torus are suitable in 
modeling directional and orientation data. 

• Acceptance-rejection simulation method based on Bingham-angular central Gaussian (BACG) distribution as an envelope 
can effectively be used for generating random samples from bivariate von Mises sine (BvMST) distribution. 

• The maximum likelihood (ML), maximum pseudolikelihood (MPL) and moments’ (M) methods are applied to estimate the 
parameters of the BvMST distribution and the efficiency rates are numerically calculated under a range of own R routines. 

•  Jammalamadaka-SenGupta simulation technique is implemented in order to produce random samples from the TWNT 
distribution. Furthermore, a suggested trigonometric moments’ (TM) method is used for parameter estimation on the ba-
sis of variances – covariances and evaluating the corresponding efficiency rates with the machine time significantly de-
creased. The proposed method gives adequate and efficient estimates with distinct values of parameters. 
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The bivariate von Mises sine (BvMST) and toroidal wrapped Gaussian or normal (TWNT) dis-
tributions are defined on torus and they are applicable to statistical directional analysis of ori-
entational data in 2D. The multivariate wrapped normal distribution in 𝑝-dimension has both 
multivariate marginal wrapped normal models and bivariate marginal wrapped normal dis-
tributions, and thus has a theoretical merit. One drawback of the wrapped normal torus (WNT) 
distribution is that, unlike the sine and cosine models, it does not form an exponential family 
and thus additional statistical and mathematical care is required to tackle the problem. The 
maximum likelihood (ML), maximum pseudolikelihood (MPL) and moments’ (M) methods are 
numerically compared with respect to their efficiency rates for estimating the corresponding 
parameters of the BvMST distribution.  Both MPL and M methods provide good estimates rel-
ative to the estimates of the ML method under an acceptance – rejection simulation scheme 
with Bingham-Angular Central Gaussian (BACG) distribution as an envelope. A proposed trig-
onometric moments’ (TM) method is derived and utilized for the purpose of parameters esti-
mation of the TWNT distribution as compared to the traditional maximum likelihood tech-
nique. It provides efficient estimates either in small or large simulated random samples. 

Keywords: 

Bivariate von Mises Torus Distribution, Toroi-
dal Wrapped Normal Torus Distribution, Max-
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Trigonometric Moments’ Method. 

1. Introduction 

Directional  angular data are widely used in  a broad variety  of  
modern statistical  studies. A variety of well-known examples in-
clude the direction of waves in oceanography, the direction of 
winds in meteorology and the  direction  of  animal  movements  in  

biology. Other  examples  can  be  found  in  fields  such  as  bioinfor-
matics, evolutionary biology, molecular sciences and astronomy. In 
addition, circular data often derive from periodic data, for instance, 
event times could be bundled up to a weekly duration to give a cir-
cular periodicity (e.g., Breckling, 1989; Zhan et al., 2019). 

In applied sciences, there are several problems where the 
amount of interest is calculated as a direction. Mardia (1972) is one 
of the most common sources in directional statistics and describes 
how this kind of data can be handled in a variety of areas. One vec-
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tor of unit length can be considered as a simple example of the di-
rectional data.  Virtually, the directional component can be border 
on an angle on a unit circle, given that the orientation of the circle 
has been chosen, and this type of data is often known as directional 
data. There are many features of the directional data in statistics. 
One aspect of this type of orientation data is that it cannot be ana-
lyzed using standard models in Euclidean space (Nodehi et al., 
2018). In other words, in comparison with popular Euclidean 
space, the researcher comes cross various topological properties. 
Mardia and Jupp (2000) and Jammalamadaka and SenGupta (2001) 
include theoretical developments in this area of statistics. Batsch-
elet (1981) is a further significant guide. 

1.1 Representation of Torus  

In  geometrical science, a  torus  is characterized as a  surface of 
revolution formed by rotating a circle in three-dimensional space  
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https://en.wikipedia.org/wiki/Geometry
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around an axis that is  in the same plane  with the circle (Gallier and  

Xu, 2013). This means that it is a 2D surface and hence can be par-
ametrized by two independent variables which are obviously the 
two angles 0 ≤ 𝜃1 < 2𝜋 in the 𝑥/𝑦-plane, around the 𝑧-axis and  
0 ≤ 𝜃2 < 2𝜋 around the 𝑥/𝑦-plane. The torus can be mathemati-
cally described in parametric polar coordinates form by 

 

𝑥(𝜃1 , 𝜃2) =  (𝑅 + 𝑟 cos 𝜃1) cos 𝜃2 

𝑦(𝜃1 , 𝜃2) =  (𝑅 + 𝑟 cos 𝜃1) sin 𝜃2 

𝑧(𝜃1, 𝜃2) =  𝑟 sin 𝜃1                                                                                    (1) 
 

 

in which 𝜃1 and 𝜃2 create angles making a full circle, so that their 
values start and terminate on the same point, 𝑅 is the distance from 
the tube’s center to the torus’s center (major radius) and 𝑟 is the 
tube’s radius (minor radius). 

There are three types of torus depending on the relative sizes 
of the minor radius, 𝑟 and the major radius, 𝑅 viz., the ring torus if 
𝑅 > 𝑟, horn torus if 𝑅 = 𝑟 which is tangent to itself at the point  
(0,0,0)  and spindle torus if 𝑅 < 𝑟 (e.g., Pinkall, 1986). 

Bivariate circular data are represented on a torus as the 2-fold 
Cartesian product of unit circles i.e., 𝑇2 = 𝑆1 × 𝑆1 where it is de-
fined with the interval 𝑇2 ≡ [0,2𝜋) × [0,2𝜋)  ≡ (−𝜋, 𝜋) × (−𝜋, 𝜋) 
and therefore the four points  (0,0), (0,2𝜋), (2𝜋, 0), (2𝜋, 2𝜋) are 
overlapping. The torus clearly has a different topological structure 
to the rectangle [0,2𝜋) × [0,2𝜋). The correlation changes signifi-
cantly after moving from 𝑃 to 𝑃′ and 𝑄  to 𝑄′. For torus plotting, as 
shown in Fig. 1, the modified points, 𝑃′ and 𝑄′ are very similar to 
the original ones, 𝑃 and 𝑄, respectively. 

 

 

Fig.1. The different circumstances on the rectangle [0,2𝜋) × [0,2𝜋) and the torus (from Zhan et al., 2019). 

 

Two important directional distribution, the wrapped normal 
and the von Mises, match the Gaussian distribution on Euclidean 
circle space. The von Mises distribution, for instance, belongs to the 
exponential family and it is a natural circular analogue of the uni-
variate normal distribution if the variability inside the circular var-
iable is minimal. The conditional distributions are also von Mises 
in the multivariate framework, while its marginal distributions are 
not. Other circular distribution close to univariate normal is the 
wrapped Gaussian or normal (WN) distribution.  By wrapping a 
normal distribution around the circle, this distribution is converted 
to a symmetrical wrapped normal distribution, but unfortunately 
it does not a member of exponential family. Fortunately, the convo-
lution of 𝑝 wrapped normal variables is also wrapped normal (e.g., 
Jammalamadaka and SenGupta, 2001; Nodehi et al., 2018). 

Johnson and Wehrly (1978) suggest the toroidal (bivariate) 
wrapped normal distribution while Baba (1981) offers the multi-
variate wrapped normal distribution. Estimation of the wrapped 
Gaussian parameters including the univariate situations leads to 
face numerical tough solutions for finding a convergence of an infi-
nite sum series. This is one of the major motives in which some au-
thors, e.g., Fisher (1987) and Breckling (1989) proposed to approx-
imate this distribution via the von Mises distribution. An alterna-
tive estimation approach based on moments is proposed in this pa-
per. 

1.2 Objectives 

The core aims of this article are 

[1] To highlight some common estimation frameworks for the pa-
rameters of bivariate von Mises sine torus (BvMST) distribu-
tion viz., the maximum likelihood (ML), maximum pseudolike-
lihood (MPL) and moments’ (M) methods, 

[2] To numerically compare the statistical relative efficiency rates 
of the MPL and M techniques in [1] with that for the traditional 
ML method after generating random samples using an efficient 
modern acceptance-rejection simulation method based on 
Bingham-angular central Gaussian (BACG) distribution as an 
envelope under either low or high concentrations, 

[3] To propose and derive the trigonometric moments for estimat-
ing the parameters of the toroidal wrapped normal torus 
(TWNT) distribution based on variances-covariances instead of 
ML and MPL methods due to their computational burden, 

[4] To numerically evaluate the efficiency rates for the suggested 
trigonometric moments’ (TM) method in [3] as compared to the 
standard maximum likelihood (ML) after producing random 
samples using Jammalamadaka-SenGupta simulation plan with 
high precision and reliance. 

https://en.wikipedia.org/wiki/Coplanarity
https://en.wikipedia.org/wiki/Jean_Gallier
https://en.wikipedia.org/wiki/Dianna_Xu
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2. Theoretical Background 

In this section theoretic foundations from the modern litera-
ture on both the bivariate von Mises and toroidal wrapped Gauss-
ian (normal) distributions on the torus are briefly discussed. They 
are the basis for statistical addressing the main targets of the cur-
rent paper. 

2.1 Bivariate von Mises Torus Distribution 

A bivariate circular distribution for modeling torsional angles 
in molecules is proposed by Singh et al. (2002). Mardia (1975) and 
Mardia and Patrangenaru (2005) suggest an extended form of cir-
cular modeling but this particular case has some desirable proper-
ties among the negligible redundancy class. In the situation of two 
random angles −𝜋 ≤ 𝜃1 < 𝜋 and −𝜋 ≤ 𝜃2 < 𝜋 lie on the torus, the 
proposed bivariate von Mises probability density function is of the 
form 

𝑓(𝜃1, 𝜃2) = [𝐶(𝜅1, 𝜅2, 𝐀)]−1exp{𝜅1 cos(𝜃1 − 𝜇1) + 𝜅2 cos(𝜃2 − 𝜇2) 

                                        +[cos(𝜃1 − 𝜇1)  sin(𝜃2 − 𝜇2)] 

                                                     × 𝐀[cos(𝜃1 − 𝜇1)   sin(𝜃2 − 𝜇2)]𝑻}, (2) 

where 𝜅1 ≥ 0 and 𝜅2 ≥ 0 describe the concentricity parameters for 
the circular random variables 𝜃1 and 𝜃2, −𝜋 ≤ 𝜇1 , 𝜇2 < 𝜋, the 2 × 2  

matrix 𝐀 = (𝑎𝑖𝑗) contains parameters for the dependence between 

𝜃1 and 𝜃2 and 𝐶(∙) is a normalizing constant. This model has eight 
parameters. A variety of sub-models with only five parameters 
have been appeared (Singh et al., 2002) to imitate the behavior of 
bivariate normal distribution with five parameters. Three sub-
models are considered viz., the bivariate von Mises sine torus 
(BvMST), the bivariate von Mises cosine torus with positive inter-
section (BvMCTPI) and the bivariate von Mises cosine with nega-
tive intersection (BvMCTNI) distributions (Mardia et al., 2007). 

For simplicity and without loss of generality, assume that 𝑎11 =
𝑎12 = 𝑎21 = 𝑎22 = 𝜂 and 𝜇1 = 𝜇2 = 0. The corresponding proba-
bility density function for bivariate von Mises sine torus (BvMST) 
distribution can be written as 

𝑓S(𝜃1, 𝜃2) = [𝐶(𝜅1, 𝜅2, 𝜂)]−1𝑓S
∗ (𝜃1, 𝜃2) 

 

where 

𝐶(𝜅1, 𝜅2, 𝜂) = 4𝜋2 ∑ (
2𝑚
𝑚

) (
𝜂

2
)

2𝑚

𝜅1
−𝑚𝐼𝑚(𝜅1)𝜅2

−𝑚𝐼𝑚(𝜅2) 

∞

𝑚=0

         (3) 

is the normalizing constant (Singh et al., 2002),  𝐼𝑚(∙) is a modified 
Bessel function of the first kind of order 𝑚 and 

𝑓S
∗ (𝜃1, 𝜃2) = exp{𝜅1 cos 𝜃1 + 𝜅2 cos 𝜃2 + 𝜂 sin 𝜃1 sin 𝜃2}.             (4) 

The parameter  −∞ < 𝜂 < ∞  is a familiar measure of dependence 
between the circular random variables 𝜃1 and 𝜃2. If 𝜂 = 0, then 𝜃1 
and 𝜃2 are independent with each having univariate von Mises dis-
tribution. Moreover, under considerable concentration with ex-
cluding the normalization constant, the probability density func-
tion for the bivariate von Mises sine torus (BvMST) distribution in 
Eq. 4 becomes 

 𝑓S
∗ (𝜃1, 𝜃2) ≈ exp [𝜅1 (1 −

𝜃1
2

2
) + 𝜅2 (1 −

𝜃2
2

2
) + 𝜂𝜃1𝜃2] 

                      = exp(𝜅1 + 𝜅2) exp (−
1

2
(𝜅1𝜃1

2 + 𝜅2𝜃2
2 + 2𝜂𝜃1𝜃2)) 

                      = 𝐶1exp (−
1

2
[𝜃1  𝜃2] [

𝜅1 −𝜂
−𝜂 𝜅2

] [
𝜃1

𝜃2
])  

                      = 𝐶1exp (−
1

2
𝚯𝑇Σ1

−1𝚯),                                                     (5) 

 

where 𝐶1 = exp(𝜅1 + 𝜅2),  since 

cos 𝜃𝑖 = 1 −
𝜃𝑖

2

2!
+

𝜃𝑖
4

4!
+ 𝑂(𝜃𝑖

6) ≈ 1 −
𝜃𝑖

2

2!
 

and  

sin 𝜃𝑖 = 𝜃𝑖 −
𝜃𝑖

3

3!
+

𝜃𝑖
5

5!
+ 𝑂(𝜃𝑖

7) ≈ 𝜃𝑖 

for 𝑖 = 1,2  up two terms approximation. For Σ1 to be existent pos-
itive definite matrix and for unimodality purpose, 𝜅1 > 0, 𝜅2 > 0, 
 −∞ < 𝜂 < ∞ and 𝜅1𝜅2 > 𝜂2  should be held. The BvMST distribu-
tion is bimodal in the case of  𝜅1𝜅2 < 𝜂2  (Singh et al., 2002). 

Assume that 𝑎11 = 𝑎12 = 𝑎21 = 𝑎22 = 𝛾1 and 𝜇1 = 𝜇2 = 0, the 
correspond probability density function for bivariate von Mises co-
sine torus distribution with positive interaction (BvMCTPI) is given 
by  

𝑓CPI(𝜃1, 𝜃2) = [𝐶(𝜅1, 𝜅2, 𝛾
1
)]

−1
 𝑓CPI

∗  (𝜃1, 𝜃2) 
 

where the normalizing constant 𝐶(𝜅1, 𝜅2, 𝛾
1
) has an explicit for-

mula similar to that of Eq. 3 except 𝜂 is replaced by 𝛾1 and  

 𝑓CPI
∗  (𝜃1, 𝜃2) = exp{𝜅1 cos 𝜃1 + 𝜅2 cos 𝜃2 + 𝛾

1
cos(𝜃1 − 𝜃2)}       (6) 

 

In a similar manner to Eq. 5 and under considerable concen-
tricity with overlooking the normalizing constant, the probability 
density function for the bivariate von Mises cosine torus distribu-
tion with positive interaction (BvMCTPI) in Eq. 6 becomes 
 

𝑓CPI
∗  (𝜃1, 𝜃2) = 𝐶2 exp (−

1

2
[𝜃1  𝜃2] [

𝜅1 + 𝛾
1

−𝛾
1

−𝛾
1

𝜅2 + 𝛾
1

] [
𝜃1

𝜃2
]) 

                        = 𝐶2 exp (−
1

2
𝚯𝑇Σ2

−1𝚯).                                                  (7) 

where 𝐶2 = exp(𝜅1 + 𝜅2). For Σ2 to be existent positive definite ma-

trix, 𝜅1 + 𝛾
1

> 0, 𝜅2 + 𝛾
1

> 0  and  (𝜅1 + 𝛾
1
)(𝜅2 + 𝛾

1
) > 𝛾1

2  should 

be held 

Furthermore, suppose that 𝑎11 = 𝑎12 = 𝑎21 = 𝑎22 = 𝛾2 and 
𝜇1 = 𝜇2 = 0, the correspond probability density function for the bi-
variate von Mises cosine torus distribution with negative interac-
tion (BvMCTNI) is given by  

𝑓CNI(𝜃1, 𝜃2) = [𝐶(𝜅1, 𝜅2, 𝛾
2
)]

−1
 𝑓CNI

∗  (𝜃1, 𝜃2) 
 
 

where the normalizing constant 𝐶(𝜅1, 𝜅2, 𝛾2) has an explicit for-
mula similar to that of Eq. 3 except 𝜂 is replaced by 𝛾2 and  

 

𝑓CNI
∗  (𝜃1, 𝜃2) = exp{𝜅1 cos 𝜃1 + 𝜅2 cos 𝜃2 − 𝛾

2
cos(𝜃1 − 𝜃2)}         (8) 

(see, Kent et al., 2008). In a similar manner to Eq. 5 and under con-
siderable concentricity with excluding the normalization constant, 
the probability density function for the bivariate von Mises cosine 
torus distribution with negative interaction (BvMCTNI) in Eq. 8 be-
comes 
 

        𝑓CNI
∗  (𝜃1, 𝜃2) = 𝐶3 exp (−

1

2
[𝜃1  𝜃2] [

𝜅1 − 𝛾
2

𝛾
2

𝛾
2

𝜅2 − 𝛾
2
] [

𝜃1

𝜃2
]) 

              = 𝐶3 exp (−
1

2
𝚯𝑇Σ3

−1𝚯).                                          (9) 

where 𝐶3 = exp(𝜅1 + 𝜅2). For Σ3 to be existent positive definite ma-

trix,  𝜅1 − 𝛾
2

> 0,  𝜅2 − 𝛾
2

> 0  and   (𝜅1 − 𝛾
2
)(𝜅2 − 𝛾

2
) > 𝛾2

2  should 

be held. So, under large concentration about 𝚯𝑇 = (𝜃1 , 𝜃2) = (0,0), 
each of the three models behaves as a bivariate Gaussian distribu-
tion with inverse matrices, have the constraints of symmetric pos-
itive definiteness, of the form 

Σ1
−1 = [

𝜅1 −𝜂
−𝜂 𝜅2

] ,     Σ2
−1 = [

𝜅1 + 𝛾1 −𝛾1

−𝛾1 𝜅2 + 𝛾1
],  

Σ3
−1 = [

𝜅1 − 𝛾2 𝛾2

𝛾2 𝜅2 − 𝛾2
].   
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When the fluctuations of variance in 𝜃1 and 𝜃2 are sufficiently 
small, then it follows that (𝜃1, 𝜃2) in the BvMST distribution follows 
roughly a bivariate normal distribution with parameters 

𝜎1
2 =

𝜅2

𝜅1𝜅2 − 𝜂2 ,      𝜎2
2 =

𝜅1

𝜅1𝜅2 − 𝜂2 ,        𝜌 =
𝜂

(𝜅1𝜅2)1/2
 

and (𝜃1, 𝜃2) in the BvMCTPI distribution has approximately a biva-
riate normal distribution with parameters 

𝜎1
2 =

𝜅2 + 𝛾
1

(𝜅1 + 𝛾
1
)(𝜅2 + 𝛾

1
) − 𝛾1

2
,      𝜎2

2 =
𝜅2 + 𝛾

1

(𝜅1 + 𝛾
1
)(𝜅2 + 𝛾

1
) − 𝛾1

2
,        

𝜌 =
𝛾

1

{(𝜅1 + 𝛾
1
)(𝜅2 + 𝛾

1
)}

1/2
 

and so on. 

2.1.1 Marginal and Conditional Probability Densities 

The marginal and conditional probability functions are so im-
portant to discuss in this paper for the reason that the new simula-
tion scheme suggested by Kent et al. (2018) for the bivariate von 
Mises sine and cosine distributions on torus depends upon deriv-
ing such functions and it is used into the generation process of ran-
dom samples in this investigation. 

Let the directional random variables 𝜃1 and 𝜃2 be distributed 
according to the probability density function of the BvMST distri-
bution in Eq. 4. Define new parameters  𝜓  and  𝜔  by  𝜅2 = 𝜓 cos 𝜔  
and  𝜂 sin 𝜃1 = 𝜓 sin 𝜔, so that 

𝜓 = (𝜅2
2 + 𝜂2 sin2 𝜃1)1/2   ,           tan 𝜔 = (𝜂/ 𝜅2) sin 𝜃1. 

Write 𝜓 = 𝜓(𝜃1) and 𝜔 = 𝜔(𝜃1) to underline the dependent re-
striction on 𝜃1. Then without loss of generalization, the marginal 
probability density function of 𝜃1 with overlooking the normaliza-
tion constant for the BvMST distribution in Eq. 4 is given by 

 𝑓S
∗ (𝜃1) = ∫ 𝑓S

∗ (𝜃1, 𝜃2) 𝑑𝜃2 
𝜋

−𝜋

 

                = 2𝜋 𝐼0(𝜓(𝜃1)) exp(𝜅1 cos 𝜃1)                                             (10) 

where 𝐼0(∙) is a modified Bessel function of the first kind of order 
𝑚 = 0. The marginal density function of 𝜃2 can be derived in a sim-
ilar way. Furthermore, the conditional probability density function 
of 𝜃2 given  𝜃1 is  

𝑓S
∗ (𝜃2|𝜃1) =

 𝑓S
∗ (𝜃1, 𝜃2)

 𝑓S
∗ (𝜃1)

 

                     =
1

2𝜋 𝐼0(𝜓(𝜃1))
 exp{𝜓(𝜃1) cos(𝜃2 − 𝜔(𝜃1))}.           (11) 

Thus, the conditional probability density function of 𝜃2 given 𝜃1 in 
Eq. 11 is a von Mises distribution with concentration parameter 
𝜓(𝜃1) and mean angle 𝜔(𝜃1). 

The corresponding marginal and conditional probability den-
sity functions for the circular random variables 𝜃1 and 𝜃2 in both bi-
variate von Mises cosine torus with positive intersection 
(BvMCTPI) or negative intersection distributions (BvMCTNI) as 
shown in Eq. 6 and Eq. 8, respectively, can be derived using the 
same mathematical steps.  

2.1.2 Log-Densities for Comparing Models 

The bivariate probability density functions for the BvMST, 
BvMCTPI and BvMCTNI distributions can be depicted graphically 

by plotting contours i.e., a 3D surface (𝜃1, 𝜃2, 𝑓(𝜃1, 𝜃2)) in the 

plane by projecting the level curves 𝑓(𝜃1, 𝜃2) = 𝑐 for selected con-
stant 𝑐. The multivariate contour diagrams can be used to demon-
strate certain comparative claims. The main features are more con-
veniently contrasted by plotting the logarithm probability densi-
ties with omitting the normalizing constants, as many statisticians 

do not presume that missing the normalization constants would in-
fluence the results for comparison purposes (e.g., Mardia et al., 
2008). In addition, after multiplying it by a constant, the logarithm 
of any member of the exponential family of directional distribu-
tions does not mutate and the plots of the log densities will be visi-
ble even in the tails. The contour representation of the joint proba-
bility density function offers an insight into how the parameters in-
dex the concentrated amount of probability along the curve. 

The values of parameters for each of the three probability dis-
tributions can be chosen to match any predetermined positive def-
inite inverse covariance matrices viz., Σ1

−1, Σ2
−1 and  Σ3

−1, respec-
tively. Comparing the probability density functions of the three di-
rectional distributions yields,  

[1] altering the sign of 𝜂, 𝛾1 and 𝛾2 in the BvMST, BvMCTPI and 
BvMCTNI distributions, respectively, causes a reflection in the 
axes, 

[2] the bimodality of the BvMST distribution happens only if 
𝜅1𝜅2 < 𝜂2, 

[3] the bimodality of the BvMCTPI and BvMCTNI distributions oc-
curs in the case of positive 𝜅1 = 𝜅2  with negative 𝛾1 = 𝛾2, 

[4] for small 𝜂 ≈ −𝛾1 the BvMST and BvMCTPI distributions are 
approximately the same,  

[5] for large 𝛾1 ≈ −𝛾2 the BvMCTPI and BvMCTNI distributions 
are similar to each other,  

the case of mutating (𝜃1, 𝜃2) to (𝜃2, −𝜃1) is similar to changing the 
sign of 𝜂 in the BvMST model, but also enables the contour plots of 
the BvMST and BvMCTPI distributions to be rotated (which cannot 
be done by changing the values of the parameter of dependence, 𝛾1 
(Mardia et al., 2009). 

2.2 Toroidal Wrapped Normal Torus Distribution 

Assume that 𝚯 is a unit vector of angles following a multivariate 
𝑝-variate wrapped normal torus distribution; that is, 

𝜃𝑗 = 𝐱𝑗  mod 2𝜋                                                                                         (12) 

for 𝑗 = 1,2, ⋯ , 𝑝 where the modulo operation is performed compo-
nentwise and 𝐱 has the multivariate probability density function 

with zero mean vector, 𝛍 = (𝜇1, 𝜇2, ⋯ , 𝜇𝑝)
𝑻

= (0, 0, ⋯ ,0)𝑻 and 

𝑝 × 𝑝 symmetric positive definite variance – covariance matrix 𝚺 >
𝟎 (Kent et al., 2009)  

  𝑓MN(𝐱; 𝚺) = (2𝜋)−
𝑝
2|𝚺|−

1
2exp (−

1

2
𝐱T 𝚺−1𝐱)                                 (13)  

with −∞ <  x𝑗 <  ∞. The probability density function for the mul-

tivariate wrapped normal torus (MWNT) distribution is given by 

𝑓MWNT(𝚯; 𝚺) = ∑ ∑ ⋯ ∑ 𝑓MN(𝚯 + 2π 𝐤; 𝚺)

∞

𝑘𝑝=−∞

∞

𝑘2=−∞

∞

𝑘1=−∞

            (14) 

where 𝚯 = (𝜃1, 𝜃2, ⋯ , 𝜃𝑝)
𝑻

∈ [0,2𝜋)𝑝 and 𝐤 = (𝑘1, 𝑘2, ⋯ , 𝑘𝑝)
𝑻

 is a 

set of integers (Johnson and Wehrly, 1977; Coles, 1998). 

In the case 𝑝 = 2,  𝜎11 = 𝜎22 = 𝜎2 > 0 and the 𝜎12 = 𝜎21 = 𝜎2𝜌, 
the probability density function in Eq. 14 is converted to a toroidal 
(bivariate) wrapped normal torus (TWNT) distribution for 𝚯 =
(𝜃1, 𝜃2)𝑻 ∈ [0,2𝜋)2 with zero mean vector 𝛍 = (𝜇1, 𝜇2)𝑻 = (0, 0)𝑻, 
𝐤 = (𝑘1 , 𝑘2)𝑻 and symmetric positive definite variance – covari-
ance matrix 

𝚺 = [
𝜎2 𝜎2𝜌

𝜎2𝜌 𝜎2 ] .                                                                                      (15) 

The corresponding probability density function for the toroidal (bi-
variate) wrapped normal torus (TWNT) distribution is 
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 𝑓TWNT(𝚯; 𝚺) = ∑ ∑ 𝑓MN((𝜃1 , 𝜃2)𝑻  + 2π(𝑘1, 𝑘2)𝑻 ; 𝚺)

∞

𝑘2=−∞

∞

𝑘1=−∞

  (16) 

and the parameters to be estimated are 𝜎2 and the correlation co-
efficient between 𝜃1 and 𝜃2, −1 ≤ 𝜌 ≤ 1. 

3. Materials and Methods 

The first approach of inference for the bivariate von Mises sine 
torus (BvMST), the bivariate von Mises cosine torus with positive 
interaction (BvMCTPI) and the bivariate von Mises cosine torus 
with negative interaction (BvMCTNI) distributions as well as for 
the toroidal (bivariate) wrapped normal torus (TWNT) distribu-
tion is the statistical estimation.  In this section, only three estima-
tion methodologies for the parameters of only the BvMST and the 
TWNT distributions are briefly discussed. 

3.1 Maximum Likelihood Technique 
 

The ordinal protocol of statistical estimation is the maximum 
likelihood (ML) estimators dependent on a random sample of size 
𝑛.  For the bivariate von Mises sine torus (BvMST) distribution of 
zero means (omitted normalizing constant) as in Eq. 4, the ML es-
timators are obtained by maximizing or optimizing the likelihood 
function 

 𝐿(𝜅1, 𝜅2, 𝜂; 𝚯) = exp (𝜅1 ∑ cos(𝜃1𝑖) +

𝑛

𝑖=1

𝜅2 ∑ cos(𝜃2𝑖)

𝑛

𝑖=1

 

                                              + 𝜂 ∑ sin(𝜃1𝑖) sin(𝜃2𝑖)

𝑛

𝑖=1

).                       (17) 

The maximum likelihood estimators (MLE’s) for 𝜅1,  𝜅2 and  𝜂 as 
well as the corresponding standard errors are numerically calcu-
lated under the nlm estimation routine in R from the Hessian ma-

trix (Mardia et al., 2009) 

𝑯 = [
𝐺𝜃1,𝜃1

𝐺𝜃1,𝜃2

𝐺𝜃2,𝜃1
𝐺𝜃2,𝜃2

] 

     = [
−𝜅1 cos 𝜃1 − 𝜂 sin 𝜃1 sin 𝜃2 𝜂 cos 𝜃1 cos 𝜃2

𝜂 cos 𝜃1 cos 𝜃2 −𝜅2 cos 𝜃2 − 𝜂 sin 𝜃1 sin 𝜃2
]. 

The usual maximum likelihood (ML) estimators of 𝜎2 and 𝜌 for 
the toroidal (bivariate) wrapped normal torus (TWNT) distribu-
tion in Eq. 16 are also acquired by optimizing the likelihood func-
tion 

𝐿 = ∏ ∑ ∑ 𝑓MN((𝜃1𝑖 , 𝜃2𝑖)𝑻  + 2π(𝑘1𝑖 , 𝑘2𝑖)𝑻 ; 𝚺).           (18)

∞

𝑘2=−∞

∞

𝑘1=−∞

𝑛

𝑖=1

 

The optimization problem can be solved using numerical meth-
ods such as the Nelder - Mead simplex algorithm under R environ-
ment. This is quite computationally intensive, however. Also, as 
this mathematical issue is not convex, the results may depend upon 
the chosen initial value and no guarantee whatsoever that the 
global optimum will be found. Another proposed technique of nu-
merical approximation is based on Jensen’s inequality. This 
method has been applied to both the circular and the toroidal cases 
(Roy et al., 2014). 

3.2 Maximum Pseudolikelihood Technique  

Define the pseudolikelihood function (Besag, 1975) selected 
according to a random sample of size 𝑛 for the bivariate von Mises 
sine torus (BvMST) distribution of zero means and omitted nor-
malizing constant in Eq. 4 by 

𝑃𝐿 = (2𝜋)−4 ∏ ∏ (𝐼0(𝜅𝑗.rest
𝑖 ))

−1
exp(𝜅𝑗.r

𝑖 cos(𝜃𝑗𝑖))

𝑛

𝑖=1

2

𝑗=1

               (19) 

where 𝐼0(∙)  is a modified Bessel function of the first kind of order 
𝑚 = 0 and 

𝜅𝑗.r
𝑖 = (𝜅𝑗

2 + [𝜂 sin(𝜃𝑗)]
2

)
1/2

. 

The estimation of parameters based on the pseudolikelihood ap-
proach accomplishes by maximizing the 𝑃𝐿 function in Eq. 19 with 
respect to the only 3 unidentified parameters (Mardia el al., 2008). 

The parameter estimation based on the maximum pseudolike-
lihood (MPL) approach for the toroidal (bivariate) wrapped nor-
mal torus (TWNT) distribution in Eq. 16 is deliberately excluded in 
this research because of presence several numerical problems of 
convergence for the infinite sums. 

3.3 Moments’ Technique  

The approach of moments by Mardia el al. (2008) could be used 
to obtain good estimates for the parameters 𝜅1, 𝜅2 and 𝜂 of the bi-
variate von Mises sine torus (BvMST) distribution with zero means 
and omitted normalizing constant in Eq. 4. The reader can return 
back to that paper for extra detail. 

A few approaches to parameter estimation for the toroidal (bi-
variate) wrapped normal torus (TWNT) distribution in Eq. 16 have 
been discussed in literature of directional statistics. Jammalama-
daka and Sarma (1988) set forth a moment-based approach that 
unfortunately fails in many practically relevant cases by returning 
a matrix 𝚺 that is not positive definite. The work in this paper pro-
duces an improvement to the method of estimation based on mo-
ments with a guarantee of positive definiteness for the variance – 
covariance matrix 𝚺. 

If 𝛅 is 2 × 1 vector of integer coefficients and 𝚯 = (𝜃1, 𝜃2)𝑻, 
then  

𝔼[cos(𝛅𝑇𝚯)] = exp (−
1

2
𝛅𝑇𝚺𝛅) 

𝔼[sin(𝛅𝑇𝚯)] = 0. 

In particular, for 𝑗, 𝑘 = 1,2, the first order trigonometric moments 
are  

𝔼[cos(𝜃1)] = exp (−
1

2
𝜎11) = 𝑐1, say 

𝔼[sin(𝜃1)] = 0 

𝔼[cos(𝜃2)] = exp (−
1

2
𝜎22) = 𝑐2 ,               

𝔼[sin(𝜃2)] = 0 

𝔼[cos(𝜃1 ± 𝜃2)] = exp (−
1

2
(𝜎11 ± 2𝜎12 + 𝜎22)) 

                  𝔼[sin(𝜃1 ± 𝜃2)] = 0                                                               (20) 
 

Let 𝐜 = (𝑐1, 𝑐2)𝑻 be a vector and write 𝐃 = diag(𝐜). Merging the 
two forms of the last two equations yields the second order trigo-
nometric moments 

 𝔼[cos(𝜃1) + cos(𝜃2)] = 𝑐1 𝑐2 cosh(𝜎12) = 𝑎12, say 

𝔼[sin(𝜃1) + sin(𝜃2)] = 𝑐1 𝑐2 sinh(𝜎12) = 𝑏12 

                     𝔼[sin(𝜃1) + cos(𝜃2)] = 0                                                  (21) 

where 

cosh(𝜎12) = (
𝑒2𝜎12 + 1

2𝑒𝜎12
)          and       sinh(𝜎12) = (

𝑒2𝜎12 − 1

2𝑒𝜎12
). 

Store the coefficients {𝑎𝑗𝑘} and {𝑏𝑗𝑘} in the symmetric squared ma-

trices 
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𝐀 = [
𝑎11 𝑎12

𝑎21 𝑎22
]         and        𝐁 = [

𝑏11 𝑏12

𝑏21 𝑏22
]. 

The variance – covariance matrices, un form of a matrix, for the co-
sines and sines can be written as 

var(cos 𝚯) = 𝐃𝐀𝐃 − 𝐜𝐜𝐓 

var(sin 𝚯) = 𝐃𝐁𝐃,            

cov(cos 𝚯, sin 𝚯) = 𝟎.      

Thus, the variance – covariance matrix 𝚺 in Eq. 15 can be retrieved 
from the trigonometric moments using the equation 

𝚺𝚯 = sinh−1(𝐃−1var(sin 𝚯)𝐃−1)                                                        (22) 

(Mardia et al., 2009). These results suggest the trigonometric mo-
ments’ (TM) method for estimating 𝚺 of the toroidal (bivariate) 
wrapped normal torus (TWNT) distribution from an 𝑛 × 2 matrix 
of torus data i.e., 

[1] For the angles 𝜃1 and  𝜃2, compute the sample first order trig-
onometric moments in Eq. 20 and rotate each angle, such that 
the points of the resultant vector are towards the positive hor-
izontal x-axis. 

[2] For the angles 𝜃1 and  𝜃2, calculate the sample second trigono-
metric moments in Eq. 21 and use Eq. 22 to produce an esti-
mate of 𝚺𝚯 i.e., �̂�𝐓𝐌 = �̂�𝚯. 

This modified estimation technique has an innovation to repre-
sent the first order and the second order trigonometric moments 
for the angles 𝜃1 and  𝜃2  in form of matrices which makes it easier 

to implement in  environment for assessing the correspond-
ing efficiency rates relative to statistical estimators based on the 
maximum likelihood (ML) method.   

3.4 Relative Efficiency Rate 

The relative efficiency rate,  0 ≤ ER ≤ 1,  of the maximum pseu-
dolikelihood and moments’ estimates for the parameters of the bi-
variate von Mises sine torus (BvMST) distribution compared to the 
standard maximum likelihood method and for the parameters of 
the toroidal wrapped normal torus (TWNT) distribution as com-
pared to the standard maximum likelihood method can be evalu-
ated using the same approach of Wood (1993) for the Bingham dis-
tribution and Davison (2003). For the bivariate von Mises sine to-
rus (BvMST) distribution, the first step of numerical calculation of 
the relative efficiency rate under R environment is finding the 
Fisher information matrices based on ML, MPL and moment (M) 
methods and denoted by 𝐼ML(𝜅1, 𝜅2, 𝜂 ), 𝐼MPL(𝜅1, 𝜅2, 𝜂 ) and 
𝐼M(𝜅1, 𝜅2, 𝜂 ), respectively. Thus, the efficiency rate of estimation 
based on MPL method relative to estimation based on ML method 
can be obtained as 

  RERMPL|ML =
𝐼MPL(𝜅1, 𝜅2, 𝜂 )

𝐼ML(𝜅1, 𝜅2, 𝜂 )
.                                                            (23) 

Moreover, the efficiency rate of estimation based on M method 
relative to estimation based on ML method can also be obtained as 

 RERM|ML =
𝐼M(𝜅1, 𝜅2, 𝜂 )

𝐼ML(𝜅1, 𝜅2, 𝜂 )
.                                                                   (24) 

For the toroidal wrapped normal torus (TWNT) distribution, 
the efficiency rate estimation based on trigonometric moments 

(TM) method relative to estimation based on maximum likelihood 
(ML) method can also be obtained as 

 RERTM|ML =
𝐼TM(𝜎2, 𝜌)

𝐼ML(𝜎2, 𝜌 )
.                                                                     (25) 

4. Results and Discussion 

The investigation in the current article depends upon generat-
ing random samples from both the bivariate von Mises sine torus 
(BvMST) distribution in Eq. 4 and the toroidal wrapped normal to-
rus (TWNT) distribution in Eq. 16. 

The simulation from the BvMST distribution is implemented in 
R environment according to the acceptance – rejection (AR) simu-
lation approach of Kent et al. (2018) using Bingham–Angular Cen-
tral Gaussian (BACG) distribution as an envelope.   

The simulation from the TWNT distribution is straightforward. 
x𝑗 , 𝑗 = 1,2 is simulated from the bivariate normal distrution 

𝑓MN(𝐱; 𝚺) in Eq. 13 with 𝑝 = 2 using Choleski factorization or spec-
tral decomposition or singular value decomposition methods and 
then the simulated angles 𝜃1 and 𝜃2 formed componentwise by Eq. 
12 and simulation steps are repeated until getting the required ran-
dom sample of size 𝑛. The simulation scheme is suggested by 
Jammalamadaka and SenGupta (2001). 

For the bivariate von Mises sine torus (BvMST) distribution, the 

above suggested simulation scheme is implemented in  rou-
tine for each configuration (𝜅, 𝜂) and a random sample of size 𝑛 =
100 is generated. Furthermore, for assessing the relative efficien-
cies of the maximum pseudolikelihood and moments’ techniques in 
comparison with the traditional maximum likelihood for the pa-
rameters of the bivariate von Mises sine torus (BvMST) distribu-
tion in Eq. 4, assume that the concentration parameters 𝜅1 = 𝜅2 =
𝜅, say, are unknown, 𝜇1 = 𝜇2 = 0 is known and 𝜂 is unknown. Table 
1 gives numerical relative efficiency rates of estimation based on 
MPL method compared to estimation based on ML method for the 
bivariate von Mises torus distribution with 𝜅1 = 𝜅2 = 𝜅 = 1, 2,
⋯ , 15 and  𝜂 = 0.5, 1, 2, 4, 6, 8, 10.  Fig. 2 graphically presents 
the corresponding relative efficiency rates in Table 1. It is clear 
from both Table 1 and Fig. 2 that for small 𝜂 the efficiency rates of 
MPL method in comparison with the ML method are close to unity 
i.e., both MPL and ML have the same efficiency rates. If 𝜂 = 0, the 
efficiency rate of the MPL relative to the ML method is unity i.e. it 
has full efficient relative level, since in this case  𝑓S

∗ (𝜃1, 𝜃2) =
 𝑓S

∗ (𝜃1|𝜃2) 𝑓S
∗ (𝜃2|𝜃1). 

The aforementioned improvement in efficiency rate as 𝜅 in-
creases should therefore only be expected to occur, for fixed 𝜂, for 
those regions in Fig. 2 in which 𝜅 > 𝜂. This is indeed the case, and 
the efficiency rate is greater than 0.90 for all pairs of configurations 
(𝜅, 𝜂) in Fig. 2. For 𝜅 < 𝜂, the joint probability distribution of the 
angles 𝜃1 and 𝜃2 is bimodal, and in this situation the efficiency ap-
pears to be a quadratic function of 𝜅, with greater efficiency rates 
for small 𝜅 and 𝜅 close to 𝜂. Table 2 also shows numerical relative 
efficiency rates of estimation based on M method as compared to 
estimation based on ML method for the bivariate von Mises sine 
torus (BvMST) distribution with 𝜅1 = 𝜅2 = 𝜅 = 1, 2,
⋯ , 15 and  𝜂 = 0.5, 1, 2, 4, 6, 8, 10. Similar comments can be writ-
ten for the numerical estimates in Table 2 close to the remarks on 
the findings in Table 1 although the MPL method seems more effi-
cient than the M method when using the statistical criteria of com-
parison between the efficiency rates in subsection 3.4. 
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Table 1  

The numerical relative efficiency rates of estimation based on MPL method compared to estimation based on 
ML method for the bivariate von Mises sine torus (BvMST) distribution with 𝜅1 = 𝜅2 = 𝜅 =
1, 2, ⋯ ,15 and  𝜂 = 0.5, 1, 2, 4, 6, 8, 10.  

𝜅 

𝜂 = 0.5 𝜂 = 1 𝜂 = 2 𝜂 = 4 𝜂 = 6 𝜂 = 8 𝜂 = 10 

RERMPL|ML RERMPL|ML RERMPL|ML RERMPL|ML RERMPL|ML RERMPL|ML RERMPL|ML 

1 0.96 0.94 0.92 0.90 0.94 0.96 0.98 

2 0.97 0.94 0.95 0.89 0.91 0.95 0.96 

3 0.97 0.95 0.95 0.91 0.88 0.91 0.95 

4 0.97 0.97 0.96 0.94 0.90 0.87 0.91 

5 0.98 0.97 0.97 0.95 0.93 0.86 0.87 

6 0.98 0.97 0.97 0.95 0.95 0.88 0.85 

7 0.98 0.98 0.97 0.95 0.95 0.92 0.86 

8 0.98 0.98 0.98 0.96 0.95 0.95 0.87 

9 0.98 0.98 0.98 0.96 0.95 0.96 0.91 

10 0.98 0.98 0.98 0.97 0.96 0.97 0.92 

11 0.99 0.98 0.98 0.97 0.96 0.97 0.92 

12 0.99 0.98 0.98 0.97 0.97 0.98 0.95 

13 0.99 0.98 0.98 0.97 0.97 0.98 0.96 

14 0.99 0.99 0.98 0.97 0.97 0.99 0.97 

15 0.99 0.99 0.98 0.98 0.97 0.99 0.98 

 
Fig 2. The efficiency rates of estimation based on MPL method compared to estimation based on ML 
method for the bivariate von Mises sine torus distribution with 𝜅1 = 𝜅2 = 𝜅 = 1, 2, ⋯ ,15 and  𝜂 =
0.5, 1, 2, 4, 6, 8, 10.  
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Table 2  

The numerical relative efficiency rates of estimation based on moments’ (M) method compared to estima-
tion based on ML method for the bivariate von Mises sine torus (BvMST) distribution with 𝜅1 = 𝜅2 = 𝜅 =
1, 2, ⋯ ,15 and  𝜂 = 0.5, 1, 2, 4, 6, 8, 10.  

𝜅 

𝜂 = 0.5 𝜂 = 1 𝜂 = 2 𝜂 = 4 𝜂 = 6 𝜂 = 8 𝜂 = 10 

RERM|ML RERM|ML RERM|ML RERM|ML RERM|ML RERM|ML RERM|ML 

1 0.86 0.84 0.81 0.80 0.81 0.87 0.90 

2 0.86 0.84 0.82 0.77 0.80 0.86 0.91 

3 0.87 0.86 0.82 0.79 0.77 0.88 0.91 

4 0.87 0.87 0.83 0.81 0.80 0.85 0.91 

5 0.88 0.88 0.83 0.82 0.82 0.84 0.91 

6 0.89 0.88 0.83 0.82 0.83 0.83 0.89 

7 0.89 0.88 0.84 0.82 0.83 0.85 0.89 

8 0.89 0.89 0.84 0.83 0.83 0.81 0.89 

9 0.89 0.89 0.85 0.83 0.83 0.82 0.91 

10 0.90 0.89 0.85 0.84 0.84 0.80 0.92 

11 0.90 0.91 0.86 0.84 0.84 0.86 0.92 

12 0.91 0.91 0.86 0.84 0.84 0.86 0.93 

13 0.91 0.91 0.86 0.85 0.85 0.87 0.94 

14 0.92 0.92 0.87 0.85 0.85 0.90 0.95 

15 0.92 0.92 0.88 0.86 0.85 0.91 0.95 

 

For the toroidal wrapped normal torus (TWNT) distribution, 
the acceptance – rejection simulation scheme with BACG distribu-

tion as an envelope is implemented in  routine for each con-
figuration (𝜎2, 𝜌) from 10 random sample of size 𝑛 = 100 and from 
other 10 random samples of size 𝑛 = 1000. Table 3 provides the 
numerical relative efficiency rates of estimation based on the trig-
onometric moments’ (TM) method compared to estimation based 
on ML method for the toroidal wrapped normal torus (TWNT) dis-
tribution with different values of 𝜎2 and 𝜌. It is clear that the rela-
tive efficiency rates are improved for 𝑛 = 1000 as compared to the 

random sample of size 𝑛 = 100 i.e., the determined size of any ran-
dom sample from the TWNT distribution under this simulation 
scheme has a direct positive impact on the efficiency rates for the 
trigonometric moments’ method of estimation. Moreover, for fixed 
𝜎2, the estimates of the trigonometric moments’ method are also 
improved with increasing 𝜌. The results in Table 3 show also that 
for fixed 𝜌, the trigonometric moments’ method seem to have good 
estimates with increasing 𝜎2 in comparison with the ML method. 

 

 
 
Table 3  
 

The numerical relative efficiency rates of estimation based on trigonometric moments’ (TM) method compared to estimation based on ML method for the 
toroidal wrapped normal torus (TWNT) distribution with different values of 𝜎2 and 𝜌. 

True Values of Parameters TMM Estimates Relative Effi-
ciency Rates 

(RERTM|ML) 

 
True Values of  

Parameters 
TMM Estimates Relative Effi-

ciency Rates 

(RERTM|ML) 
𝜎2 𝜌 𝑛 �̂�TMM

2  �̂�TMM 

 

𝜎2 𝜌 𝑛 �̂�TMM
2  �̂�TMM 

1.00 0.05 100 0.75 0.02 0.52 1.00 0.05 1000 0.84 0.03 0.61 

1.00 0.30 100 0.79 0.20 0.57 1.00 0.30 1000 0.86 0.24 0.68 

10.0 0.05 100 7.11 0.02 0.61 10.0 0.05 1000 8.34 0.03 0.71 

10.0 0.30 100 7.82 0.21 0.64 10.0 0.30 1000 8.77 0.25 0.78 

10.0 0.50 100 7.95 0.37 0.66 10.0 0.50 1000 8.83 0.42 0.79 

10.0 0.70 100 8.02 0.58 0.69 10.0 0.70 1000 8.93 0.62 0.83 

10.0 0.90 100 8.13 0.76 0.73 10.0 0.90 1000 9.31 0.81 0.86 

50.0 0.50 100 39.1 0.41 0.75 50.0 0.50 1000 42.1 0.44 0.89 

50.0 0.70 100 41.8 0.60 0.78 50.0 0.70 1000 45.1 0.64 0.90 

50.0 0.90 100 42.8 0.79 0.81 50.0 0.90 1000 46.7 0.84 0.94 
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5. Conclusions 

In summary, the special features of the bivariate von Mises sine 
torus (BvMST) and the toroidal wrapped normal torus (TWNT) dis-
tributions are briefly discussed. Three possible estimation tech-
niques for their parameters are presented viz., the maximum like-
lihood (ML), maximum pseudolikelihood (MPL) and moments’ (M) 
methods. The ML, MPL and M methods are numerically compared 
with respect to their efficiency rates for estimating the correspond-
ing parameters of BvMST distribution. Both PML and M methods 
yield reasonable and extremely accurate numerical estimates rela-
tive to the estimates of ML method with supporting an acceptance–
rejection (AR) simulation scheme and using BACG distribution as 
an envelope.  

The trigonometric moments’ method seems to provide numer-
ical estimates for the parameters of the TWNT model after imple-
mentation the Jammalamadaka-SenGupta simulation scheme with 
acceptable accuracy at a small computational cost as compared to 
the traditional ML technique. Most statistical estimation ap-
proaches can, in principle, be generalized to the 𝑝-torus, but pa-
rameter estimation on this product manifold is still an open issue 
due to the exponential computational complexity when dealing 
with high dimensions, whereas others may have an increasing dif-
ficulty of obtaining a positive definite parameter matrix such as 𝚺. 
The Expectation–Maximization (EM) and Markov Chain Monti 
Carlo (MCMC) numerical algorithms are alternative techniques for 
future investigations on the high dimensional manifolds and could 
be used to get parameters’ estimates for all probability density 
functions of the BvMST, BvMCTPI, BvMCTNI and TWTN models. 
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