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Highlights 

• We introduce a new kind of cleavability is called Almost Contra-sgp-cleavability using special map and some special topo-
logical spaces. 

• We study different types of almost Contra-sgp- cleavability of some special topological spaces as almost Contra-sgp 
pointwise cleavability, almost Contra-sgp absolutely cleavability and Contra-sgp- cleavability.  

• We proved this case: if a space 𝐗 which is almost Contra-sgp (pointwise or absolutely) cleavable over a class P of some 
special topological spaces then 𝐗 does not belong to the class P. 
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In this paper we introduce basic definitions and some properties, of special mapping called 
“almost contra sgp continuous” used to show the concept of cleavability over some special top-
ological spaces as (sgp -𝑇0, sgp-𝑇1, sgp -𝑇2, weakly Hausdorff, Ultra Hausdroff, Ultra normal, 
sgp –normal, sgp- Ultra –connected ,hyper connected, sgp –compact–sgp- compact, sgp- Lin-
delöf, S-Lindelöf, S-closed) spaces. 

 Keywords:  
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1. Introduction  

Skii et al. (1985) introduced different types of cleavability  

(originally called splittability) as following: A topological space 𝑋 is 
said to be cleavable over a class of spaces 𝒫, if for 𝐴 ⊂ 𝑋  there ex-
ists a continuous mapping 𝑓: 𝑋 → 𝑌 ∈ 𝒫 , Such that f -1f (𝐴) = 𝐴, 
𝑓(𝑋)=𝑌. 

A new class of functions called contra and almost contra sgp-
continuous functions introduced and studied by (Hanif and Patil, 
2016) as a generalization of contra continuity which was intro-
duced and investigated by (Dontchev, 1996). In this paper we stud-
ied this case of cleavability as following: A space X is almost con-
tra sgp-pointwise (rsp. absolutely double)-cleavable over a class 𝒫 
of weakly Hausdroff, Ultra Hausdroff (Ultra normal, sgp.) spaces re-
spectively, if X admits almost contra sgp- continuous bijection onto 
some space in 𝒫 (but X need not be in 𝒫). Throughout this paper 
(X, 𝜏) and (Y, 𝜎) (or simply X and Y) denote Topological spaces 
which no separation axioms are assumed otherwise mentioned. 
For a subset B of a space X the closure and interior of B with respect 
to 𝜏 are denoted by Cl(B) and Int(B) respectively. 

2. Preliminaries 

In this section, we recall some definitions, which we need in this 
paper. 

2.1. Definition  

A subset A of a space X is called  

(i) A semi-open set (Levine, 1963) if A⊂Cl(Int(A)).  

(ii) A semi-closed set (Crossley and Hildebrand, 1972) if 
Int(Cl(Int(A)))⊆A. 
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(iii) A regular open set (Stone, 1937) if A=Int(Cl(Int(A))). 

 

2.2. Dentition (Navalagi and Bhat, 2007) 

A topological space X is called semi-generalized preclosed 
(briefly, sgp-closed) set if pCl(A)⊆U whenever A⊆U and U is semi-
open in X. 

2.3. Definition (Hanif and Patil, 2016) 

A topological space X is said to be 

(i) SgpTc-space if every sgp-closed set is closed set. 

(ii) Sgp-𝑇0 space if for any two distinct points x, y in X, x ≠ y there 
exists sgp-open set of X containing x but not y or containing y but 
not x. 

(iii) Sgp-𝑇1 space if for any pair points x and y there exist sgp-open 
sets G and H such that x ∈G, y ∉G and x ∉H, y ∈H. 

(iv) Sgp-𝑇2 space if for any two points x, y in X, x ≠ y, there exist 
sgp- open sets U and V such that U containing x but not y and V 
containing y but not x, where U ∩V =∅. 

2.4. Definition (Hanif and Patil, 2016) 

Let X and Y be topological spaces. A function f :X⟶Y is said to 
be Sgp-continuous if the inverse image of every closed set in Y is 
sgp-closed set in X. 

2.5. Definition (Dlaska, Ergun and Ganster, 1994)  

A function f: X ⟶Y is said to be sgp-open (resp., sgp -closed) if 
f (U) is sgp-open (resp., sgp-closed) in Y for every open set (resp., 
closed) U in X. 
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2.6. Definition (Staum, 1974) 

(i) A topological space X is called ultra Hausdroff space if every pair 
of distinct points of x and y in X there exist disjoint clopen sets U 
and V in X containing x and y respectively. 

(ii) Ultra normal if each pair of non-empty disjoint closed sets can 
be separated by disjoint clopen sets. 

2.7. Definition (Hanif and Patil, 2016) 

A topological space X is said to be:  

(i) sgp-normal if each pair of non-empty disjoint closed sets can be 
separated by disjoin sgp -open sets. 

(ii) sgp-connected provided that X is not the union of two disjoint 
nonempty sgp -open sets of X 

(iii) sgp-compact if every sgp -open cover of X has a finite subcover. 

2.8. Definition  

A topological space (X, ) is said to be 

(i) weakly Hausdorff (Stone, 1937) if each element of X is the inter-
section of regular closed sets of X. 

(ii) hyperconnected (Noiri, 1984) if every open set is 
dense 

2.9. Definition (Hanif and Patil, 2016) 

A function f: X⟶Y is said to be 

(i) Almost contra-semi generalized pre-continuous (briefly, almost 
contra sgp-continuous) if 𝑓−1 (V) is sgp-closed in X for each regular 
open set V in Y. 

(ii) Contra sgp-continuous if 𝑓−1(F) is said to be sgp-closed set in 
X for every open set F of Y. 

3. Almost contra sgp-cleavability 

3.1. Definition  

A topological space 𝑋  is said to be an almost contra sgp -cleav-
able over a class of spaces 𝒫, if for any subset A of X, there exists a 
contra sgp-continuous mapping 𝑓: 𝑋→𝑌 , such that 𝑓−1𝑓(A)=A. and 
𝑓(𝑋) = 𝑌. 

3.2. Definition  

A topological spaces is said to be an almost contra sgp-point 
wise cleavable over a class of spaces. If for every point 𝑥 ∈ 𝑋there 
exists an injective almost contra sgp -continuous mapping 𝑓: 𝑋→𝑌, 
such that 𝑓−1𝑓 { 𝑥}={ 𝑥 }. 

3.3. Remark 

By an almost contra sgp-pointwise cleavable, we mean that a 
contra sgp-continuous function 

𝒇: 𝑿→𝒀 ∈ 𝓟  is an injective and a contra sgp-continuous. 

3.4. Definition  

A topological space X is said to be an almost contra sgp-abso-
lutely cleavable over a class of spaces 𝒫, if for any subset A of X, 
there exists an injective almost contra sgp-continuous mapping 𝑓: 
𝑋→𝑌 , such that   𝑓−1𝑓(A)=A. 

3.5. Definition  

A topological space 𝐗 is said to be double almost contra sgp 
open (closed) cleavable over a class of spaces 𝓟, if for any subsets 
𝐀 ⊂ 𝐗 and 𝐁 ⊂ 𝐗, there exists almost contra sgp open (closed) 
function 𝒇: 𝑿 ⟶ 𝒀 such that 𝒇−𝟏𝒇(𝐀) = 𝐀 and 𝒇−𝟏𝒇(𝐁) = 𝐁  

3.6. Proposition 

Let space 𝑋 be an almost contra sgp-pointwise cleavable over a 
class of weakly Hausdorff spaces 𝒫, then 𝑋 is sgp -𝑇1 – space .Hence 
𝑋 ∉  𝓟 

 

 

Proof: 

Let  𝑥 ∈ 𝑋, then there exists a weakly Hausdorff space  𝑌 ∈ 𝒫 
and an injective almost contra sgp-continuous mapping 

𝑓: 𝑋→𝑌 ∈ 𝒫 such that 𝑓-1𝑓(𝑥) = {𝑥}. This implies that for every y ∈ 
𝑌 with 𝑥 ≠  𝑦, we have 𝑓(𝑥) ≠ 𝑓(𝑦). Since 𝑌 is a weakly Hausdorff, 
so there exist two regular closed sets 𝑈 and 𝑉 such that 𝑓(𝑥) ∈ 𝑈, 
𝑓(y) ∉ 𝑈, 𝑓(y) ∈ 𝑉, 𝑓(𝑥) ∉ 𝑉 and then 𝑓-1𝑓(𝑥) ∈ 𝑓-1(𝑈) , 𝑓-1 𝑓(𝑦) ∉
𝑈, 𝑓-1 𝑓(𝑦) ∈ 𝑓-1(𝑉)    , 𝑓-1𝑓(𝑥) ∉ 𝑉 this implies that 𝑥 ∈ 𝑓-1(𝑈), 𝑦 ∉
𝑓-1(𝑈), 𝑦 ∈ 𝑓-1(𝑉), 𝑥 ∉ 𝑓-1(𝑉) since 𝑓is almost contra-sgp-continu-
ous, so 𝑓-1(𝑈) , 𝑓-1(𝑉) are sgp -open sets of 𝑋, then 𝑋 is sgp -𝑇1-
space. Hence 𝑋 ∉  𝓟  

3.7. Proposition  

Let space 𝑋 be an almost contra sgp-pointwise cleavable over a 
class of Ultra Hausdorff spaces 𝒫 , then 𝑋 is sgp -𝑇2-space. 

Proof: 

Let ∈ 𝑋 𝑥, then there exists an Ultra Hausdorff space 𝑌 and an 
almost contra sgp-continuous mapping 

𝑓: 𝑋→𝑌 ∈ 𝒫 such that 𝑓-1𝑓{𝑥} = {𝑥} . This implies that for every y ∈ 
𝑌 with 𝑥 ≠  𝑦 , we have 𝑓(𝑥)  ≠ 𝑓(𝑦). 

Since 𝒀 is ultra Hausdorff , so there exist two clopen sets 𝑈 and V 

such that 𝑓(𝑥)  ∈  𝑈, 𝑓(𝑦)  ∈  𝑉 and 𝑈   𝑉 =Ø, then 

𝑓-1𝑓(𝑥) ∈ 𝑓-1(𝑈), 𝑓-1 𝑓(𝑦) ∈ 𝑓-1(𝑉), this implies that 
 𝑥 ∈ 𝑓-1(U) , 𝑦 ∈ 𝑓-1(V), since 𝑓 is an almost contra sgp-continuous, 
so 𝑓-1(𝑈)  ), 𝑓-1(𝑉) are two sgp-open sets and 

𝑓-1(𝑈)   𝑓-1(𝑉)= 𝑓-1(𝑈  𝑉)= 𝑓-1(Ø)= Ø. Thus 𝑋 is sgp-𝑇2space. 

Hence 𝑋 ∉  𝓟 

3.8. Proposition  

Let X be a closed almost contra sgp-absolutely double cleavable 
spaces over a class of ultra normal space 𝒫, then X is sgp–normal 
space 

Proof: 

Suppose F1, F1 be two disjoint closed sub sets of X, then there 
exists an injective closed contra sgp-continuous mapping f:X⟶ 𝑌 
such that 𝑓−1𝑓(𝐹1)=F1, 𝑓−1𝑓(𝐹2)=F2 Since f is a closed almost con-
tra sgp injective, then f (F1), f (F2) are two disjoint closed sets of Y 
,since Y is ultra normal, so there exist two clopen sets U, V such that 
𝑓(𝐹1) ⊂ 𝑈, 𝑓(𝐹2) ⊂ 𝑉, 𝑈 ∩ 𝑉 = ∅, since f is surjective, then 
𝑓−1𝑓(𝐹1) ⊂ 𝑓−1(𝑈), 𝑓−1𝑓(𝐹2) ⊂ 𝑓−1(𝑉) since f is contra sgp–con-
tinuous ,then𝐹1 ⊂ 𝑓−1(𝑈). This implies that 𝐹2 ⊂ 𝑓−1(𝑉) and 
𝑓−1(𝑈), 𝑓−1(𝑉) , are sgp-open sets of X, 𝑓−1(𝑈) ∩ 𝑓−1(𝑉) 
=𝑓−1(𝑈 ∩  𝑉) = 𝑓−1(∅) = ∅. Thus X is sgp-normal. Hence  𝑋 ∉  𝓟.  

3.9. Proposition  

Let X be sgp-connected almost contra sgp-absolutely cleavable 
space over a class of spaces 𝑌, then Y is connected space. 

Proof: 

Suppose Y is not connected space, then Y=U⋃ V, where U, V are 
disjoint non empty open sets of Y, so U and V are clopen sets of Y, 
then there exists an injective almost contra-sgp-continuous map-
ping f: X →Y , such that f-1f{f-1(U)}=f-1(U), f-1f{f-1(V) }=f-1(V) since 
Y=U⋃V, then f-1(Y)=f-1(U⋃V ) ⟹ X=f-1(U) ⋃ f-1(V). 
Since f is a almost contra sgp-continuous function, then f-1(U), f-1(V) 
are non-empty disjoint sgp-open sets in X, which contradicts that X 
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is sgp-connected. Therefore, Y is connected space sgp-open sets in 
X, which contradicts that X is sgp–connected. Therefore, Y is con-
nected space.  

 

 

3.10. Definition (Hanif and Patil, 2016) 

A topological space X is said to be sgp-ultra-connected if every 
two non-empty sgp-closed subsets of X intersect. 

3.11. Proposition 

Let X be sgp-ultra connected almost contra sgp– cleavable 
space over a class of spaces Y, then Y is hyper connected space. 

Proof: 

Suppose Y is not hyper connected space, then there exists an 
open set V such that V is not dense in Y, and there exists an injective 
almost contra-sgp-continuous mapping f: X →Y, such that: 

f-1f{f-1(V)}=f-1(V). Therefore, there exist nonempty regular open 
subsets G = Int(Cl(V)) and H=Y-Cl(V) in Y, since f is a almost contra 
sgp-continuous function, then𝑓−1(G), 𝑓−1(G) are non-empty dis-
joint sgp -closed sets in X, which contradicts that X is sgp–ultra-
connected. Therefore, Y is hyper connected space. 

3.12. Definition  

A space X is said to be 

(i) Countably sgp-compact (Dlaska, Ergun and Ganster, 1994) if 
every countable cover of X by sgp-open sets has a finite subcover. 

(ii) sgp-Lindelöf (Maio, 1984) if every sgp-open cover of X has a 
countable subcover. 

(iii) S-Lindelöf (Maio, 1984) if every cover of X by regular closed 
sets has a countable subcover. 

(iv) Countably S-closed (Dlaska, Ergun and Ganster, 1994) if every 
countable cover of X by regular closed sets has a finite subcover. 

(v) S-closed (Staum, 1974) if every regular closed cover of X has a 
finite subcover. 

3.13. Proposition 

Let 𝑋 be an almost contra countably–sgp-compact and cleava-
ble-closed space over a class of spaces Y, then 𝑌 is countably S-
closed space. 

Proof: 

Suppose {𝑉𝑖}𝑖∈𝐼be any countable regular closed cover of 𝑌, since 
𝑋 is Countably sgp- compact an almost contra 𝑠𝑔𝑝-closed cleava-
ble, so there exists an almost contra sgp-continuous mapping 
𝑓:𝑋 ⟶ 𝑌 ∈ 𝒫, such that 𝑓-1𝑓{𝑓-1 {𝑽𝒊}𝑖∈𝐼} = 𝑓-1{𝑽𝒊}𝑖∈𝐼, since 𝑓 is an 
almost contra sgp-continuous , then 𝑓-1{𝑽𝒊}𝑖∈𝐼 is countable-𝑠𝑔𝑝-
open cover of  𝑋. But  𝑋 is Countably-sgp-compact, so there exists a 
finite sub cover {𝑓-1 {𝑽𝒊}𝑖∈𝐼,…, 𝑓-1  𝑽𝒏} of 𝑋, such that: 

X ⊂ 
n

i 1=

{𝑓-1(𝑽𝒊)}, since 𝑓𝑓-1 𝑽𝒊=  𝑽𝒊    , So  {𝑽𝟏,…,  𝑽𝒏} is a finite 

subcover of 𝑌. Therefore  𝑌 is countably S-closed. 

 

 

3.7 Proposition 

Let  𝑋 be sgp–Lindelöf-space is an almost contra sgp-cleavable 
space over a class of spaces 𝒫, then 𝑌 is S-Lindelöf space. 

Proof: 

The proof is as in the proof of proposition 3-6. 

4-Conclusion  

In this paper, we have studied and proved these cases: 

(1) If 𝒫 is a class of weakly Hausdorff or (Ultra Hausdorff ) spaces 
with certain properties and if  𝑋 is an almost contra sgp-pointwise 
cleavable over 𝒫, then 𝑋 is sgp -𝑇1, ( sgp-𝑇2space)–space respec-
tively , also if 𝒫 is a class of ultra-normal spaces with certain prop-
erties and if 𝑋 is a closed almost contra sgp-absolutely double 
cleavable over 𝒫, then X is sgp-normal space. 

(2) If 𝑋 be a sgp-connected spaces, and  𝑋  is an almost contra sgp-
absolutely cleavable over a class of spaces 𝑌, then 𝑌 is countably S-
closed space. 

(3) If 𝑋 be a sgp connected (sgp-ultra connected, countably sgp–
compact, sgp–Lindelöf) spaces, and 𝑋 is almost contra sgp cleava-
ble over a class of spaces 𝑌, then 𝑌 is connected (hyper connected, 
countably S-closed, S-Lindelöf)–space-respectively. 
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