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Highlights 

 In the cylindrically symmetric configuration, the diffusion process is termed classical transport. 

 The use of toroidal configuration leads to an enhanced level of transport known as neoclassical. 

 Diffusion occurring in highly collisional plasma is known as Pfirsch-Schlutre diffusion. 
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The plasma transports in two different geometrical configurations are studied, wherein in a 
system having a cylindrically symmetric shape, the diffusion process is termed classical 
transport. The use of toroidal configuration leads to an enhanced level of transport known as 
neoclassical. The plasma collisionality produces different forms of diffusion. The fluid-like dif-
fusion occurring in highly collisional plasma is known as Pfirsch-Schlutre diffusion. In low col-
lisionality plasma, the trapped particle leads to the so-called banana diffusion. The ion thermal 

diffusivity 𝜒𝑖  exceeds the electron thermal diffusivity 𝜒𝑒  by a factor~(
𝑚𝑖

𝑚𝑒
)

1

2
, which is a landmark 

of this collisional diffusion process. In this paper, the classical diffusion coefficient with random 
walk step is covered, and the neoclassical transport and the trapped particle diffusion are stud-
ied. 
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1. Introduction 

The thermonuclear condition in tokamak can be achieved if the 
plasma energy is confined to a sufficient amount of time. We de-

fined the global energy confinement time as  𝜏𝐸 =
3

2
𝑛

(𝑇𝑒+𝑇𝑖)

𝑃
 , 

where  𝑛  is the plasma density, 𝑃 the total input power,  𝑇𝑒 and 𝑇𝑖 
are the electrons and the ions temperatures respectively. Thermal 
conduction, convection, and radiation processes may hinder this 
confinement. For plasma consisting of a set of nested toroidal mag-
netic surfaces in tokamak, there is an irreducible loss rate resulting 
from Coulomb collisions (Boozer, 2004).  In a system having a cy-
lindrically symmetric configuration, this diffusion process is 
termed classical transport. The use of toroidal configuration leads 
to an enhanced level of transport known as neoclassical. The 
plasma collisionality produces different forms of diffusion. The 
fluid-like diffusion occurring in highly collisional plasma is known 
as Pfirsch-Schlutre diffusion. In low collisionality plasma, the 
trapped particle leads to the so-called banana diffusion. The ion 
thermal diffusivity 𝜒𝑖  exceeds the electron thermal diffusivity 𝜒𝑒  by 

a factor ~(
𝑚𝑖

𝑚𝑒
)

1

2
 is a landmark of this collisional diffusion process. 

The leading collisional transport theories predict that the energy 

loss is mainly determined by the ion confinement time 𝜏𝐸𝑖~
𝑎2

𝜒𝑖
 , 

where 𝑎 is the plasma minor radius. Detailed experimental analysis 
using transport codes shows that ion thermal transport is similar 
to the neoclassical value; however that of electron thermal losses 
exceed the neoclassical prediction by up to two orders of magni-
tude. Line radiation from impurities can cause serious energy loss, 
and there is an irreducible component arising from bremsstrah-
lung and electron cyclotron emission also. When particle transport 
appears to be substantially higher, these enhanced losses are 
termed anomalous transport. In order to understand the cause of 
this anomalous transport, there are several potential explanations, 
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generally connected with the presence of instabilities (Woods, 
1987). 

If the instabilities preserve the topology of the magnetic sur-

faces, the enhanced loss can arise from �⃗� × �⃗�  due to fluctuating 
electric fields (Hazeltine, 1992). Instabilities involving magnetic 
perturbations can modify the magnetic field structure. Thus, tear-
ing modes produce magnetic islands and the rapid transport of en-
ergy along the distorted magnetic field produces an enhanced ra-
dial transport. For magnetic islands coming to vary close to each 
other the magnetic field lines become ergodic, then rapid transport 
along the magnetic field lines, which themselves diffuse in space, 
provides a further loss mechanism. Given these substantial possi-
bilities for the occurrence of anomalous transport and the technical 
difficulties in calculating their consequences, therefore it goes 
without saying that no convincing theoretical model has been 
found. Thus, much reliance has therefore been placed on empirical 
scaling laws for the confinement time in order to estimate the pa-
rameters required for a tokamak reactor. In this work classical dif-
fusion coefficient with random walk step is covered, the neoclassi-
cal transport is given and the trapped particle diffusion is also 
shown. 

 

Fig.1. Toroidal tokamak coordinates 
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2. Anomalous Transport 

Given the substantial possibilities for the occurrence of anom-
alous transport, they can be classified as; 

2.1 Classical transport 

Consider plasma with cylindrical configuration and uniform 

magnetic field�⃗� , if the velocity of the moving particle is 𝜐 during the 
collision time 𝜏  and using the random walk step size during this 
time to be Δ𝑥. Then the particle would move a distance Δ𝑥 = 𝜐𝜏, 
hence the parallel classical diffusion coefficient is: 

𝐷∥
𝐶 =

〈(Δ𝑥)2〉

𝜏
=

〈(𝜐𝜏)2〉

𝜏
= 𝜐𝑒

2𝜏                                                                (1) 

where this is a classical coefficient parallel to the magnetic unit vec-

tor  �̂�, for the diffusion across the magnetic field the two coeffi-
cients are related as: 

𝐷⊥
𝑐 ≈

𝐷∥
𝐶

(𝜔𝑐𝑒𝜏)
2 ≃

𝜐𝑒
2

𝜔𝑐𝑒
2 ≈

𝜐𝑒
2

𝜔𝑐𝑒
2 𝜈𝑒                                                                  (2) 

where 𝜐𝑒 is the electron thermal velocity, 𝜔𝑐𝑒 is the electron cyclo-
tron frequency and 𝜈𝑒   is the electron collision frequency. When  

𝜔𝑐𝑒 =
𝑒𝐵

𝑚𝑒
  , the diffusion coefficient  𝐷⊥

𝐶   scales as  
1

𝐵2
. 

2.2 Neoclassical transport 

The use of toroidal configuration leads to an enhanced level of 

transport known as neoclassical, where the magnetic field  �⃗�   is 
nonuniform, see Fig. 1. The drift velocity in the absence of the elec-

tric field �⃗�  and in nonuniform �⃗�  is given by the following contribu-
tions (Alhasi, 2021); 

υD
Neo = 𝑚𝑒

(𝜐 ∥𝑖 − 𝜐 ∥𝑒)

𝜏𝑐
× (

�⃗� 

𝑒𝐵2) +
𝑚𝜐⊥

2

2𝑒𝐵3 �⃗� × ∇⃗⃗ 𝐵 +
𝑚𝜐∥

2

𝑒𝐵4  �⃗� 

× (�⃗� ∙ ∇⃗⃗ )�⃗�                                                                  (3) 

Consider the first term of Eq. (3) due to the plasma current to 
obtain the particle flux as; 

Γ𝑝 = 𝑛𝑚𝑒

(𝜐 ∥𝑖 − 𝜐 ∥𝑒)

𝜏𝑒
×

�⃗� 

𝑒𝐵2 = −
𝑚𝑒

𝜏𝑒

1

𝑒2𝐵2 𝑗 × 𝐵  ⃗⃗ ⃗⃗                                (4) 

where 𝑛 is the plasma density. In the case of isothermal equilibrium 
plasma the electromagnetic forces balance the gradient thermal 
forces to have; 

𝑗 × �⃗� = ∇⃗⃗ 𝑝 = 𝑇𝑒 ∇⃗⃗ 𝑛                                                                                     (5) 

Eq. (4) can be written in this form; 

Γ𝑝 = (−
𝑚𝑒

𝜏𝑒

𝑇𝑒

𝑒2𝐵2) ∇⃗⃗ 𝑛 = −𝐷⊥
𝐶 ∇⃗⃗ 𝑛                                                            (6) 

Eq. (6) is just the cross-field diffusion coefficient obtained in the 
classical case of Eq. (2). Thus the effect of tokamak geometry is 
included in the second and third terms of Eq. (3), These two terms 
when they are combined give the diffusion velocity drift due to the 
geometry effect which can be written (Bittencourt, 2004) as; 

𝜐𝐷
𝑔𝑒𝑜

=
𝜐𝑒

2

𝜔𝑐𝑒𝑅
                                                                                                (7) 

where 𝑅 is the machine major radius, 𝜔𝑐𝑒 =
𝑒𝐵𝜙

𝑚𝑒
 , and 𝐵𝜙 is the 

toroidal magnetic field. 

2.2.1 Neoclassical transport of transient particles 

In tokamak geometry the factor 𝑞𝑅 is defined as the maximum 
distance over which the magnetic curvature doe not change sign, 

𝑞 ≡
𝑟

𝑅

𝐵𝜙

𝐵𝜃
 is the safety factor and 𝜀 ≡

𝑟

𝑅
 is the inverse aspect ratio, see 

Fig. 1. The diffusion velocity in Eq. (7) has two components, thus 

the diffusion coefficients are fast 𝐷∥ along �⃗�  and a slower 𝐷⊥cross 

�⃗� . Using the random walk ∆𝑥 = 𝑞𝑅, the time 𝑡 taken  to diffuse a 

distance 𝑞𝑅 along �⃗�  is; 

𝑡 ≈
(𝑞𝑅)2

𝐷∥
=

(𝑞𝑅)2

𝜐𝑒
2𝜏𝑒

                                                                                     (8) 

where the definition of 𝐷∥ is taken from Eq. (1). Using Eq. (7) and 

Eq. (8) to estimate the maximum distance ∆𝑥 cross �⃗�  moved by the 
transit particle to have; 

∆𝑥~𝜐𝐷
𝑔𝑒𝑜

𝑡 = (
𝜐𝑒

2

𝜔𝑐𝑒𝑅
)(

𝑞2𝑅2

𝐷∥
) = 𝑞2

𝑅

𝜔𝑐𝑒𝜏𝑒
                                           (9) 

Again using  the random walk technique  and the help of Eq. (8) 

and Eq. (9) to estimate the diffusion coefficient along �⃗�  as; 

𝐷∥
𝑔𝑒𝑜

=
(∆𝑥)2

𝑡
=

(𝑞2𝑅 𝜔𝑐𝑒𝜏𝑒⁄ )2

(𝑞𝑅 𝜐𝑒
2𝜏𝑒⁄ )2

= 𝑞2 [
𝜐𝑒

2𝜏𝑒

(𝜔𝑐𝑒𝜏𝑒)
2] = 𝑞2𝐷⊥

𝐶             (10) 

This is just the cross �⃗�  coefficient enhanced by the geometrical 
factor 𝑞2. If we now add the contribution of Eq. (2) to Eq. (10) we 
get; 

𝐷𝑁𝑒𝑜
𝑔𝑒𝑜

= 𝐷⊥
𝐶 + 𝑞2𝐷⊥

𝐶 = (1 + 𝑞2)𝐷⊥                                                                           
𝐶  (11) 

This is the so-called Pfirsch-Schluter diffusion factor (Woods, 
1987). 

2.2.2 Neoclassical transport of trapped particles 

The resulting mean distance for trapped electrons in a banana 
tokamak islands (Hazeltine, 1992) is; 

𝛿𝑟 =
𝐵𝜙𝜀

1
2

𝐵𝜃𝜔𝑐𝑒
𝜐𝑒 =

𝑞𝑟𝐿𝑒

𝜀
1
2

                                                                             (12) 

where  𝑟𝐿𝑒   is the electron Larmor radius. The diffusion coefficient 
with 𝛿𝑟 as a random walk step is 

𝐷𝐵𝑎𝑛𝑎
𝑔𝑒𝑜

≈ 𝜀
1
2
(𝛿𝑟)2

𝜏𝑒𝑓𝑓
=

𝜀
1
2

𝜀𝜏𝑒
(𝑞𝑟𝐿𝑒 𝜀

1
2⁄ )

2

= 𝜀−
3
2𝑞2𝐷⊥

𝐶                             (13) 

where 𝜏𝑒𝑓𝑓 = 𝜀𝜏𝑒. The total neoclassical diffusion coefficient due to 

all types of particles (tapped and transient) is, see Fig. 2. 

𝐷𝑁𝑒𝑜 = (1 + 𝑞2 + 𝜀−
3
2𝑞2)𝐷⊥

𝐶                                                                 (14) 

 

Fig.3. Transport diffusion coefficients 

3. Thermal Heat Diffusivity Coefficients 

Just as the gradient of the particle density defined the coeffi-
cients of diffusion, also the gradient of the particle temperature de-
fined it’s thermal diffusivities. The thermal heat diffusivity 𝜒𝑒  is re-
lated to the coefficient of diffusion as 𝜒𝑒~𝐷 for electrons. The ion 
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thermal diffusivity coefficient 𝜒𝑖  is much larger than  𝜒𝑒  by factor 

of (
𝑚𝑖

𝑚𝑒
)

1

2
; implies 

  𝜒𝑖~(
𝑚𝑖

𝑚𝑒
)

1
2
𝜒𝑒                                                                                              (15) 

 

Fig. 3. Alcator (A) experimental results 

The experimental measurement of 𝜒𝑖  agrees well with the neo-
classical transport calculations. The case for electrons is very dif-
ferent; the disagreement between experiment and neoclassical the-
ory calculations for electron  𝜒𝑒  is huge. There must be some other 
factors, which might contribute to 𝜒𝑒  , this type of transport is 

termed anomalous diffusion. Several theories are used to explain 
this anomaly: 

(i) Drift wave transport due to electrostatic fluctuation gives a par-
ticle flux as: 

Γ𝑤𝑎𝑣𝑒~ −
𝛾

2
(
𝑘⊥𝜙

𝜔𝐵
)
2
∇⃗⃗ 𝑛, with wave diffusion coefficient, 𝐷𝑤𝑎𝑣𝑒 =

𝛾

2
(
𝑘⊥𝜙

𝜔𝐵
)
2

, Where, 𝜙 the electro-static potential, 𝜔 the wave fre-

quency, 𝑘⊥ the normal wave vector and 𝛾 the wave growth factor. 

(ii) Magnetic fluctuation leading to the creation and distraction of 
magnetic islands such as tearing mode instabilities.  

(iii) Magnetic ripples transport. Even this contribution is not 
enough to bring theory and experiment into an agreement. There-
fore, scaling laws are required to explain the experimental results, 
such as M.I.T. Alcator tokamak scaling law: 𝜒𝑒 = 5 ×

1017 1

𝑛
    sec cm−2, the Alcator experimental results are shown in 

Fig. 3  

References 

Alhasi, A.S. (2021) Submitted to the Libyan Journal of Science & 
Technology. 

Alhasi, A.S., (2018) ‘Magnetic field curvature (𝜅⃗ ) and poloidal (β𝜃) 
calculations using single field MHD plasma in Tokamak sys-
tems’, Libyan journal of Science & Technology 8:1, pp. 21-24. 

Bittencourt, J.A., (2004) ‘Fundamentals Plasma Physics’, pp. 74-87, 
3rd Ed., New York 

Boozer, A.H., (2004) ‘Physics of magnetically Confined Plasma‘, 
Review of Modern Phys., 76, pp. 1071-1141. 

Hazeltine, R.D., and Miess, J.D. (1992) ’Plasma Confinement’ 1st Ed. 
Addison-Wesley Pub. Co., pp.123-130. 

Wood, L.C. (1987) ’Principle s of magneto plasma Dynamics’, 
pp.159-165., pub., Oxford Science. 

 


