
Libyan Journal of Science & Technology 14:1 (2022) 01-04 

 

 

Categorical Forms of Green's Function; The One-Dimensional Time Response Function: 
Forced Harmonic Oscillator1 

Ali S. Alkharam 

Department of physics, Faculty of Science, University of Benghazi. 

ali.alkharam@uob.edu.ly 

Highlights 

 Simple analysis of Green's Method to solve an inhomogeneous ordinary differential equation. 
 The method of variations of parameters can provide specific formats of Green's functions to particular physi-

cal problems involving differential equations. 
 Transformation of 2nd order differential equation into Green's differential equation must involve delta func-

tion. 

A R T I C L E   I N F O  A B S T R A C T 

Article history: 

Received 23 December 2021 
Revised 09 February 2021 
Accepted 16 February 2021 
 

An introductory technique to solve one-dimensional time-dependent boundary value prob-
lems using Green's function, aiming at postgraduate students, and science researchers who 
have no prior experience with the method. The aim here is to have a rather simple look at 
Green's functions as a solution to boundary value problems in their explicit functional forms, 
rather than their explicit expressions, and finally to be acquainted with them.  Using the 
method of variations of parameters, one can provide a satisfactory format of Green's functions, 
which would make it easier to introduce Green's functions and accept their abstract format in 
more complex problems including higher dimensions.  
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1. Introduction 

We often come across Sturm-Liouville boundary value prob-
lems in many different areas of science, particularly in Physics and 
Chemistry. In the mathematical sense, it has the form of Lu=f(t), 
where L is the Sturm-Liouville linear operator, and f(t) is a mathe-
matical function that satisfies the operand. One may approach the 
solution of this problem by different methods if f(t) is simple 
enough. On the other hand, in situations where f(t) is an impulse 
function i.e., acted in a very short time, these methods often fail to 
provide straightforward solutions. In this paper, we introduce a 
powerful technique to deal with such problems. By considering the 
right-hand side of the nonhomogeneous equation, termed as im-
pulse response that acts in infinitesimal time. The equation will be 
transformed into a new form LG=(t-), where G is known as 
Green’s function and (t-) is a distribution function known as Di-
rac’s delta function which has many special properties, whereas its 
integral over the entire real line is equal to one. The main construc-
tional property, its value blows up at t=and is equal to zero eve-
rywhere else. Other important properties are shown in Table 1 
cited from Spanier and Oldham (2009). 

Once we find these Green’s functions then it is possible to find 
the solutions of Lu=f(x), from u(t)= ∫G(t,)f()dsince G and u are 
connected by convolution property; G*u. In this sense, Green’s func-

tion is the solution to the ordinary differential equation with a non-ho-

mogenous Dirac’s point source, and the same boundary conditions are 
applied, as in the original problem. The idea is to find the solutions of 

the differential equation for a single point source then use them to con-

struct the full solutions of the original differential equation by superpo-

sition principle. Although the method is reviewed in many papers in the 
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few past decades (Dennery and Krzywicki, 2009; Witten and McCor-
mick, 1975; Flores-Hidalgo and Barone, 1975), the objective here is 

to further simplify the approach and have an elicited structural format 

of Green’s functions and understand how they form the backbone of the 

general solution of the main problem. 

Table 1 

Some properties of -functions 

 

2. Mathematical Approach 

It is relatively rare to avoid the use of differential equations to 
solve physical problems. The development of the mathematical 
model to solve a particular physical problem often leads to a 
boundary value problem (Edwards et al., 2014). As an example, the 
motion of an object of mass,𝑚 executing simple harmonic motion, 
as shown in Fig. 1, leads to the following homogeneous ordinary dif-
ferential equation: 

𝐿𝑢(𝑡) = 0                                                                                                      (1) 

 Dirac’s -function property 
1 𝛿(𝑡 − 𝜏) = 0            𝑡 ≠ 𝜏 

2 ∫ 𝛿(𝑡)𝑑𝑡 = 1
+∞

0

 

3 𝛿(𝜔𝑡) = 𝜔−1𝛿(𝑥)          𝜔 ≠ 0 

4 ∫ 𝛿(𝑇1 − 𝑡)𝛿(𝑡 − 𝑇2)𝑑𝑥 = 𝛿(𝑇1− 𝑇2)
+∞

0

 

5 ∫ 𝑓(𝑡)𝛿(𝑡 − 𝜏)𝑑𝑥 = 𝑓(𝜏)
+∞

0
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where the Sturm-Liouville operator 

𝐿 ≡
𝑑2

𝑑𝑡2
+ 2𝛾

𝑑

𝑑𝑡
+ 𝜔𝑜

2 

acted on time-dependent function𝑢(𝑡) which represents the dis-

placement of the particle at any time 𝑡; 𝜔𝑜 =
𝑘

𝑚
 is the natural angu-

lar frequency,𝑘is the restoring force constant; 𝛾 =
𝑏

2𝑚
 is part of the 

resistance force 𝑅 = −𝑏
𝑑𝑢

𝑑𝑡
 and 𝑏 is a constant that depends on sur-

faces of contact between the sliding object and ground. 
We will consider here the analysis of the damping case where𝜔𝑜 >
𝛾. The solution of this equation which can be easily obtained by a 
variety of techniques is given by (Bosa, 2006; Arfken et al., 2012): 

𝑢(𝑡) = 𝑒𝑥𝑝( − 𝛾𝑡)[𝐴 𝑐𝑜𝑠𝜔 𝑡 + 𝐵 𝑠𝑖𝑛𝜔 𝑡]                                            (2) 

where A and B are two arbitrary constants reflecting the fact that 
we have two initial conditions (i.e., position; 𝑢(0)  and velocity; 

𝑢′(0)); 𝜔2 = 𝛾2 −𝜔𝑜
2. However, when this system is subjected to 

an abrupt forcing term 𝑓(𝑡) (force per unit mass), we obtain an in-
homogeneous differential equation of the form: 

𝐿𝑢(𝑡) = −𝑓(𝑡)                                                                                             (3) 

Here the solution of this differential equation composes of two 
parts, a complementary solution; 𝑢𝑐(𝑡) obtained earlier by Eq. (2) 
and a particular solution; 𝑢𝑝(𝑡) satisfying Eq (3). In this case, the 

general solution is given by: 

𝑢(𝑡) = 𝑢𝑐(𝑡) + 𝑢𝑝(𝑡)                                                                                 (4) 

To find this particular solution for this abstract form of forcing 
term𝑓(𝑡) (often referred to as source), we introduce an equivalent 
equation with unit impulse represented by delta function 𝛿(𝑡 − 𝑡𝑜) 
which acts as a distribution function (per unit time) and has the 
property (Oliver et al., 2010): 

∫ 𝛿(𝑡 − 𝑡𝑜)𝑑𝑡 = 1                                                                                    (5)
∞

−∞

 

The corresponding equation for which a unit impulse represented 
by delta function, 𝛿(𝑡 − 𝑡𝑜) is applied at a reference time𝑡𝑜,  

𝐿𝐺(𝑡, 𝑡𝑜) = −𝛿(𝑡 − 𝑡𝑜)                                                                              (6) 

 
Fig. 1. A damped oscillating system with a forcing term 𝑓(𝑡) shown above, 
and an equivalent system with a source term given by Dirac delta function 
acted at a reference time𝑡𝑜 . 

Here𝐺(𝑡, 𝑡𝑜) is Green's function, which corresponds to the displace-
ment 𝑢(𝑡) in the original differential Eq. (3). 

Our aim here is to develop a connection between 𝑢(𝑡) and 
𝐺(𝑡, 𝑡𝑜). By multiplying Eq. (3) by 𝐺(𝑡, 𝑡𝑜) and Eq. (6) by 𝑢(𝑡) and 
subtract; 

𝐺(𝑡, 𝑡𝑜)
𝑑2𝑢

𝑑𝑡2
− 𝑢(𝑡)

𝑑2𝐺(𝑡, 𝑡𝑜)

𝑑𝑡2
+ 2𝛾 [𝐺(𝑡, 𝑡𝑜)

𝑑𝑢

𝑑𝑡
− 𝑢(𝑡)

𝑑𝐺(𝑡, 𝑡𝑜)

𝑑𝑡
]

= −𝐺(𝑡, 𝑡𝑜)𝑓(𝑡) + 𝑢(𝑡)𝛿(𝑡, 𝑡𝑜) 

Then integrate over the time of action of force 𝑓(𝑡) from the start 
of the motion at 𝑡 = 0 to time 𝑡 = 𝜏 imply that; 

[𝐺(𝑡, 𝑡𝑜)
𝑑𝑢

𝑑𝑡
− 𝑢

𝑑𝐺(𝑡, 𝑡𝑜)

𝑑𝑡
]
0

𝜏

+ 2𝛾∫ [𝐺(𝑡, 𝑡𝑜)
𝑑𝑢

𝑑𝑡
− 𝑢

𝑑𝐺(𝑡, 𝑡𝑜)

𝑑𝑡
]

𝜏

0

𝑑𝑡

= 𝑢(𝑡𝑜) − ∫ 𝑓(𝑡)𝐺(𝑡, 𝑡𝑜)𝑑𝑡
𝜏

0

 

As 𝐺(𝑡, 𝑡𝑜) and 𝑢(𝑡) vanish at 𝑡 = 0 and 𝑡 = 𝜏, the two terms on the 
left-hand of the equation must have vanished, thus we obtain a so-
lution represented by an integral equation given by: 

𝑢(𝑡) = ∫ 𝑓(𝑡′)𝐺(𝑡′
𝜏

0

, 𝑡)𝑑𝑡′                                                                        (7) 

which should replace the earlier differential Eq. (3). This abstract 
form of solution does not provide any additional insight into our 
problem. In order to understand this form of integral, one should 
find an explicit form for𝐺(𝑡, 𝑡𝑜). 

Fortunately, the method of variation of parameters provides 
solutions to Eq. (6), which would indeed give us an indication of 
how these functions look. The proposed solution of this equation 
can be written in terms of the solution of the homogeneous Eq. (2) 
as:  

𝐺(𝑡, 𝑡𝑜) = 𝛼(𝑡, 𝑡𝑜) 𝑒𝑥𝑝( − 𝛾𝑡) 𝑐𝑜𝑠(𝜔𝑡) + 𝛽(𝑡, 𝑡𝑜) 𝑒𝑥𝑝( − 𝛾𝑡) 𝑠𝑖𝑛(𝜔𝑡)       (8) 

where 𝛼(𝑡, 𝑡𝑜) and 𝛽(𝑡, 𝑡𝑜) are variable coefficients to be 
determined by the method. Uposubstitution of Eq. (8) and its 1st 
and 2nd derivatives into our differential Eq. (6) we get the following 
equations (here for simplicity, we have dropped arguments on both 
𝛼 and 𝛽): 

𝑑𝛼

𝑑𝑡
𝑒𝑥𝑝( − 𝛾𝑡) 𝑐𝑜𝑠(𝜔𝑡) +

𝑑𝛽

𝑑𝑡
𝑒𝑥𝑝( − 𝛾𝑡) 𝑠𝑖𝑛(𝜔𝑡) = 0                                    (9) 

𝑒𝑥𝑝( − 𝛾𝑡) [
𝑑𝛼

𝑑𝑡
{−𝛾 𝑐𝑜𝑠(𝜔𝑡) − 𝜔 𝑠𝑖𝑛( 𝜔𝑡)}

+
𝑑𝛽

𝑑𝑡
{−𝛾 𝑠𝑖𝑛(𝜔𝑡) + 𝜔 𝑐𝑜𝑠(𝜔𝑡)}] = −𝛿(𝑡 − 𝑡𝑜)   (10) 

Using Cramer's rule (Lay et al., 2015), one can solve this system 
which is composed of two linear equations, by simply rewriting 
Eq's. (9) and (10) in matrix form: 

𝑒𝑥𝑝( − 𝛾𝑡) [
−𝛾 𝑐𝑜𝑠(𝜔𝑡) − 𝜔 𝑠𝑖𝑛(𝜔𝑡) −𝛾 𝑠𝑖𝑛(𝜔𝑡) + 𝜔 𝑐𝑜𝑠(𝜔𝑡)

𝑐𝑜𝑠(𝜔𝑡) 𝑠𝑖𝑛(𝜔𝑡)
] [

𝑑𝛼

𝑑𝑡
𝑑𝛽

𝑑𝑡

]

= [
−𝛿(𝑡 − 𝑡𝑜)

0
]                             (11) 

We can easily solve this equation to find 
𝑑𝛼

𝑑𝑡
 and 

𝑑𝛽

𝑑𝑡
. First, we estimate 

the non-zero determinant of the 2x2 matrix on the left-hand side, 
which is also known as the Wronskian, 𝑊as follow: 

𝑊 = 𝑒𝑥𝑝( − 2𝛾𝑡) |
−𝛾 𝑐𝑜𝑠(𝜔𝑡) − 𝜔 𝑠𝑖𝑛( 𝜔𝑡) −𝛾 𝑠𝑖𝑛( 𝜔𝑡) + 𝜔 𝑐𝑜𝑠(𝜔𝑡)

𝑐𝑜𝑠(𝜔𝑡) 𝑠𝑖𝑛( 𝜔𝑡)
| 

             = −𝜔𝑒𝑥𝑝( − 2𝛾𝑡)                       (12) 

and hence the solutions of Eq. (11): 

𝑑𝛼

𝑑𝑡
=
|
−𝛿(𝑡 − 𝑡𝑜) 𝑒𝑥𝑝( − 𝛾𝑡){−𝛾 𝑠𝑖𝑛( 𝜔𝑡) + 𝜔 𝑐𝑜𝑠(𝜔𝑡)}

0 𝑒𝑥𝑝( − 𝛾𝑡) 𝑠𝑖𝑛(𝜔𝑡)
|

𝑊

=
1

𝜔
𝑒𝑥𝑝( 𝛾𝑡) 𝑠𝑖𝑛(𝜔𝑡)𝛿(𝑡 − 𝑡𝑜)                                   (13) 

𝑑𝛽

𝑑𝑡
=
|
𝑒𝑥𝑝( − 𝛾𝑡){−𝛾 𝑐𝑜𝑠(𝜔𝑡) − 𝜔 𝑠𝑖𝑛( 𝜔𝑡)} −𝛿(𝑡 − 𝑡𝑜)

𝑒𝑥𝑝( − 𝛾𝑡) 𝑐𝑜𝑠(𝜔𝑡) 0
|

𝑊

= −
1

𝜔
𝑒𝑥𝑝( 𝛾𝑡) 𝑐𝑜𝑠(𝜔𝑡)𝛿(𝑡 − 𝑡𝑜)                               (14) 
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Using the “sifting property” of integration involving delta function, 
(Flores-Hidalgo and Barone, 2011): 

𝐹(𝑡) = ∫ 𝐹(𝑡′)𝛿(𝑡 − 𝑡′)
∞

−∞

𝑑𝑡′                                                                (15) 

allow us to find the integrands of Eqs (13) and (14): 

𝛼(𝑡, 𝑡𝑜) = 𝐴 + {

1

𝜔
𝑒𝑥𝑝( 𝛾𝑡𝑜) 𝑠𝑖𝑛(𝜔𝑡𝑜)    𝑡 < 𝑡𝑜

0                                          𝑡 > 𝑡𝑜

}                              (16) 

𝛽(𝑡, 𝑡𝑜) = 𝐵 − {

1

𝜔
𝑒𝑥𝑝( 𝛾𝑡𝑜) 𝑐𝑜𝑠(𝜔𝑡𝑜)      𝑡 < 𝑡𝑜

0                                            𝑡 > 𝑡𝑜

}                            (17) 

By substituting 𝛼(𝑡, 𝑡𝑜) and 𝛽(𝑡, 𝑡𝑜) in Eq. (8) we get:
 

𝐺(𝑡, 𝑡𝑜) = [𝐴 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 𝑠𝑖𝑛( 𝜔𝑡)] 𝑒𝑥𝑝( − 𝛾𝑡)

− {
𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)]

𝜔
(𝑠𝑖𝑛[𝜔(𝑡 − 𝑡𝑜)])      t > 𝑡𝑜

0                                                     t < 𝑡𝑜

}   (18) 

Applying the boundary conditions
 
𝐺(0, 𝑡𝑜) = 0and 𝐺(𝜏, 𝑡𝑜) = 0 

which signals the initial and final positions while the applied force 
still on the action in the interval (0, 𝜏). These conditions imply that 
𝐴 = 0 and 𝐵 = 𝑒𝑥𝑝[𝛾𝑡𝑜)] 𝑠𝑖𝑛[𝜔(𝜏 − 𝑡𝑜)] /𝜔 𝑠𝑖𝑛( 𝜔𝜏). 

Rewriting Eq. (18): 

𝐺(𝑡, 𝑡𝑜)

=

{
 
 

 
 𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)] 𝑠𝑖𝑛[𝜔(𝜏 − 𝑡)] 𝑠𝑖𝑛(𝜔𝑡𝑜)

𝜔 𝑠𝑖𝑛(𝜔𝜏)
                    t > 𝑡𝑜

𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)] 𝑠𝑖𝑛[𝜔(𝜏 − 𝑡𝑜)] 𝑠𝑖𝑛(𝜔𝑡)

𝜔 𝑠𝑖𝑛(𝜔𝜏)
                    t < 𝑡𝑜

}
 
 

 
 

                (19) 

Here we solve Eq. (3) once more by the method of variation of 
parameters, to make a connection with the solution of Green's 
differential Eq. (6), to make a connection between 𝑢(𝑡) and 𝐺(𝑡, 𝑡𝑜). 

Following same previous steps, we get the parameters 𝛼(𝑡) and 
𝛽(𝑡) which are in fact similar to 𝛼(𝑡, 𝑡𝑜) and 𝛽(𝑡, 𝑡𝑜), obtained 
earlier by Eqs. (13) and (14), which are given by: 

𝛼(𝑡) = 𝐴 +
1

𝜔
∫ 𝑓(𝑡′) 𝑒𝑥𝑝( − 𝛾𝑡′) 𝑠𝑖𝑛( 𝜔𝑡′)𝑑𝑡′
𝑡

0

                              (20) 

𝛽(𝑡) = 𝐵 −
1

𝜔
∫ 𝑓(𝑡′) 𝑒𝑥𝑝( − 𝛾𝑡′) 𝑐𝑜𝑠(𝜔𝑡′)𝑑𝑡′                              (21)
𝑡

0

 

The final solution will have again a similar form of Eq. (8): 

𝑢(𝑡) = 𝑒𝑥𝑝( − 𝛾𝑡){𝛼(𝑡) 𝑐𝑜𝑠(𝜔𝑡) + 𝛽(𝑡) 𝑠𝑖𝑛( 𝜔𝑡)}                        (22) 

Applying the boundary conditions 𝑢(0) = 0and 𝑢(𝜏) = 0, we get: 

𝑢(𝑡)

=
1

𝜔 𝑠𝑖𝑛( 𝜔𝜏)

{
 
 

 
 ∫ 𝑒𝑥𝑝( − 𝛾(𝑡 − 𝑡 ′) 𝑠𝑖𝑛(𝜔𝑡) 𝑠𝑖𝑛[𝜔(𝜏 − 𝑡 ′)] 𝑓(𝑡 ′)𝑑𝑡 ′

𝜏

𝑡

−∫ 𝑒𝑥𝑝( − 𝛾(𝑡 − 𝑡 ′) 𝑠𝑖𝑛(𝜔𝑡 ′) 𝑠𝑖𝑛[𝜔(𝜏 − 𝑡)] 𝑓(𝑡 ′)𝑑𝑡 ′
𝑡

0 }
 
 

 
 

  (23) 

Eq. (23) is nothing but the form:  

𝑢(𝑡) = ∫ 𝑓(𝑡′)𝐺(𝑡′, 𝑡)𝑑𝑡′
𝜏

0

                                                                     (24) 

which has introduced earlier by Eq. (7). Eq. (24) redefined the use 
of Green’s functions in the abstract form. Thus Eq. (19) definitely 
defines Green's function𝐺(𝑡, 𝑡𝑜), for the forced damped oscillating 
system, expressed in its explicit form. 

We have generated here a clear form 𝐺(𝑡, 𝑡𝑜) for which can help 
to understand the structural format of Green's function for this spe-
cific case. Other explicit forms for Green's function for similar dif-
ferential equations with boundary conditions; 𝐺(0, 𝑡𝑜) = 0 and 
𝐺(𝜏, 𝑡𝑜) = 0 are given in Table 1. 

Table 1 

Green's function for a variety of one dimensional Green's differential equations. 

Solutions; Green's function Wronskian Point Source ODE’s 

𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)] 𝑠𝑖𝑛(𝜔𝑡) 𝑠𝑖𝑛(𝜔(𝜏 − 𝑡𝑜))

𝜔 𝑠𝑖𝑛(𝜔𝜏)
       𝑡 < 𝑡𝑜 

𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)] 𝑠𝑖𝑛(𝜔𝑡𝑜) 𝑠𝑖𝑛( 𝜔(𝜏 − 𝑡))

𝜔 𝑠𝑖𝑛(𝜔𝜏)
       𝑡 > 𝑡𝑜 

−𝜔𝑒𝑥𝑝( − 2𝛾𝑡) 

𝑑2𝐺

𝑑𝑡2
+ 2𝛾

𝑑𝐺

𝑑𝑡
+ 𝜔𝑜

2𝐺 = −𝛿(𝑡 − 𝑡𝑜) 

forced under-damped harmonic oscillator equation  𝜔𝑜
2 > 𝛾2  

𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)] 𝑠𝑖𝑛ℎ(𝜔𝑡) 𝑠𝑖𝑛ℎ(𝜔(𝜏 − 𝑡𝑜))

𝜔 𝑠𝑖𝑛ℎ(𝜔𝜏)
    𝑡 < 𝑡𝑜 

𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)] 𝑠𝑖𝑛ℎ(𝜔𝑡𝑜) 𝑠𝑖𝑛ℎ(𝜔(𝜏 − 𝑡))

𝜔 𝑠𝑖𝑛ℎ(𝜔𝜏)
    𝑡 > 𝑡𝑜 

−𝜔𝑒𝑥𝑝( − 2𝛾𝑡)
 

𝑑2𝐺

𝑑𝑡2
+ 2𝛾

𝑑𝐺

𝑑𝑡
+ 𝜔𝑜

2𝐺 = −𝛿(𝑡 − 𝑡𝑜)

 
forced over-damped harmonic oscillator equation 𝜔𝑜

2 < 𝛾2

 

  
𝑡(𝜏 − 𝑡𝑜) 𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)]

𝜏
      𝑡 < 𝑡𝑜 

   
𝑡𝑜(𝜏 − 𝑡) 𝑒𝑥𝑝[−𝛾(𝑡 − 𝑡𝑜)]

𝜏
     𝑡 > 𝑡𝑜

 

−𝑒𝑥𝑝( − 2𝛾𝑡)
 

𝑑2𝐺

𝑑𝑡2
+ 2𝛾

𝑑𝐺

𝑑𝑡
+ 𝜔𝑜

2𝐺 = −𝛿(𝑡 − 𝑡𝑜)

 
forced critically-damped harmonic oscillator equation  𝜔𝑜

2 = 𝛾2

 

𝑠𝑖𝑛ℎ( 𝜔𝑡) 𝑠𝑖𝑛ℎ(𝜔(𝜏 − 𝑡𝑜))

𝜔 𝑠𝑖𝑛ℎ(𝜔𝜏)
        𝑡 < 𝑡𝑜 

𝑠𝑖𝑛ℎ( 𝜔𝑡𝑜) 𝑠𝑖𝑛ℎ( 𝜔(𝜏 − 𝑡))

𝜔 𝑠𝑖𝑛ℎ( 𝜔𝜏)
        𝑡 > 𝑡𝑜 

−𝜔 

𝑑2𝐺

𝑑𝑡2
− 𝜔𝑜

2𝐺 = −𝛿(𝑡 − 𝑡𝑜) 

grow and decay equation   

𝜔𝑜
2 > 0 ,   𝛾 = 0      

𝑠𝑖𝑛( 𝜔𝑡) 𝑠𝑖𝑛(𝜔(𝜏 − 𝑡𝑜))

𝜔 𝑠𝑖𝑛(𝜔𝜏)
          𝑡 < 𝑡𝑜 

𝑠𝑖𝑛( 𝜔𝑡𝑜) 𝑠𝑖𝑛( 𝜔(𝜏 − 𝑡))

𝜔 𝑠𝑖𝑛( 𝜔𝜏)
          𝑡 > 𝑡𝑜 

−𝜔 

𝑑2𝐺

𝑑𝑡2
+ 𝜔𝑜

2𝐺 = −𝛿(𝑡 − 𝑡𝑜) 

harmonic oscillator equation,  

𝜔𝑜
2 > 0,  

 
𝛾 = 0 
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