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This review is dedicated to Jacobi polynomials which are a generalization of some well-known 
classical polynomials such as Gegenbauer polynomials, Legendre polynomials, first and second 
kinds Chebyshev polynomials and Zernike polynomials. To save effort and time, it is 
advantageous and sufficient to investigate the properties of Jacobi polynomials rather than 
considering their special cases separately. For demonstration purposes, we show how to reduce 
most of the obtained properties of Jacobi polynomials to the corresponding properties of 
Legendre polynomials such as the generating function, Rodrigues formula, special values and the 
orthogonality property. Most of the properties of Jacobi polynomials are obtained through their 
hypergeometric representations such as differential recurrence relations, generating functions, 
some special values (exact and asymptotic) and some integral expansions of positive integrand. 

The standard orthogonality property of Jacobi polynomials 𝑃𝑛
(𝛼,𝛽)

(𝑥)  for the values of the 
parameters α, β > −1  is discussed and some applications of such important property are 
pointed out. The orthogonality property of Jacobi polynomials considerably affects the positions 
of their zeros. These zeros are essential in any type of numerical quadrature such as Legendre-
Gaussian quadrature, first kind Chebyshev-Gaussian quadrature and second kind Chebyshev-
Gaussian quadrature. Moreover the recurrence relations of Jacobi polynomials play an important 
role in computing the zeros of Jacobi polynomials which are needed in the Gaussian-Jacobi 
quadrature. A narrative review is provided on some attempts were done in extending the 
orthogonality property of Jacobi polynomials to non-standard values of the indexes α, β ∈ ℂ by 
amending some of the orthogonality conditions such as Sobolev and non-hermitian 
orthogonality. Integral expansions of Jacobi polynomials with a prominent feature (positive 
integrand) were presented in terms of other Jacobi polynomials. Such integral expansions should 
allow a variety of applications for Jacobi polynomials. 
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1. Introduction 

The orthogonal polynomials (Szegö, 1975; Sansone, 1991; 
Gautsch, 2004; Vilmos, 2005; Koornwinder et al., 2010) are set of 
polynomials that are mutually orthogonal to each other with re-
spect to a measure of weighting function under certain inner prod-
uct. In fact the orthogonal polynomials are the Eigen-functions of a 
symmetric second-order differential operator, thus such polynomi-
als are widely used in the theory of moments, continued fractions 
(Mirevski et al., 2007) and spectral theory (Brychkov, 2008). A sub-
stantial historical review on the evolution of the orthogonal poly-
nomials can be found in (Chihara et al., 2001) and references 
therein. The topic of orthogonal polynomials has become very rich 
area of research with the emergence of implementing such polyno-
mials in numerical computations as bases functions (Gautschi, 
2004) and in numerical quadrature (Abramowitz and Stegun, 
1968). Further applications of orthogonal functions establish a con-
nection between the theory of representation of Lie groups and the 
theory of special functions. Strictly speaking there is a term known 
as algebraic special functions, a good example of this type is the 
Hermite functions which form a basis on the Hilbert space of 
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square-integrable functions on the whole space ℝ (Uspensky, 
1927). However, this scheme can be generalized to other orthogo-
nal polynomials such as associated Legendre polynomials, Lagurre 
polynomials, Jacobi polynomials (JPs, henceforth) and spherical 

harmonics functions. The classical JPs denoted as 𝑃𝑛
(𝛼,𝛽)

(𝑥) of de-
gree 𝑛 and order 𝛼, 𝛽 ∈ ℂ were first introduced by Jacobi in 1859. 
For specific values of the indexes 𝛼 and 𝛽 most of the common clas-
sical orthogonal polynomials (Beals and Wong, 2010)  are in fact 
just special cases of the JPs such as the classical Legendre polyno-
mials, Chebyshev polynomials of the first and second types and 
Gegenbauer (Ultra-spherical) polynomials as shown later through 
this review. Therefore, it is sufficient to dedicate any effort on stud-
ying the properties of the JPs rather than individually considering 
their special cases. Spectral approximation (Canuto et al., 2006) has 
been proven very efficient tool in solving higher-order differential 
equations that are encountered in optics theory, stuctural 
mechanics, astronomy and geophysics (Guo, Shen and Wang, 
2009). The Legendre poynomials which are special class of the JPs 
have many applications, for instance Janecki (Janecki and Stephen, 
2005) used such polynomials for the approximation of cylinderical 
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surfaces. Gue (Guo, Shen and Wang, 2009) generated a class of JPs 
for arbitrary real vaues of the indexes 𝛼, 𝛽, they implemented such 
generalized JPs to solve partial differential equations with number 
of homogenouse boundary conditions that corresponds to the 
indexes values. They claim that implementing such generalized JPs 
leads to straightforward, stable and well-conditioned numerical 
procedures and considerably simplifies the error analysis. Gue 
(Gue, 2000) generated class of JPs in Hilbert space then showed 
demonstration for solving some singular differential equations in 
infinite regions. Gue (Guo, Shen and Wang, 2006) introduced some 
aplications of the generalized JPs. Gue (Guo, Shen and Wang, 2004) 
considered Jacobi approximations and Jacobi–Gaussian 
interpolations in certain spaces. Moreover, the authors (Gue, 2000) 
and (Chihara et al., 2001) generated a class of JPs by considereing 
the specific values of the indexes (𝛼, 𝛽) = (−1,0), (−1, −1) on the 
whole and half lines respectively. Instead of individually 
condidering special cases of the pair  indexes 𝛼, 𝛽 separetly, it 
would be more beneficial to generate JPs for general values of the 
indexes to preserve time and effort. The generalized JPs inhirit 
some properties from the classical JPs which are essential for 
spectral approximation. The condition on the indexes values 𝛼, 𝛽 >
−1 is imposed to guarantee that the JPs are mutuay orthogonal on 
the interval [−1,1], because non-orthogonal bases functions are not 
suitabe for spectral approximation. Moreover, it is worth to empha-
size that the orthogonality property of the JPs considerably affect 
their zeros distribution. 
Essentially the zeros of orthogonal poynomials (Driver and Love, 
2001; Driver and Möller, 2001, 2002) are of great importance to 
proceed any Gaussian quadreture. Moreover, the zeros of 
orthogonal poynomials has a physical interpretation because they 
are just the stationary points of the potential. Classically for 𝛼, 𝛽 >
−1 the zeros of JPs are all positioned in the open interval (−1,1). 
But for general values of the indexes 𝛼, 𝛽 ∈ ℂ, the zeros of JPs are 
no longer in the same interval, but are distributed into the complex 
pane in a well- organized matter (Duren and Boggs, 2001). 

With the remarkable growth of the interest in implementing the 
JPs in numerical analysis, there has been a considerable interest in 
expanding the orthogonality property to include more indexes val-
ues as the orthogonality property guarantees simple, stable, accu-
rate error estimation and well-conditioned numerical procedures. 
Recently there have been considerable concerns in what so-called 
Sobolev orthogonality (Alvarez, Perez and Pinar, 1998) for the clas-
sical polynomials such as the Gegenbauer polynomials and JPs for 
the non-classical values of the indexes 𝛼, 𝛽. Finkelshtein 
(Finkelshtein, 1999) studied the zeros distribution of the JPs of 
non-hermittian orthogonality which is defined by a compex-valued 
function on a certain paths in the complex z-plane. Alfaroa (Alfaroa, 
Alvarez and Rezola, 2002) obtained the orthogonality property of 
the JPs with negative integer values of the indexes 𝛼, 𝛽. Kuijlaars 
(Kuijlaars, Finkelshtein and Orive, 2005) imposed some orthogo-
nality conditions for the JPs on certain paths in the complex z-plane 
for more values of the indexes 𝛼, 𝛽 ∈ ℂ. 

This substantial narrative review is dedicated to shed some 
light on most important properties of the JPs such as their hyper-
geometric representations, generating function in terms of the hy-
pergeometric function, Rodrigues formula and other properties. 
Furthermore, we summarize some significant integral expansions 
of positive kernels for JPs, and point out some remarkable applica-
tions of such polynomials. 

This paper is structured as follows: The relevant literature re-
view is presented in section 1. In section 2 we briefly set up some 
concepts and introduce important theorems that we need to use 
throughout this review. These concepts consist of a brief introduc-
tion of some needed formulae on double series manipulations, 
Pochhammer symbol, gamma function, beta function and the hy-
pergeometric function. In sections 3 and 4 we will introduce the JPs 
and their hypergeometric representations. Some differential recur-
rence relations were derived in section 5. Sections 6 and 7 were 
dedicated to the generating functions and the Rodrigues formula of 

JPs. Some special values are obtained in section 8. In section 9 we-
show how to obtain the Chebyshev polynomials of both kinds as a 
special case of JPs. Section 10 is devoted to the most important 
property of JPs followed by some applications of JPs. In section 11 
we summarize some integral expansions of JPs and point out some 
applications. Finally, a conclusion is drawn in section 12. 

2. Preliminaries. 

Some necessary concepts that are needed throughout this re-
view are presented here. 
2.1. Double Series Manipulations.  

Some double-series manipulations are presented here to deal with 
double series appearing later in this review.  

Theorem 1 (Rainville, 1960): For a convergent power series, one 
has 

∑ ∑ 𝜑(𝑘, 𝑛)

∞

𝑘=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑘, 𝑛 − 𝑘)

𝑛

𝑘=0

∞

𝑛=0

,                                                  (1) 

which can be rewritten in a reverse order as 

∑ ∑ 𝜑(𝑘, 𝑛)

𝑛

𝑘=0

∞

𝑛=0

= ∑ ∑ 𝜑(𝑘, 𝑛 + 𝑘)

∞

𝑘=0

∞

𝑛=0

,                                                  (2) 

where 𝜑(𝑘, 𝑛) is the general term of the double series. 

2.2. Pochhammer Symbol, Gamma and Beta Functions  

It is necessary here to introduce the Pochhammer symbol 
(𝛼)𝑛  as, 

(𝛼)𝑛 = {

1, if 𝑛 = 0,

∏(𝛼 + 𝑘 − 1)

𝑛

𝑘=1

, if 𝑛 = 1,2,3, …
                                         (3) 

Definition 1 (Arfken, 1985): The gamma function  Γ(𝛼) is given by 
the following Euler integral, 

Γ(𝛼) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡 , 𝛼 > 0

∞

0

.                                                          (4) 

Theorem 2 (Abramowitz and Stegun, 1968): The gamma function 
is related to the Pochhammer symbol by the this identity, 

(𝛼)𝑛 =
Γ(𝛼 + 𝑛)

Γ(𝛼)
, 𝛼 ≠ 0, ±1, ±2, … , 𝑛 = 0,1,2, …                             (5)  

Theorem 3 (Arfken, 1985): For positive and large values of  , we 
have the following approximation value of gamma function as, 

Γ(𝑛 + 1)~√2𝑛𝜋  (
𝑛

𝑒
)

𝑛

 ,                                               𝑛 ≫ 1,               (6)  

which is known as Stirling’s formula for gamma function. 
Definition 2 (Abramowitz and Stegun, 1968): For a non-negative 
real numbers  𝛼, 𝛽 the beta function  𝐵(𝛼, 𝛽) is defined by the fol-
lowing Euler integral of first kind as, 

𝐵(𝛼, 𝛽) = ∫ 𝑡𝛼−1

1

0

(1 − 𝑡)𝛽−1𝑑𝑡,     𝛼, 𝛽 > 0.      (7) 

Theorem 4 (Abramowitz and Stegun, 1968): For a non-negative 
real numbers  𝛼, 𝛽 the beta function  𝐵(𝛼, 𝛽) is related to the 
gamma function by the following relation, 

  𝐵(𝛼, 𝛽) =
Г(𝛼)Г(𝛽)

 Г(𝛼 + 𝛽)
.                                                                                (8) 

Next, we introduce some convenient identities that we will be used 
throughout this review. 

Theorem 5 (Rainville, 1960): If 𝑛 is a non-negative integer and a 
is any real number with 𝑛 ≤ 𝑎, then, 

(
𝑎
𝑛

) =
(−1)𝑛(−𝑎)𝑛

𝑛!
, 𝑎 ∈ ℝ, 𝑛 ≤ 𝑎, 𝑛 = 0,1,2                                           (9)  
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Remark: The relation (11) can be rewritten in the following form, 

(−𝑎)𝑛 =
(−1)𝑛𝑎!

(𝑎 − 𝑛)!
, 𝑎 ∈ ℝ, 𝑛 ≤ 𝑎, 𝑛 = 0,1,2                               (10) 

Lemma 1: Let 𝑛 be a positive integer and a any real number, 

(𝑎)2𝑛 = 22𝑛 (
𝑎

2
)

𝑛
(

𝑎 + 1

2
)

𝑛
         (11) 

Proof: since, 
(𝑎)2𝑛 = 𝑎(𝑎 + 1)(𝑎 + 2)(𝑎 + 3) … (𝑎 + 2𝑛 − 1),     

= 22𝑛 [
𝑎

2
(

𝑎

2
+

1

2
) (

𝑎

2
+ 1) (

𝑎

2
+

3

2
) … (

𝑎

2
+ 𝑛 −

1

2
) (

𝑎

2
+ 𝑛 − 1)], 

= 22𝑛
𝑎

2
(

𝑎

2
+ 1) … (

𝑎

2
+ 𝑛 − 1) (

𝑎 + 1

2
) (

𝑎 + 3

2
) … (

𝑎

2
+ 𝑛 −

1

2
). 

Thus, 

(𝑎)2𝑛 = 22𝑛 (
𝑎

2
)

𝑛
(

𝑎 + 1

2
)

𝑛
 

In a similar fashion to lemma 1, we can prove the following benefi-
cial formulae, 
 

(𝑎)𝑘𝑛 = 𝑘𝑛𝑘 (
𝑎

𝑘
)

𝑛
(

𝑎 + 1

𝑘
)

𝑛
… (

𝑎 + 𝑘 − 1

𝑘
)

𝑛
,      𝑘 = 1,2,3, … ; 𝑛    

= 0,1,2, …                                                                                                     (12) 
(−𝑛)𝑘

𝑛!
=

(−1)𝑘

(𝑛 − 𝑘)!
, ∀ 𝑘, 𝑛 ∈ ℤ, 0 ≤ 𝑘 ≤ 𝑛.        (13) 

(𝑎)𝑛+𝑚 = (𝑎)𝑚(𝑎 + 𝑚)𝑛,     ∀ 𝑚, 𝑛 ∈ ℕ.  (14) 

(𝑎)𝑛−𝑘 =
(−1)𝑘(𝑎)𝑛

(1 − 𝑎 − 𝑛)𝑘
, 0 ≤ 𝑘 ≤ 𝑛.            (15) 

(𝑎)𝑛 = (−1)𝑛(1 − 𝑎 − 𝑛)𝑛 .                         (16) 

22n (
1

2
)

n
=

(2n)!

n!
.                                           (17) 

(
3

2
)

n
=

(2n + 1)!

2nn!
.                                      (18) 

 
It is necessary to introduce a very important function that we 

need to derive most of the properties of the Jacobi polynomials as 
shown in the next section. 

4. The Hypergeometric Function 

Consider the series  
 

1 + ∑
𝛼(𝛼 + 1) … (𝛼 + 𝑛 − 1)𝛽(𝛽 + 1) … (𝛽 + 𝑛 − 1)

𝛾(𝛾 + 1) … (𝛾 + 𝑛 − 1)  𝑛!

∞

𝑛=1

𝑧𝑛          (19) 

 
where z  is a complex variable, 𝛼 or 𝛽 and 𝛾 are parameters, which 
can take arbitrary real or complex values provided that  𝛾 ≠
0, −1, −2,  . If we let  𝛼 = 1 and 𝛽 = 𝛾, then the series (19) is re-
duced to the elementary geometric series ∑ 𝑧𝑛∞

𝑛=0 .  
In terms of the Pochhammer symbol (3) we can simplify the hy-

pergeometric series (19) in the following form, 

∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛  .        

We shall denote the convergent hypergeometric series (19) by the 
notation   𝐹(𝛼, 𝛽; 𝛾; 𝑧)  that is, 
 

𝐹(𝛼, 𝛽; 𝛾; 𝑧) = ∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛 ,      |𝑧| < 1, 𝛾 ≠ 0, −1, −2,           (20) 

Lemma 4: The derivative of the hypergeometric series (12) is de-
fined as, 

𝑑

𝑑𝑧
𝐹(𝛼, 𝛽; 𝛾; 𝑧) =

𝛼𝛽

𝛾
𝐹(𝛼 + 1, 𝛽 + 1; 𝛾 + 1; 𝑧).  (21) 

Proof: Since, 

𝑑

𝑑𝑧
𝐹(𝛼, 𝛽; 𝛾; 𝑧) =

𝑑

𝑑𝑧
∑

(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛𝑛!

∞

𝑛=0

𝑧𝑛 , 

         = ∑
(𝛼)𝑛(𝛽)𝑛

(𝛾)𝑛(𝑛 − 1)!

∞

𝑛=1

𝑧𝑛−1, 

=
𝛼𝛽

𝛾
∑

(𝛼 + 1)𝑛−1(𝛽 + 1)𝑛−1

(𝛾 + 1)𝑛−1(𝑛 − 1)!

∞

𝑛=1

𝑧𝑛−1, 

Finally replace 𝑛 by 𝑛 + 1 to end the proof. 
Next, we show how to represent a function in terms of the hyper-
geometric function 
 
Example 2: Rewrite the function 𝑓(𝑧) = (1 − 𝑧)𝑎 in terms of the 
hypergeometric function. 

We can rewrite the function 𝑓(𝑧) in terms of the hypergeomet-
ric function as follows, 

(1 − 𝑧)−𝑎 = 1 + 𝑎𝑧 + ⋯ + 𝑎(𝑎 + 1)(𝑎 + 𝑛 − 1)
𝑧𝑛

𝑛!
+ ⋯ 

Thus, 

(1 − 𝑧)−𝑎 = ∑
(𝑎)𝑛𝑧𝑛

𝑛!

∞

𝑛=0

= F(𝑎, 𝑏; 𝑏; 𝑧),   |𝑥| < 1.                            (22) 

Next, we introduce very important integral representations of the 
hypergeometric function which are essential for deriving some im-
portant integral formulae of the JPs. 

5. Integral Representations of the Hypergeometric Function. 

The Euler integral representation of the hypergeometric func-
tion is defined as shown in the following theorem. 

Theorem 6 (Rainville, 1960): If |𝑥| < 1, and 𝑅𝑒(𝛾) > 𝑅𝑒(𝛽) > 0 
then, 
𝐹(𝛼, 𝛽; 𝛾; 𝑥) = 

1

𝐵(𝛽, 𝛾 − 𝛽)
∫ 𝑡𝛽−1

1

0

(1 − 𝑡)𝛾−𝛽−1(1 − 𝑡𝑥)−𝛼𝑑𝑡                               (23) 

 
which is known as the Euler integral representation of the hyper-
geometric function 
Proof: Since |𝑡𝑥| < 1, thus according to the relation (22) we have, 
 

(1 − 𝑡𝑥)−𝑎 = ∑
(𝑎)𝑛(𝑡𝑥)𝑛

𝑛!

∞

𝑛=0

, |𝑡𝑥| < 1. 

Substitute this uniformly convergent series in the right hand side 
of equation (23) allows us to interchange the order of summation 
and integration, thus 

1

𝐵(𝛽, 𝛾 − 𝛽)
∑

(𝑎)𝑛𝑥𝑛

𝑛!

∞

𝑛=0

∫ 𝑡𝛽+𝑛−1
1

0

(1 − 𝑡)𝛾−𝛽−1𝑑𝑡 .  

Now recall the definition of the beta function (7) with the assump-
tion that 𝑅𝑒(𝛾) > 𝑅𝑒(𝛽) > 0 to guarantee the Euler integral is con-
vergent at the end-points. So, one has 

1

𝐵(𝛽, 𝛾 − 𝛽)
∑

(𝑎)𝑛𝑥𝑛

𝑛!

∞

𝑛=0

𝐵(𝛽 + 𝑛, 𝛾 − 𝛽). 

Here recall the relation between the gamma and beta function (8) 
to obtain, 

Γ(𝛾)

Γ(𝛽)Γ(𝛾 − 𝛽)
∑

(𝑎)𝑛𝑥𝑛

𝑛!

∞

𝑛=0

Γ(𝛽 + 𝑛)Γ(𝛾 − 𝛽)

Γ(𝛾 + 𝑛)
. 

Finally, we need to recall the relation between gamma function and 
Pochhammer symbol (5) to obtain the function  𝐹(𝛼, 𝛽; 𝛾; 𝑥) as re-
quired. 
Furthermore, we shall introduce the following theorems that we 
need later in this article in the derivations of the integral formulae 
of the JPs. 
From the main integral formula (23) we can derive various linear 
transformations relating the hypergeometric functions as shown in 
the theorems below.  

Theorem 7 (Abramowitz and Stegun, 1968): For |
𝑥

𝑥−1
| < 1, we 

have 
𝐹(𝛼, 𝛽; 𝛾; 𝑥) = 

(1 − 𝑥)−𝛼𝐹 (𝛼, 𝛾 − 𝛽; 𝛾;
𝑥

𝑥 − 1
) , |

𝑥

𝑥 − 1
| < 1                                    (24) 

Proof: Making the variable change 𝑡 = 1 − 𝑤 in the formula (23), 
then do some calculations to obtain the desired transformation. 
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Theorem 8 (Abramowitz and Stegun, 1968): For |𝑥| < 1, we have 
𝐹(𝛼, 𝛽; 𝛾; 𝑥) = (1 − 𝑥)𝛾−𝛼−𝛽 × 𝐹(𝛾 − 𝛼, 𝛾 − 𝛽; 𝛾; 𝑥).                   (25) 
Proof: Interchanging 𝛼 and 𝛽 in the formula (24) and use the sym-
metry property of the hypergeometric function, we obtain the fol-
lowing transformation, 
𝐹(𝛼, 𝛽; 𝛾; 𝑥) = 

(1 − 𝑥)−𝛽𝐹 (𝛾 − 𝛼, 𝛽; 𝛾;
𝑥

𝑥 − 1
) , |

𝑥

𝑥 − 1
| < 1                                    (26) 

Now applying the transformation (24) for the right hand side of 
equation (26) to obtain this important transformation,  

𝐹(𝛼, 𝛽; 𝛾; 𝑥) = (1 − 𝑥)𝛾−𝛼−𝛽 × 𝐹(𝛾 − 𝛼, 𝛾 − 𝛽; 𝛾; 𝑥)                       (27) 
Theorem 9 (Askey and Fitch, 1969): If |𝑥| < 1, and 𝜌 > 0, 𝛾 > 0 
then, 
𝐹(𝛼, 𝛽; 𝛾 + 𝜌; 𝑥) = 

1

𝐵(𝛾, 𝜌)
∫ 𝑡𝛾−1

1

0

(1 − 𝑡)𝜌−1𝐹(𝛼, 𝛽; 𝛾; 𝑥𝑡)𝑑𝑡                                        (28) 

 
Proof: The proof is similar to the proof of theorem 6. 
 
Theorem 10 (Askey and Fitch, 1969): For |𝑥| < 1, and 𝛽 > 𝜌 > 0 
then, 
𝐹(𝛼, 𝛽 − 𝜌; 𝛾; 𝑥) = 

1

𝐵(𝜌, 𝛽 − 𝜌)
∫ 𝑡𝛽−𝜌−1

1

0

(1 − 𝑡)𝜌−1𝐹(𝛼, 𝛽; 𝛾; 𝑥𝑡)𝑑𝑡                           (29) 

 
Proof: The proof is similar to the proof of theorem 6. 
Theorem 11 (Askey and Fitch, 1969): For  𝜌 > 0, 𝛾 > 0, and 0 <
𝑥 < 1 then, 
 
𝑥𝛾+𝜌−1(1 − 𝑥)𝛼−𝛾𝐹(𝛼, 𝛽 + 𝜌; 𝛾 + 𝜌; 𝑥) = 

1

𝐵(𝛾, 𝜌)
∫ 𝑡𝛾−1

𝑥

0

(1 − 𝑡)𝛼−𝛾−𝜌(𝑥 − 𝑡)𝜌−1𝐹(𝛼, 𝛽; 𝛾; 𝑡)𝑑𝑡                  (30) 

Proof: The relation can be proved easily by plugging equation (24) 
into equation (28), so, 

(1 − 𝑥)−𝛼𝐹 (𝛼, 𝛾 + 𝜌 − 𝛽; 𝛾 + 𝜌;
𝑥

𝑥 − 1
) 

=
1

𝐵(𝛾, 𝜌)
∫ 𝑡𝛾−1

1

0

(1 − 𝑡)𝜌−1(1 − 𝑥𝑡)−𝛼

× 𝐹 (𝛼, 𝛾 − 𝛽; 𝛾;
𝑥𝑡

𝑥𝑡 − 1
) 𝑑𝑡                               (31) 

 
Now do the following variable transformations, 

𝑤 =
𝑥

𝑥 − 1
, 𝑢 =

𝑥𝑡

𝑥𝑡 − 1
, 

Finally, replace 𝛾 − 𝛽 by 𝛽 to arrive at the desired formula (31). 
After introducing all the needed concepts, now we shall introduce 
the Jacobi polynomials. 

5. The Jacobi differential equation 

The Jacobi polynomials are the eigen-functions of a singular 
Sturm-liouville operator given as, 

𝐿𝑛
𝛼,𝛽

𝑦(𝑥) = −(1 − 𝑥)−𝛼(1 + 𝑥)−𝛽 × 
𝑑

𝑑𝑥
[(1 − 𝑥)𝛼+1(1 + 𝑥)𝛽+1

𝑑

𝑑𝑥
𝑦(𝑥)],                                                   (32) 

= (𝑥2 − 1)𝑦″ + [𝛼 − 𝛽 + (𝛼 + 𝛽 + 2)𝑥]𝑦′ 
which correspond to the eigenvalues, 

𝜆𝑛
𝛼,𝛽

= 𝑛(𝑛 + 𝛼 + 𝛽 + 1). 
That is, we have the following eigen-value problem, 

𝐿𝑛
𝛼,𝛽

𝑦(𝑥) = 𝜆𝑛
𝛼,𝛽

𝑦(𝑥). 
Thus the Jacobi differential equation takes the form, 

(1 − 𝑥2)𝑦″ + [𝛽 − 𝛼 − (𝛼 + 𝛽 + 2)𝑥]𝑦′ + 𝑛(𝑛 + 𝛼 + 𝛽 + 1)𝑦 = 0.  

This equation can be reduced to the Legendre differential equation 
f by setting the indexes values 𝛼, 𝛽 in equation (32) to zeros to ob-
tain 

(1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0.  

Solving the second-order, linear and homogenous Jacobi 
differential equation by the Frobenius method (Arfken, 1985), one 

obtains the Jacobi polynomials denoted as 𝑃𝑛
(𝛼,𝛽)

(𝑥) of degree 𝑛 
and order (𝛼, 𝛽) as, 

𝑃𝑛
(𝛼,𝛽)

(𝑥)

= ∑
Γ(𝑛 + 𝛼 + 1)Γ(𝑛 + 𝛼 + 𝛽 + 𝑘 + 1)(−1)𝑘

(𝑛 − 𝑘)! 𝑘! Γ(𝑛 + 𝛼 + 𝛽 + 1)Γ(𝑘 + 𝛼 + 1)
(

1 − 𝑥

2
)

𝑘𝑛

𝑘=0

(33) 

 

 
 

Fig. 1. First few Jacobi polynomials for 𝛼 = 1.5, 𝛽 = −0.5, 𝑛 = 1. .5 

 

Fig. 2. Jacobi polynomials for different values of 𝛽.  

 

Fig. 3. Jacobi polynomials for different values of  𝛼.  

Fig. 1 shows the first five JPs for fixed values of the indexes 𝛼 
and 𝛽. Fig. 2 show 𝑃4(1.5, 𝛽, 𝑥) for fixed value of the parameter 𝛼 
and changing value of the other parameter 𝛽, whereas Fig. 3 shows 
𝑃4(𝛼, −0.5, 𝑥) for fixed value of the parameter 𝛽 and changing value 
of the other parameter 𝛼. 

The Jacobi polynomial series (33) can be rewritten in more el-
egant and professional forms as it will be shown in the next section 

4. Hypergeometric Representations of the Jacobi Polynomials. 

Here we shall introduce some hypergemetric representations 
of Jacobi polynomials (Rainville, 1960). To achieve that we use the 
relation (5) for the terms containing gamma function and the 
identity (13) in equation (33) to obtain, 
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𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(1 + 𝛼)𝑛

𝑛!
∑

(𝑛 + 𝛼 + 𝛽 + 1)𝑘(−𝑛)𝑘

𝑘! (1 + 𝛼)𝑘
(

1 − 𝑥

2
)

𝑘𝑛

𝑘=0

       (34) 

Rewriting this equation using the notation of the hypergeometric 
function (20), yields 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(1 + 𝛼)𝑛

𝑛!
× 

𝐹 (−𝑛, 𝑛 + 𝛼 + 𝛽 + 1; 1 + 𝛼;
1 − 𝑥

2
).                                                 (35) 

This is one of the versatile hypergemetric representations of JPs 
which we will be of multiple use later. For example but not limited 
to, this hypergeometric representation of the Jacobi polynomials 
will be beneficial in obtaining some integral expansions of Jacobi 
polynomials as it will be shown in section 11. Furthermore, if we 
recall the identity (14) for the term (𝑛 + 𝛼 + 𝛽 + 1)𝑘  in equation 
(34), then we have 

(𝑛 + 𝛼 + 𝛽 + 1)𝑘 =
(𝛼 + 𝛽 + 1)𝑛+𝑘

(𝛼 + 𝛽 + 1)𝑛
.    

 
Plugging this identity in equation (34) leads to the following 
formula of JPs 
 

𝑃𝑛
(𝛼,𝛽)

(𝑥) = ∑
(1 + 𝛼)𝑛(1 + 𝛼 + 𝛽)𝑛+𝑘

𝑘! (𝑛 − 𝑘)! (1 + 𝛼)𝑘(1 + 𝛼 + 𝛽)𝑛
(

𝑥 − 1

2
)

𝑘𝑛

𝑘=0

       (36) 

 
Now use the relation between the Pochhammer symbol (3) and 
gamma function (5) in the last equation to obtain, 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
Γ(𝑛 + 𝛼 + 1)

Γ(𝑛 + 𝛼 + 𝛽 + 1)
× 

∑
Γ(𝑛 + 𝛼 + 𝛽 + 𝑘 + 1)(−1)𝑘

(𝑛 − 𝑘)! 𝑘! Γ(𝑘 + 𝛼 + 1)
(

1 − 𝑥

2
)

𝑘𝑛

𝑘=0

                                        (37) 

 
which can be arranged by using the identity (9)as, 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
Γ(𝑛 + 𝛼 + 1)

n! Γ(𝑛 + 𝛼 + 𝛽 + 1)

× ∑ (
𝑛
𝑘

)
Γ(𝑛 + 𝛼 + 𝛽 + 𝑘 + 1)

Γ(𝑘 + 𝛼 + 1)

𝑛

𝑘=0

(
𝑥 − 1

2
)

𝑘

   (38) 

Also equation (37) can be rearranged by using the relations (5) and 
(10)  to obtain, 

(−1)𝑘

(𝑛 − 𝑘)!
=

(−𝑛)𝑘

𝑛!
.   

Thus, one has 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(1 + 𝛼)𝑛

𝑛!
∑

(−𝑛)𝑘(𝑛 + 𝛼 + 𝛽 + 1)𝑘

(1 + 𝛼)𝑘
(

1 − 𝑥

2
)

𝑘𝑛

𝑘=0

          (39) 

Now using the notation of the hypergeometric function (20), yields 
 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(1 + 𝛼)𝑛

𝑛!
𝐹 (−𝑛, 𝑛 + 𝛼 + 𝛽 + 1; 1 + 𝛼;

1 − 𝑥

2
). 

By exploiting the integral linear transformation (24) for the 
hypergeometric function in equation (39) we obtain, 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(1 + 𝛼)𝑛

𝑛!
(

1 + 𝑥

2
)

𝑛

× 𝐹 (−𝑛, −𝑛 − 𝛽; 1 + 𝛼;
𝑥 − 1

𝑥 + 1
)       (40) 

 

Now replace 𝑥 by −𝑥 and interchange 𝛼 and 𝛽 in the formula for the 
Jacobi polynomials (39), then employ the symmetry property of JPs 
(58) to obtain,  

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(−1)𝑛(1 + 𝛽)𝑛

𝑛!

× 𝐹 (−𝑛, 𝑛 + 𝛼 + 𝛽 + 1; 1 + 𝛽;
1 + 𝑥

2
)               (41) 

Using the relations (13) and (14) in the formula for the Jacobi 
polynomials (41) leads to, 
 

𝑃𝑛
(𝛼,𝛽)

(𝑥) = ∑
(−1)𝑛−𝑘(1 + 𝛽)𝑛(𝛼 + 𝛽 + 1)𝑛+𝑘

𝑘! (𝑛 − 𝑘)! (1 + 𝛽)𝑘(𝛼 + 𝛽 + 1)𝑛
(

1 + 𝑥

2
)

𝑘𝑛

𝑘=0

       (42) 

From the previous formula for the Jacobi Polynomials (40), one can 
obtain another representation of the JPs as 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(1 + 𝛼)𝑛

𝑛!
(

1 + 𝑥

2
)

𝑛

∑
(−𝑛)𝑘(−𝛽 − 𝑛)𝑘

𝑘! (1 + 𝛼)𝑘
(

𝑥 − 1

𝑥 + 1
)

𝑘𝑛

𝑘=0

   (43) 

Now using the relation (11) for the factors (−𝑛)𝑘 and  (−𝛽 − 𝑛)𝑘   
to obtain, 

𝑃𝑛
(𝛼,𝛽)

(𝑥)

= ∑
(1 + 𝛼)𝑛(1 + 𝛽)𝑛

𝑘! (𝑛 − 𝑘)! (1 + 𝛼)𝑘(1 + 𝛽)𝑛−𝑘
(

𝑥 − 1

2
)

𝑘

(
𝑥 + 1

2
)

𝑛−𝑘𝑛

𝑘=0

                (44) 

     
Remark: It should be noted that all the hypergeometric relations 
of JPs can be easily reduced to the hypergeometric relations of 
Legendre and Chebyshev polynomials. To prevent repetition and 
due to page limitation we do not show the straightforward 
reduction process here. 

5. Differential Recurrence Relations for the Jacobi Polynomi-
als. 

The recurrence relations for the Jacobi polynomials have great 
importance in any numerical computations involving JPs, because 
they are used to compute the zeros of JPs and the associated 
weights used in the numerical quadrature. 

Taking the derivative of the JPs in its hypergeometric form 
given by equation (39) with respect to the variable 𝑥 . Thus with 
the aid of the identity (21) to do the derivative of the hypergeomet-
ric function we obtain, 
𝑑

𝑑𝑥
𝑃𝑛

(𝛼,𝛽)
(𝑥) =

𝑛(1 + 𝛼 + 𝛽 + 𝑛)(1 + 𝛼)𝑛

2 𝑛! (1 + 𝛼)
× 

𝐹 (1 − 𝑛, 𝑛 + 𝛼 + 𝛽 + 2; 2 + 𝛼;
1 − 𝑥

2
). 

This equation can rearranged as, 
 

𝑑

𝑑𝑥
𝑃𝑛

(𝛼,𝛽)
(𝑥) =

(1 + 𝛼 + 𝛽 + 𝑛)(2 + 𝛼)𝑛−1

2(𝑛 − 1)!
× 

𝐹 (−(𝑛 − 1), (𝑛 − 1) + (𝛼 + 1) + (𝛽 + 1) + 1; 1 + (𝛼 + 1);
1 − 𝑥

2
). 

That is, 
 
𝑑

𝑑𝑥
𝑃𝑛

(𝛼,𝛽)
(𝑥) =

1

2
(1 + 𝛼 + 𝛽 + 𝑛)𝑃𝑛−1

(𝛼+1,𝛽+1)
(𝑥)                             (45)  

 

This relation can be generalized for 0 < 𝑘 ≤ 𝑛 as, 

(
𝑑

𝑑𝑥
)

𝑘

𝑃𝑛
(𝛼,𝛽)

(𝑥) = 2−𝑘(1 + 𝛼 + 𝛽 + 𝑛)𝑘𝑃𝑛−𝑘
(𝛼+𝑘,𝛽+𝑘)

(𝑥)               (46) 

 

By following similar manner we can derive some more recurrence 
relations for the JPs (Rainville, 1960). For instance, Taking the de-
rivative of the JPs in its hypergeometric form given by equation 
(40) with respect to the variable x . Thus with the aid of the identity 
(21) to do the derivative of the hypergeometric function we obtain, 
 
𝑑

𝑑𝑥
𝑃𝑛

(𝛼,𝛽)
(𝑥) = (

𝑛

𝑥 + 1
) 𝑃𝑛

(𝛼,𝛽)
(𝑥) + 

(𝑛 + 𝛽)(2 + 𝛼)𝑛−1

(𝑛 − 1)! (𝑥 + 1)
(

1 + 𝑥

2
)

𝑛−1

× 

𝐹 (1 − 𝑛, 1 − 𝑛 − 𝛽; 1 + (𝛼 + 1);
𝑥 − 1

𝑥 + 1
), 

which can be written as the following, 
 

(𝑥 + 1) [𝑃𝑛
(𝛼,𝛽)

(𝑥)]
′

= 𝑛𝑃𝑛
(𝛼,𝛽)

(𝑥) + (𝑛 + 𝛽)𝑃𝑛−1
(𝛼+1,𝛽)

(𝑥).               (47) 
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Further to these recurrence differential relations, there are other 
relations that can be derived in a similar fashion to the derivations 
above (Rainville, 1960). 

6. Generating Function for the Jacobi Polynomials. 

The generating function for the Jacobi polynomials can be de-
rived from the formula (36) of the JPs (Rainville, 1960). We start by 
considering the following series, 
 

∑
 (1 + 𝛼 + 𝛽)𝑛𝑃

𝑛

(𝛼,𝛽)
(𝑥)

(1 + 𝛼)𝑛

∞

𝑛=0

ℎ𝑛  

= ∑ ∑
(1 + 𝛼 + 𝛽)𝑛+𝑘

𝑘! (𝑛 − 𝑘)! (1 + 𝛼)𝑘
(

𝑥 − 1

2
)

𝑘

ℎ𝑛, |ℎ|

𝑛

𝑘=0

∞

𝑛=0

< 1. 
 

The double series on the right hand side can be arranged using the 
identity (2) to obtain, 
 

= ∑ ∑
(1 + 𝛼 + 𝛽)𝑛+2𝑘

𝑘! 𝑛! (1 + 𝛼)𝑘2𝑘
(𝑥 − 1)𝑘ℎ𝑛+𝑘.

∞

𝑘=0

∞

𝑛=0

 

Now use the identity (14) for the factor (1 + 𝛼 + 𝛽)𝑛+2𝑘  to obtain 
 

(1 + 𝛼 + 𝛽)𝑛+2𝑘 = (1 + 𝛼 + 𝛽 + 2𝑘)𝑛(1 + 𝛼 + 𝛽)2𝑘 . 

Hence, 
 

∑
 (1 + 𝛼 + 𝛽)𝑛𝑃

𝑛

(𝛼,𝛽)
(𝑥)ℎ𝑛

(1 + 𝛼)𝑛

∞

𝑛=0

= ∑ ∑
(1 + 𝛼 + 𝛽 + 2𝑘)𝑛ℎ𝑛

𝑛!

(1 + 𝛼 + 𝛽)2𝑘(𝑥 − 1)𝑘ℎ𝑘

𝑘! (1 + 𝛼)𝑘2𝑘 .

∞

𝑛=0

∞

𝑘=0

 

Employing the identity (22) in the last equation leads to, 
 

∑
 (1 + 𝛼 + 𝛽)𝑛𝑃

𝑛

(𝛼,𝛽)
(𝑥)

(1 + 𝛼)𝑛

∞

𝑛=0

ℎ𝑛

= ∑(1 − ℎ)−(1+𝛼+𝛽+2𝑘)
(1 + 𝛼 + 𝛽)2𝑘(𝑥 − 1)𝑘ℎ𝑘

𝑘! (1 + 𝛼)𝑘2𝑘 .

∞

𝑘=0

 

Finally, recall the identity (11) to obtain the generating function for 
the Jacobi polynomials as, 
 

∑
 (1 + 𝛼 + 𝛽)𝑛𝑃𝑛

(𝛼,𝛽)
(𝑥)

(1 + 𝛼)𝑛

∞

𝑛=0

ℎ𝑛 = (1 − ℎ)−(1+𝛼+𝛽) × 

𝐹 (
1 + 𝛼 + 𝛽

2
,
2 + 𝛼 + 𝛽

2
; 1 + 𝛼;

2ℎ(𝑥 − 1)

(1 − ℎ)2
 )    (48) 

Moreover, there is the Bateman’s generating function of the Jacobi 
polynomials (Bateman, 1950) which can be obtained directly from 
the formula (44) of Jacobi polynomials as we show here (Rainville, 
1960). 

By using the formula (44) for the Jacobi polynomials we con-
sider the following series as, 

∑
𝑃𝑛

(𝛼,𝛽)(𝑥)ℎ𝑛

(1 + 𝛼)𝑛 (1 + 𝛽)𝑛

∞

𝑛=0

= ∑ ∑
(

𝑥 − 1
2

)
𝑘

(
𝑥 + 1

2
)

𝑛−𝑘

ℎ𝑛

𝑘! (𝑛 − 𝑘)! (1 + 𝛼)𝑘  (1 + 𝛽)𝑛−𝑘
.

𝑛

𝑘=0

∞

𝑛=0

 

The double series on the right hand side can be arranged using the 
identity (2) to obtain, 
 

∑
𝑃𝑛

(𝛼,𝛽)(𝑥)ℎ𝑛

(1 + 𝛼)𝑛 (1 + 𝛽)𝑛

∞

𝑛=0

= ∑ ∑
(

𝑥 − 1
2

)
𝑘

(
𝑥 + 1

2
)

𝑛

ℎ𝑛+𝑘

𝑘! 𝑛! (1 + 𝛼)𝑘  (1 + 𝛽)𝑛
.

∞

𝑘=0

∞

𝑛=0

 

 
Again the double series on the right hand side can be rearranged 
as, 

∑
𝑃𝑛

(𝛼,𝛽)(𝑥)ℎ𝑛

(1 + 𝛼)𝑛 (1 + 𝛽)𝑛

∞

𝑛=0

           = (∑
(

𝑥 − 1

2
)

𝑘

ℎ𝑘

𝑘! (1 + 𝛼)𝑘

∞

𝑘=0

) (∑
(

𝑥 + 1

2
)

𝑛

ℎ𝑛

𝑛!  (1 + 𝛽)𝑛

∞

𝑛=0

). 

Now exploit the notation of the hypergeometric function (20) to ob-
tain the Bateman’s generating function of the Jacobi polynomials as, 
 

∑
𝑃𝑛

(𝛼,𝛽)
(𝑥)ℎ𝑛

(1 + 𝛼)𝑛 (1 + 𝛽)𝑛

∞

𝑛=0

= 𝐹 (−, −; 1 + 𝛼;
ℎ(𝑥 − 1)

2
) + 

 

𝐹 (−, −; 1 + 𝛽;
ℎ(𝑥 + 1)

2
) , |ℎ| < 1                                                              (49) 

 

Remarks: 1- It should be noted that by replacing 𝑥  by −𝑥 and 𝑡  by 
−𝑡 into the generating function (49) for the Jacobi polynomials we 
obtain the symmetry property of JPs (58). 
2- The generating function for the JPs (49) can be reduced to the 
generating function for the Legendre polynomials 𝑃𝑛(𝑥) by setting 
the indexes values  𝛼, 𝛽 in equation (49) to zeros, thus 
 

∑
𝑃𝑛(𝑥)ℎ𝑛

(𝑛!)2

∞

𝑛=0

= 𝐹 (−, −; 1;
ℎ(𝑥 − 1)

2
) + 𝐹 (−, −; 1;

ℎ(𝑥 + 1)

2
)                    (50) 

 
7. Rodrigues formula for the Jacobi Polynomials. 
 
Theorem 12 (Bell, 1968): The Jacobi polynomials of degree 𝑛  and 
order 𝛼, 𝛽 for 𝑥 ∈ (−1,1) are defined by the following formula of 
Rodrigues type as, 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(−1)𝑛

2𝑛𝑛!
(1 − 𝑥)−𝛼(1 + 𝑥)−𝛽 × 

(
𝑑

𝑑𝑥
)

𝑛
[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽] .   (51)  

Proof: This formula can be derived easily with the aid of the Leib-
niz’s theorem for the 𝑛th derivative of the product of two functions 
that appear in the right hand side of the equation (51), so 

(
𝑑

𝑑𝑥
)

𝑛

[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽] = 

∑ (
𝑛
𝑘

)

𝑛

𝑘=0

(
𝑑

𝑑𝑥
)

𝑘

(1 + 𝑥)𝑛+𝛽 (
𝑑

𝑑𝑥
)

𝑛−𝑘

(1 − 𝑥)𝑛+𝛼 . 

Now by taking the actual derivatives in the last expression, one has 

(
𝑑

𝑑𝑥
)

𝑛

[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽] = 

∑ (
𝒏
𝒌

)

𝒏

𝒌=𝟎

(𝒏 + 𝜷)(𝒏 + 𝜷 − 𝟏) … (𝒏 + 𝜷 − 𝒌 + 𝟏)(𝟏 + 𝒙)𝒏+𝜷−𝒌 × 

(−1)𝑛−𝑘(𝑛 + 𝛼)(𝑛 + 𝛼 − 1) … (𝑛 + 𝛼 − 𝑛 + 𝑘 + 1)(1 − 𝑥)𝑛+𝛼−𝑛+𝑘 . 

 
To simplify the coefficients in this expansion we use the relation (5) 
to obtain, 
 

(𝑛 + 𝛼)(𝑛 + 𝛼 − 1) … (𝛼 + 𝑘 + 1) =
Γ(𝛼 + n + 1) Γ(𝛼 + 1)⁄

Γ(𝛼 + k + 1) Γ(𝛼 + 1)⁄

=
(𝛼 + 1)𝑛

(𝛼 + 1)𝑘
,   𝛼 > −1, 𝑘 ≤ 𝑛.                           (52) 

And similarly, we have, 
 

(𝑛 + 𝛽)(𝑛 + 𝛽 − 1) … (𝑛 + 𝛽 − 𝑘 + 1)

=
Γ(𝛽 + n + 1) Γ(𝛽 + 1)⁄

Γ(𝛽 + 𝑛 − k + 1) Γ(𝛽 + 1)⁄
=

(𝛽 + 1)𝑛

(𝛽 + 1)𝑛−𝑘
,   𝛽

> −1, 𝑘 ≤ 𝑛.                                                          (53) 

Now substituting the relations (52) and (53) into equation (51) to 
obtain  
 
(−1)𝑛

2𝑛𝑛!
(1 − 𝑥)−𝛼(1 + 𝑥)−𝛽 × (

𝑑

𝑑𝑥
)

𝑛

[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽]   (54) 

 

But the right hand side of equation (54) is just JPs 𝑃𝑛
(𝛼,𝛽)

(𝑥) accord-
ing to equation (44). Thus, we end the proof of the Rodrigues for-
mula of JPs (51). 
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Remarks: 

1- The Rodrigues formula of JPs (51) is very beneficial because it 

shows that the JPs 𝑃𝑛
(𝛼,𝛽)

(𝑥) are analytic functions of their 
parameters 𝛼, 𝛽 ∈ ℂ.  

 
2- The Rodrigues formula of JPs (51) can be reduced to the 

Rodrigues formula of Legendre polynomials by setting the 
indexes values 𝛼, 𝛽 in equation (51) to zeros, thus 

𝑃𝑛(𝑥) =
(−1)𝑛

2𝑛𝑛!
(

𝑑

𝑑𝑥
)

𝑛

[(1 − 𝑥)𝑛(1 + 𝑥)𝑛]                               (55) 

3- The Rodrigues formula of JPs (51) can be reduced to the 
Rodrigues formula of the first  and second kind Chebyshev 
polynomials by setting the indexes values respectively to 𝛼 =

𝛽 = −
1

2
 , and 𝛼 = 𝛽 =

1

2
  in equation (51), thus 

 

𝑇𝑛(𝑥) =
(−1)𝑛

2𝑛𝑛!
√1 − 𝑥2 (

𝑑

𝑑𝑥
)

𝑛

(1 − 𝑥2)𝑛−1
2                              (56) 

and, 

𝑈n(𝑥) =
(−1)𝑛(𝑛 + 1)√𝜋

2𝑛+1(𝑛 + 1
2
)! 

(1 − 𝑥2)−
1
2

× (
𝑑

𝑑𝑥
)

𝑛

(1 − 𝑥2)𝑛+1 2⁄                                       (57)  

 

Theorem 13 (Bell, 1968) The Jacobi polynomials 𝑃𝑛
(𝛼,𝛽)

(𝑥) obey 
the following symmetry relation, 

𝑃𝑛
(𝛼,𝛽)

(−𝑥) = (−1)𝑛𝑃𝑛
(𝛽,𝛼)

(𝑥)                                                              (58) 
 
Proof:- Replace 𝑥  by −𝑥 in the Rodrigues formula for the Jacobi 
polynomials (51) to obtain, 

𝑃𝑛
(𝛼,𝛽)

(−𝑥) =
(−1)𝑛

2𝑛𝑛!
(1 + 𝑥)−𝛼(1 − 𝑥)−𝛽 × 

[
𝑑

𝑑(−𝑥)
]

𝑛
[(1 + 𝑥)𝑛+𝛼(1 − 𝑥)𝑛+𝛽].  

𝑃𝑛
(𝛼,𝛽)

(−𝑥) = (−1)2𝑛
(−1)𝑛

2𝑛𝑛!
(1 − 𝑥)−𝛽(1 + 𝑥)−𝛼 × 

(
𝑑

𝑑𝑥
)

𝑛
[(1 − 𝑥)𝑛+𝛽(1 + 𝑥)𝑛+𝛼].  

Again calling the Rodrigues formula of JPs (51) leads to, 
 

𝑃𝑛
(𝛼,𝛽)

(−𝑥) = (−1)𝑛𝑃𝑛
(𝛽,𝛼)

(𝑥). 
This symmetry property of the Jacobi polynomials will be beneficial 
in obtaining some integral representations of Jacobi polynomials as 
it will be shown in section 11. 

8. Exact and Asymptotic Special Values of Jacobi Polynomials. 

For specific values of the indexes 𝛼 and 𝛽 most of the common 
classical orthogonal polynomials are in fact just special cases of the 
JPs. For instance, the classical Legendre polynomials correspond to 
the special case 𝛼 = 𝛽 = 0. Furthermore, the Chebyshev polynomi-
als of the first and second types correspond respectively to the spe-

cial cases 𝛼 = 𝛽 = −
1

2
 and 𝛼 = 𝛽 =

1

2
  and Gegenbauer (ultraspher-

ical) polynomials correspond to the special case 𝛼 = 𝛽. Here we 
show how to evaluate the JPs at the two end points 𝑥 = ±1. 

𝑃0
(𝛼,𝛽)

(𝑥) = 1, 

𝑃1
(𝛼,𝛽)

(𝑥) = (1 + 𝛼) + (𝛼 + 𝛽 + 2) (
𝑥 − 1

2
), 

By substituting 𝑥 = 1 in the formula of Jacobi polynomials given by 
equation (39), one has 

𝑃𝑛
(𝛼,𝛽)

(1) =
(1 + 𝛼)𝑛

𝑛!
= (

𝛼 + 𝑛
𝑛

) =
Γ(𝛼 + 𝑛 + 1)

𝑛! Γ(𝛼 + 1)
.                         (59) 

Now the indexes values 𝛼 = −
1

2
, 𝛽 =

1

2
 in the formula (59) for JPs 

to obtain, 

𝑃𝑛

(−
1
2

,
1
2

)
(1) =

(
1
2

)
𝑛

𝑛!
.                                                                                   (60) 

Similarly, we have 
 

𝑃𝑛

(
1
2

,− 
1
2

)
(1) =

(2𝑛 + 1) (
1
2

)
𝑛

𝑛!
                                                                  (61) 

From the symmetry property of JPs (58) we can obtain some useful 
special values of the JPs. If we substitute 𝑥 = 1 in the relation (58), 
then 
 

𝑃𝑛
(𝛼,𝛽)

(−1) = (−1)𝑛𝑃𝑛
(𝛽,𝛼)

 
Now substituting from equation (59) into this equation to obtain 
 

𝑃𝑛
(𝛼,𝛽)

(−1) = (−1)𝑛
(1 + 𝛽)𝑛

𝑛!
= (−1)𝑛 (

𝛽 + 𝑛
𝑛

)

=
Γ(𝛽 + 𝑛 + 1)

𝑛! Γ(𝛽 + 1)
                                                     (62) 

Theorem 14 (Abramowitz and Stegun, 1968): The Gegenbauer 

polynomials 𝐶𝑛
𝛼(𝑥) = 𝑃𝑛

(𝛼,𝛼)(𝑥) are even or odd functions respec-
tively for the even or odd values of the index 𝑛. 

Proof:- Substitute 𝛼 = 𝛽 in the symmetry property of JPs (58) to 
obtain, 

𝑃𝑛
(𝛼,𝛼)(−𝑥) = (−1)𝑛𝑃𝑛

(𝛼,𝛼)(𝑥) 
Using the notation of the Gegenbauer polynomials, one has, 

𝐶𝑛
𝛼(−𝑥) = (−1)𝑛𝐶𝑛

𝛼(𝑥).                                                                         (63) 

Moreover, Substitute 𝛼 = 𝛽 = 0 in the relation (63) to obtain the 
following well-known property of Legendre polynomials 𝑃𝑛(𝑥) as, 

𝑃𝑛(−𝑥) = (−1)𝑛𝑃𝑛(𝑥)                                                                             (64) 

For large values of the degree 𝑛, we can obtain asymptotic values 

of some special values of the JPs 𝑃𝑛
(𝛼,𝛽)

(𝑥). Thus for large values 
𝑛 ≫ 1 we can implement the Stirling’s approximation of gamma 
function (17) in equation (59) to obtain, 
 

𝑃𝑛
(𝛼,𝛽)

(1)~
√2𝜋(𝑛 + 𝛼) (

𝑛 + 𝛼
𝑒

)
𝑛+𝛼

𝛼! √2𝜋𝑛 (
𝑛
𝑒

)
𝑛 , 𝑛 ≫ 1.   

Then do some simple computations to obtain the following asymp-
totic special value of JPs as, 

𝑃𝑛
(𝛼,𝛽)

(1)~𝑛𝛼 , 𝑛 ≫ 1.                                                                      (65) 
By following a similar fashion, we obtain the other asymptotic spe-
cial value of JPs as, 

𝑃𝑛
(𝛼,𝛽)

(−1)~𝑛𝛽 , 𝑛 ≫ 1.                                                                   (66) 
 
8.1 Some Special Values of the Jacobi Polynomials 

𝑃𝑛
(𝛼,𝛽)

(cos 𝜃)(Beals and Wong, 2010) 

To derive some special values of the Jacobi polynomials of the 
variable 𝑥 = cos 𝜃, we resort to the following useful relations, 

cos(𝑛𝜃) = cos(𝜃) 𝐹 (
1 − 𝑛

2
,
1 + 𝑛

2
;
1

2
; sin2(𝜃))                       (67) 

cos(𝑛𝜃) = 𝐹 (
𝑛

2
,
−𝑛

2
;
1

2
; sin2(𝜃))                                                  (68) 

sin(𝑛𝜃) = 𝑛 sin(𝜃) 𝐹 (
1 + 𝑛

2
,
1 − 𝑛

2
;
3

2
; sin2(𝜃))                     (69) 

sin(𝑛𝜃) = 𝑛 sin(𝜃) cos(𝜃) × 𝐹 (1 −
𝑛

2
, 1 +

𝑛

2
;
3

2
; sin2(𝜃))    (70) 

If we replace 𝑛 by 2(𝑛 + 1) and 𝜃 by 
𝜃

2
 in the relation (70), we obtain 

sin[(𝑛 + 1)𝜃]

(𝑛 + 1)sin(𝜃)
= 𝐹 (−𝑛, 𝑛 + 2;

3

2
; sin2 (

𝜃

2
))                                    (71) 

In addition, if we replace 𝑛 by 2𝑛 and 𝜃 by 
𝜃

2
 in the relation (68), we 

obtain 

cos(𝑛𝜃) = 𝐹 (𝑛, −𝑛;
1

2
; sin2 (

𝜃

2
))                                                       (72) 

Substitute 𝑥 = cos 𝜃   and the indexes values 𝛼 = −
1

2
, 𝛽 =

1

2
 in the 

formula for JPs (39) to obtain, 
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𝑃𝑛

(−
1
2

,
1
2

)
(cos 𝜃) =

(
1
2

)
𝑛

𝑛!
𝐹 (−𝑛, 𝑛 + 1;

1

2
;
1 − cos(𝜃)

2
). 

By calling a simple trigonometric relation we have, 
 

𝑃𝑛

(−
1
2

,
1
2

)
(cos 𝜃) =

(
1
2

)
𝑛

𝑛!
𝐹 (−𝑛, 𝑛 + 1;

1

2
; sin2 (

𝜃

2
))                            (73) 

On the other hand if we replace 𝑛 by 2𝑛 + 1 and 𝜃 by 
𝜃

2
 in the rela-

tion (67), we obtain 

cos [(
2𝑛 + 1

2
) 𝜃] = cos (

𝜃

2
) 𝐹 (−𝑛, 1 + 𝑛;

1

2
; sin2 (

𝜃

2
))                 (74) 

Finally substitute the relation (74) into the equation (73) to obtain  
 

𝑃𝑛

(−
1
2

,
1
2

)
(cos 𝜃) =

(
1
2

)
𝑛

𝑛!

cos [(
2𝑛 + 1

2
) 𝜃]

cos (
𝜃
2

)
                                            (75) 

With the aid of relation (60), this identity can be rewritten as, 

𝑃𝑛

(−
1
2

,
1
2

)
(cos θ)

𝑃𝑛

(−
1
2

,
1
2

)
(1)

⁄ =
cos [(

2𝑛 + 1
2

) 𝜃]

cos (
𝜃
2

)
                                          (76) 

Moreover, Substitute 𝑥 = cos 𝜃   and the indexes values 𝛼 =
1

2
, 𝛽 =

−
1

2
 in formula for JPs (39) to obtain, 

𝑃𝑛

(
1
2

,− 
1
2

)
(cos 𝜃) =

(
3
2

)
𝑛

𝑛!
𝐹 (−𝑛, 𝑛 + 1;

3

2
;
1 − cos(𝜃)

2
) 

By calling a simple trigonometric relation we have, 
 

𝑃𝑛

(
1
2

,− 
1
2

)
(cos θ) =

(
3
2

)
𝑛

𝑛!
𝐹 (−𝑛, 𝑛 + 1;

3

2
; sin2 (

𝜃

2
))                           (77) 

On the other hand if we replace 𝑛 by 2𝑛 + 1 and 𝜃 by 
𝜃

2
 in the rela-

tion (69), we obtain 

sin [(𝑛 +
1

2
) 𝜃] = (2𝑛 + 1)sin (

𝜃

2
) 𝐹 (−𝑛, 1 + 𝑛;

3

2
; sin2(𝜃))   (78) 

 
Now substitute the relation (78) into the equation (77) to obtain  
 

𝑃𝑛

(
1
2

,− 
1
2

)
(cos 𝜃) =

(
3
2

)
𝑛

𝑛!

sin [(𝑛 +
1
2

) 𝜃]

(2𝑛 + 1) sin (
𝜃
2

)
                                           (79) 

Since, 
 

(
3

2
)

𝑛
= (2𝑛 + 1) (

1

2
)

𝑛
                                                                              (80) 

Finally substitute the relation (80) into the equation (79) to obtain  

𝑃𝑛

(
1
2

,− 
1
2

)
(cos 𝜃) =

(
1
2

)
𝑛

𝑛!

sin [(𝑛 +
1
2

) 𝜃]

sin (
𝜃
2

)
                                                        (81) 

In a similar manner to the derivation above we can obtain, 

𝑃𝑛

(
1
2

,
1
2

)
(cos 𝜃) =

(
3
2

)
𝑛

𝑛!

sin[(𝑛 + 1)𝜃]

(𝑛 + 1) sin(𝜃)
                                                   (82) 

With the aid of relation (61), the identity (81) can be rewritten as, 

𝑃𝑛

(
1
2

,− 
1
2

)
(cos 𝜃)

𝑃𝑛

(
1
2

−,
1
2

)
(1)

⁄ =
sin [(𝑛 +

1
2

) 𝜃]

(2𝑛 + 1)sin (
𝜃
2

)
                                 (83) 

Also, we have the following relations, 

𝑃𝑛

(
1
2

,
1
2

)
(𝑐𝑜𝑠 𝜃)

𝑃𝑛

(
1
2

,
1
2

)
(1)

⁄ =
sin[(𝑛 + 1)𝜃]

(𝑛 + 1)sin(𝜃)
                                                  (84) 

And  

𝑃𝑛

(−
1
2

,− 
1
2

)
(𝑐𝑜𝑠 𝜃)

𝑃𝑛

(−
1
2

,− 
1
2

)
(1)

⁄ = cos(𝑛𝜃)                                                  (85) 

These representations of the special cases of the Jacobi polynomials 
will be beneficial in obtaining the integral representations of Jacobi 
polynomials as it will be shown in section 11. 
 

9. Chebyshev Polynomials as Special Cases of Jacobi Polynomi-
als 
 

Exploiting the relations derived in the previous section, we can 
define the first and second kind Chebyshev polynomials respec-

tively  𝑇𝑛(𝑥) and 𝑈𝑛(𝑥) in terms of the JPs 𝑃𝑛
(𝛼,𝛽)

(𝑥) for special val-
ues of the indexes 𝛼 and  𝛽 (Beals and Wong, 2010). We know that, 
the first kind Chebyshev polynomials  𝑇𝑛(𝑥) is defined as, 

𝑇𝑛(cos 𝜃) = cos(𝑛𝜃) 

Substituting relation (85) into this equation leads to, 

𝑇𝑛(cos 𝜃) =
𝑃𝑛

(−
1
2

,− 
1
2

)
(𝑐𝑜𝑠 𝜃)

𝑃𝑛

(−
1
2

,− 
1
2

)
(1)

⁄                                         (86) 

where the coefficient  𝑃𝑛

(−
1

2
,− 

1

2
)
(1) is defined as, 

𝑃𝑛

(−
1
2

,− 
1
2

)
(1) =

(
1
2

)
𝑛

𝑛!
.   

Moreover, we know that, the second kind Chebyshev polynomials  
𝑈𝑛(𝑥) is defined as, 
 

𝑈𝑛(cos 𝜃) =
sin[(𝑛 + 1)𝜃]

sin(𝜃)
. 

Substituting relation (84) into this equation leads to, 
 

𝑈𝑛(cos 𝜃) =
(𝑛 + 1)

𝑃𝑛

(
1
2

,
1
2

)
(1)

𝑃𝑛

(
1
2

,
1
2

)
(𝑐𝑜𝑠 𝜃)                                                    (87) 

where the coefficient  𝑃𝑛

(
1

2
,
1

2
)
(1) is defined by 

𝑃𝑛

(
1
2

,
1
2

)
(1) =

(
3
2

)
𝑛

𝑛!
                                                                                      (88) 

Thus using the relations (6) and (7) with (88) for the coefficient in 
equation (87) leads to, 
 

(𝑛 + 1)

𝑃𝑛

(
1
2

,
1
2

)
(1)

=
(𝑛 + 1)𝑛!

(
3
2

)
𝑛

=
(𝑛 + 1)! 2𝑛𝑛!

(2𝑛 + 1)!
=

(𝑛 + 1)! 22𝑛𝑛! √𝜋

𝑛! 22𝑛+1Γ (𝑛 +
3
2

)
. 

Hence, 

𝑈𝑛(𝑥) =
(𝑛 + 1)! √𝜋

2Γ (𝑛 +
3
2

)
𝑃𝑛

(
1
2

,
1
2

)
(𝑥)                                                        (89) 

 
10. The Orthogonality and the orthonormality Properties of 
the Jacobi Polynomials. 

In this section we shall prove one of the most important prop-
erties of the Jacobi polynomials which are the orthogonlaity and the 
orthonormality properties. 
Theorem 15: The Jacobi polynomials (eigenfunctions of the sec-
ond-order differential operator (32)) are orthogonal with respect 
to the weight function (beta density) 𝑤𝛼,𝛽(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽  
on the interval ∈ (−1,1) , that is  

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

𝑃𝑛
(𝛼,𝛽)

(𝑥)𝑃𝑚
(𝛼,𝛽)

(𝑥)𝑑𝑥 = 

 
2𝛼+𝛽+1Γ(𝛼 + 𝑛 + 1)Γ(𝛽 + 𝑛 + 1)

𝑛! (2𝑛 + 𝛼 + 𝛽 + 1)Γ(𝛼 + 𝛽 + 𝑛 + 1)
𝛿𝑚,𝑛  ,

𝑅𝑒(𝛼), 𝑅𝑒(𝛽) > −1,                                             (90) 
 
where 𝛿𝑚,𝑛 is the Kroncker delta symbol defined as, 

𝛿𝑚,𝑛 = {
0, for 𝑚 ≠ 𝑛,
1, for 𝑚 = 𝑛 .
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Proof:- We shall begin the proof by multiplying both sides of the 

Rodrigues formula for the Jacobi polynomials (51) by 𝑃𝑚
(𝛼,𝛽)

(𝑥) and 
then integrate over the interval [−1,1]  to obtain, 

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

𝑃𝑛
(𝛼,𝛽)

(𝑥)𝑃𝑚
(𝛼,𝛽)

(𝑥)𝑑𝑥 = 

(−1)𝑛

2𝑛𝑛!
∫ (

𝑑

𝑑𝑥
)

𝑛

[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽]𝑃𝑚
(𝛼,𝛽)

(𝑥)𝑑𝑥
1

−1

, 

 
Now, doing the integral on the right hand side by parts leads to, 

𝑢(𝑥) = 𝑃𝑚
(𝛼,𝛽)

, 𝑑𝑉 = (
𝑑

𝑑𝑥
)

𝑛

[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽]𝑑𝑥, 

𝑑𝑢 =
𝑑𝑃𝑚

(𝛼,𝛽)

𝑑𝑥
, 𝑉(𝑥) = (

𝑑

𝑑𝑥
)

𝑛−1

[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽]. 

Thus, one has 

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

𝑃𝑛
(𝛼,𝛽)

(𝑥)𝑃𝑚
(𝛼,𝛽)

(𝑥)𝑑𝑥 = 

(−1)𝑛+1

2𝑛𝑛!
∫ (

𝑑

𝑑𝑥
)

𝑛−1
[(1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽]

𝑑

𝑑𝑥
𝑃𝑚

(𝛼,𝛽)
𝑑𝑥

1

−1
,   

 
Where the first term resulted from integration vanishes at the end 
points 𝑥 = ±1. Repeating the integration by parts 𝑛-times, one has 

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

𝑃𝑛
(𝛼,𝛽)

(𝑥)𝑃𝑚
(𝛼,𝛽)

(𝑥)𝑑𝑥 = 

(−1)2𝑛

2𝑛𝑛!
∫ (1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽 (

𝑑

𝑑𝑥
)

𝑛
𝑃𝑚

(𝛼,𝛽)
𝑑𝑥

1

−1
,   

 
Now we need to classify two cases, the first case we assume that ≠
𝑛 . Since 𝑚 and 𝑛 are arbitrary integer numbers, we choose 𝑛 > 𝑚 
(if 𝑚 > 𝑛 then interchange 𝑚 and 𝑛), hence we have, 

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

𝑃𝑛
(𝛼,𝛽)

(𝑥)𝑃𝑚
(𝛼,𝛽)

(𝑥)𝑑𝑥 = 0, 𝑚 ≠ 𝑛,                 (91) 

because 

(
𝑑

𝑑𝑥
)

𝑛

𝑃𝑚
(𝛼,𝛽)

= 0, 𝑚 < 𝑛. 

Secondly, we suppose that  𝑚 = 𝑛, so 

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

[𝑃𝑛
(𝛼,𝛽)

(𝑥)]
2

𝑑𝑥 = 

(−1)2𝑛

2𝑛𝑛!
∫ (1 − 𝑥)𝑛+𝛼(1

1

−1

+ 𝑥)𝑛+𝛽 (
𝑑

𝑑𝑥
)

𝑛

𝑃𝑛
(𝛼,𝛽)

𝑑𝑥 ,                                   (92) 

Since the coefficient 𝑎𝑛
(𝛼,𝛽)

 of 𝑥𝑛 in 𝑃𝑛
(𝛼,𝛽)

 in equation (38) is 

𝑎𝑛
(𝛼,𝛽)

=
Γ(𝑛 + 𝛼 + 1)

𝑛! Γ(𝑛 + 𝛼 + 𝛽 + 1)
(

𝑛

𝑛
)

Γ(2𝑛 + 𝛼 + 𝛽 + 1)

2𝑛Γ(𝑛 + 𝛼 + 1)
, 

So,  

𝑎𝑛
(𝛼,𝛽)

=
Γ(2𝑛 + 𝛼 + 𝛽 + 1)

2𝑛𝑛! Γ(𝛼 + 𝛽 + 𝑛 + 1)
                                                          (93) 

Hence, substitute from equation (93) into equation (92) to obtain, 

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

[𝑃𝑛
(𝛼,𝛽)

(𝑥)]
2

𝑑𝑥 = 

𝑎𝑛
(𝛼,𝛽)

2𝑛 ∫ (1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽𝑑𝑥
1

−1

, (94) 

To evaluate the integral on the right hand side of this equation, we 
make the variable change 𝑤 = 1 − 𝑥, so 
 

∫ (1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽𝑑𝑥
1

−1

= 

= 22𝑛+𝛼+𝛽+1 ∫ 𝑤𝑛+𝛼(1 − 𝑤)𝑛+𝛽𝑑𝑤
1

0

, 

= 22𝑛+𝛼+𝛽+1𝐵(𝑛 + 𝛼 + 1, 𝑛 + 𝛽 + 1) 

Using the relation (8) leads to 

∫ (1 − 𝑥)𝑛+𝛼(1 + 𝑥)𝑛+𝛽𝑑𝑥
1

−1

 

=
22𝑛+𝛼+𝛽+1Γ(𝛼 + 𝑛 + 1)Γ(𝛽 + 𝑛 + 1)

Γ(𝛼 + 𝛽 + 2𝑛 + 2)
.     (95) 

Now substitute from equation (95) into equation (94) to obtain 

∫(1 − 𝑥)𝛼(1 + 𝑥)𝛽

1

−1

[𝑃𝑛
(𝛼,𝛽)

(𝑥)]
2

𝑑𝑥 = 

2𝛼+𝛽+1Γ(𝛼 + 𝑛 + 1)Γ(𝛽 + 𝑛 + 1)

𝑛! (2𝑛 + 𝛼 + 𝛽 + 1)Γ(𝛼 + 𝛽 + 𝑛 + 1)
.   (96) 

Thus, 

‖𝑃𝑛
(𝛼,𝛽)

(𝑥)‖
2

=
2𝛼+𝛽+1Γ(𝛼 + 𝑛 + 1)Γ(𝛽 + 𝑛 + 1)

𝑛! (2𝑛 + 𝛼 + 𝛽 + 1)Γ(𝛼 + 𝛽 + 𝑛 + 1)
, 𝑅𝑒(𝛼), 𝑅𝑒(𝛽) > −1. 

 
Gathering equations (96) and (91) leads to the property (90). Thus 

the normalized and mutually orthogonal set  { 
𝑃𝑛

(𝛼,𝛽)
(𝑥)

‖𝑃𝑛
(𝛼,𝛽)

(𝑥)‖
 }

𝑛=1

∞

 with 

respect to the measure weighting function  𝑤𝛼,𝛽(𝑥) = (1 −

𝑥)𝛼(1 + 𝑥)𝛽  over the interval  𝑥 ∈ [−1,1] for the indexes 𝛼, 𝛽 > −1 
form a complete set in the Hilbert space 𝐿2(−1,1). 
 
The orthogonality property of JPs (90) can be reduced to the or-
thogonality property of Legendre polynomials by setting the in-
dexes values 𝛼, 𝛽 in equation (90) to zeros, thus 

∫ 𝑃𝑛(𝑥)𝑃𝑚(𝑥)𝑑𝑥

1

−1

=
2

(2𝑛 + 1)
𝛿𝑚,𝑛                                                      (97) 

10.1. Applications of the Orthogonality Property of Jacobi Pol-
ynomials 

Theorem 16 (Rainville, 1960): If the set of real polynomials 
{𝑓𝑛(𝑥)}𝑛=0

∞  is orthogonal with respect to a certain positive norm 
function 𝑤(𝑥) on the interval [𝑎, 𝑏], then the zeros of such set are 
distinct and all are positioned in the interval [𝑎, 𝑏]. Moreover, each 
polynomial  𝑓𝑛(𝑥) has 𝑛 simple zeros in the closed interval [𝑎, 𝑏] as 

shown in Fig. 4 where 𝑃4
(𝛼,𝛽)

(𝑥) has four zeros and 𝑃5
(𝛼,𝛽)

(𝑥) has 

five zeros. In addition, Fig. 4 shows that all the zeros of JPs lie in the 
open interval (−1,1) 

Theorem 3 (Rainville, 1960): If the set of real polynomials 
{𝑓𝑛(𝑥)}𝑛=0

∞  is orthogonal with respect to a certain positive norm 
function 𝑤(𝑥) on the interval [𝑎, 𝑏], and  𝑚 < 𝑛 ∈ ℕ , then between 
any two zeros of the polynomial  𝑓𝑚(𝑥) there is a zero of the poly-
nomial  𝑓𝑛(𝑥). That is, the zeros of the polynomials  𝑓𝑚(𝑥) and  𝑓𝑛(𝑥) 
separate each other.  

Fig. 4 shows that between any two zeros of the polynomial 

𝑃5
(𝛼,𝛽)

(𝑥) there is a zero of the polynomial 𝑃4
(𝛼,𝛽)

(𝑥). Fig. 5 shows 

that for the indexes values α = 1.2 and   β = −3.5 < −1, the corre-

sponding JPs 𝑃4
(1.2,−0.5)

, 𝑃5
(1.2,−0.5)

 do not fulfill theorems 1 and 2. By 

violating the classical condition for the orthogonality property 
(90), one can clearly observe that the number of zeros of JPs 

𝑃4
(1.2,−0.5)

, 𝑃5
(1.2,−0.5)

 is not equal to the polynomial degree, and the 

zeros of 𝑃5
(1.2,−0.5)

 do not separate the ones for 𝑃4
(1.2,−0.5)

. 

 

Fig. 4. Jacobi polynomials 𝑃4
(1.2,−0.5)

, 𝑃5
(1.2,−0.5)

 .   
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Fig. 5. Jacobi polynomials 𝑃4

(1.2,−3.5)
, 𝑃5

(1.2,−3.5)
.  

 
Definition 3 (Abramowitz and Stegun, 1968): The Gaussian quad-
rature to estimate the definite integral of a function 𝑓(𝑥) defined 
as, 

∫ 𝑤(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

+ 𝑅𝑛, 

where 𝑅𝑛 is the approximation error. This quadrature hold exactly 
for any polynomial of degree less than 2𝑛 − 1.  
It should be noted that the nodes 𝑥𝑖  are the zeros of the orthogonal 
polynomial of degree 𝑛 associated with the weight function and the 
interval [𝑎, 𝑏]. The quadrature weights 𝑤𝑖  are chosen in such a way 
to enforce the quadrature rule for a polynomial of degree 2𝑛 − 1 to 
be exact  𝑅𝑛 = 0. 
 
Definition 4 (Abramowitz  and Stegun, 1968): The Gaussian-Jacobi 
quadrature to estimate the definite integral of a function 𝑓(𝑥) de-
fined as, 

∫ 𝑓(𝑥)
1

−1

(1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑑𝑥 ≅ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

                                    (98) 

where the nodes 𝑥𝑖  are the zeros of the Jacobi polynomial of degree 
𝑛 associated with  the following weights, 

𝑤𝑖 = −
(2𝑛 + 𝛼 + 𝛽 + 2)Γ(𝛼 + 𝑛 + 1)Γ(𝛽 + 𝑛 + 1)

(𝑛 + 1)! (𝑛 + 𝛼 + 𝛽 + 1)Γ(𝛼 + 𝛽 + 𝑛 + 1)

×
2𝛼+𝛽

[𝑃𝑛
(𝛼,𝛽)

(𝑥𝑖)]
′

𝑃𝑛+1
(𝛼,𝛽)

(𝑥𝑖)
. 

The derivative of the JPs in 𝑤𝑖  can be computed using the identity 
(45).  
Definition 5 (Abramowitz  and Stegun, 1968): The Gaussian-Le-
gendre quadrature to estimate the definite integral of a function 
𝑓(𝑥) defined as, 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≅ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

                                                                      (99) 

where the nodes 𝑥𝑖  are the zeros of the Legendre polynomial  𝑃𝑛(𝑥) 
associated with  the weights, 

𝑤𝑖 =
2[𝑃𝑛

′(𝑥𝑖)]−2

(1 − 𝑥𝑖
2)

2 . 

 
Definition 6 (Abramowitz  and Stegun, 1968): The Gaussian- 1𝑠𝑡 
kind Chebyshev quadrature to estimate the definite integral of a 
function 𝑓(𝑥) defined as, 

∫
𝑓(𝑥)

√1 − 𝑥2
𝑑𝑥

𝑏

𝑎

≅ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

                                                             (100) 

where the nodes 𝑥𝑖  are given as, 

𝑥𝑖 =
cos(2𝑖 − 1)𝜋

2𝑛
, 

 
 and the associated weights are, 

𝑤𝑖 =
𝜋

𝑛
. 

Definition 7 (Abramowitz  and Stegun, 1968): The Gaussian- 2𝑛𝑑 
kind Chebyshev quadrature to estimate the definite integral of a 
function 𝑓(𝑥) defined as, 

∫ √1 − 𝑥2𝑓(𝑥)𝑑𝑥
1

−1

≅ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

                                                    (101) 

where the nodes 𝑥𝑖  are given as, 

𝑥𝑖 = cos (
𝑖

𝑛 + 1
) 𝜋,  

 
and the associated weights are, 

𝑤𝑖 =
𝜋

𝑛 + 1
sin2 (

𝑖𝜋

𝑛 + 1
). 

 
The nodes 𝑥𝑖  and associated weights 𝑤𝑖  for all types of the Gaussian 
quadrature listed above are tabulated in (Abramowitz  and Stegun, 
1968) for different values of  𝑛. It should be noted that, the integrals 
above can be estimated at any other interval [𝑎, 𝑏] by a suitable lin-
ear transformation.  

There are various numerical techniques such as Newton-
Raphson method to compute the zeros of orthogonal polynomials. 
Though now there are various built-in tools in the well-known 
mathematical packages to easily compute such zeros in an accurate 
manner. The interest in computing the zeros of JPs comes as a con-
sequence of the increase interest in spectral approximation. The or-
thogonality property of the JPs considerably affect their zeros dis-
tribution. The interest in extending the orthogonality property of 
JPs come a result of the growth interest in the problem of finding 
the zeros of JPs which has extreme importance in spectral approx-
imation as shown in the next section. 

10.2. Some Orthogonality Conditions of the Jacobi Polynomials  

The standard orthogonality property of the Jacobi polynomials 
is hold for the classical values of the indexes 𝛼, 𝛽 > −1 over the in-
terval  𝑥 ∈ [−1,1]. Hence the zeros of JPs are simple and all lie in 
the open interval (−1,1). But for non-classical values of the indexes 
𝛼, 𝛽 ∈ ℂ, the zeros of JPs are complex and may be multiple and lie 
in a region in the complex z-plane in a well-organized manner. 
Kuijlaars (Kuijlaars, Finkelshtein and Orive, 2005) established 
some orthogonality conditions of the Jacobi polynomials on the Rie-
mann surface for more general values of the indexes 𝛼, 𝛽 ∈ ℂ on 
some paths in the complex z-plane as stated in the following theo-
rem. 

Theorem 18 (Kuijlaars, Finkelshtein and Orive, 2005): For more 
general values of the indexes 𝛼, 𝛽 ∈ ℂ and the weight function 

𝑤𝛼,𝛽(𝑧) defined as, 
 

𝑤𝛼,𝛽(𝑧) = (1 − 𝑧)𝛼(1 + 𝑧)𝛽 = 𝑒[𝛼 ln(1−𝑧)+𝛽 ln(1+𝑧)]. 
 

Then for 𝑠 ∈ ℤ and 0 ≤ 𝑠 ≤ 𝑛 one has, 

∫ 𝑧𝑠

𝐶

𝑤𝛼,𝛽(𝑧)𝑃𝑛
(𝛼,𝛽)

(𝑧)𝑑𝑧

=
−𝜋22𝑛+𝛼+𝛽+3𝑒𝑖𝜋(𝛼+𝛽)𝛿𝑠,𝑛

Γ(2𝑛 + 𝛼 + 𝛽 + 2)Γ(−𝛼 − 𝑛)Γ(−𝛽 − 𝑛)
                                 (102) 

 

where 𝐶 is a contour on Riemann surface for the function 𝑤𝛼,𝛽(𝑧). 

It should be noted that, the weight function 𝑤𝛼,𝛽(𝑧) is a multivalued 

function with branch points at 𝑧 = ±1, ∞, but by extending 𝑤𝛼,𝛽(𝑧) 
on the contour  𝐶 it is enforced to be a single-valued function. For 
the proof of this theorem, the reader is referred to the main source 
(Kuijlaars, Finkelshtein and Orive, 2005). 

11. Integral Representations of the Jacobi polynomials. 

In this section we shall summarize some of remarkable integral ex-
pansions of JPs (Askey and Fitch, 1969). These expansions should 
grant us diversity of applications for JPs. We start with the follow-
ing trivial identity, 

sin(𝑛𝜃)

𝑛
= ∫ cos(𝑛𝜃)

𝜃

0

𝑑𝜃, 

Employing the relations (84) and (86) into this identity leads to, 
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𝑃𝑛−1

(
1
2

,
1
2

)
(cos 𝜓)

𝑃𝑛−1

(
1
2

,
1
2

)
(1)

sin 𝜓 = ∫
𝑃𝑛

(−
1
2

,− 
1
2

)
(cos 𝜃)

𝑃𝑛

(−
1
2

,− 
1
2

)
(1)

𝜓

0

𝑑𝜃 

Now make the substitution 𝑥 = cos 𝜓 to obtain, 
 

𝑃𝑛−1

(
1
2

,
1
2

)
(𝑥)

𝑃𝑛−1

(
1
2

,
1
2

)
(1)

(1 − 𝑥2)
1
2 = 

∫
𝑃𝑛

(−
1
2

,− 
1
2

)
(𝑤)

𝑃𝑛

(−
1
2

,− 
1
2

)
(1)

1

𝑥

(1 − 𝑤2)−
1
2𝑑𝑤                                                          (103) 

In fact the integral formula (103) is a special case of the following 
formula, 
 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(−1)𝑘(𝑛 − 𝑘)!

2𝑘𝑛!
(1 − 𝑥)−𝛼(1 + 𝑥)−𝛽 × 

(
𝑑

𝑑𝑥
)

𝑘
[(1 − 𝑥)𝑘+𝛼(1 + 𝑥)𝑘+𝛽𝑃𝑛−𝑘

(𝛼+𝑘,𝛽+𝑘)
(𝑥)] , 𝑛 ≥ 𝑘.   (104)  

 

This Rodrigues-Like formula should be beneficial in any deriva-
tions involving the Rodrigues formula. If we substitute by the hy-
pergeometric functions in the integral transformation (28) by its 
equivalence from equation (39), we arrive at the following integral 
representation of JPs, 

(1 − 𝑥)𝛼+𝜌  𝑃𝑛
(𝛼+𝜌,𝛽−𝜌)

(𝑥) = 

  𝑃𝑛
(𝛼+𝜌,𝛽−𝜌)

(1)

𝐵(𝛼 + 1, 𝜌)
∫

𝑃𝑛
(𝛼,𝛽)

(𝑡)

𝑃𝑛
(𝛼,𝛽)

(1)
(1 − 𝑡)𝛼(𝑡 − 𝑥)𝜌−1𝑑𝑡 .

1

𝑥

                   (105) 

 
Remark: If we substitute by the indexes values  ρ = 1 , 𝛼 =

−
1

2
, 𝛽 =  

1

2
 in equation (105), one has 

 √1 − 𝑥 𝑃𝑛

(
1
2

,−
1
2

)
(𝑥) =

  𝑃𝑛

(
1
2

,−
1
2

)
(1)

2𝑃𝑛

(−
1
2

,
1
2

)
(1)

∫
𝑃𝑛

(−
1
2

,
1
2

)
(𝑡)

√1 − 𝑡
𝑑𝑡                                   

1

𝑥

   (106) 

Proof: To derive this special case, we start from the trivial fact, 
 

sin [(𝑛 +
1
2

) 𝜃]

(𝑛 +
1
2

)
= ∫ cos [(𝑛 +

1

2
) 𝜑]

𝜃

0

𝑑𝜑.                                                       (107) 

Plugging equations (79) and (83) into equation (107) leads to, 
 

 2 𝑃𝑛

(
1
2

,−
1
2

)
(cos 𝜃)

  𝑃𝑛

(
1
2

,−
1
2

)
(1)

sin (
𝜃

2
) =

1

2
∫

𝑃𝑛

(−
1
2

,
1
2

)
(cos 𝜑)

𝑃𝑛

(−
1
2

,
1
2

)
(1)

𝜃

0

cos (
𝜑

2
) 𝑑𝜑                      (108) 

 

Now, make the variable change 𝑥 = cos 𝜃 and 𝑡 = cos 𝜑 respec-
tively in the left and right hand side of the last equation to arrive at 
the required equation (106).  
The hypergeometric representation of the JPs allow us to make use 
of the Euler’s integral representation of the hypergeometric function 
to obtain some useful integral formulae for the JPs as we show next. 

Theorem 19 (Askey and Fitch, 1969): For 𝑥 > −1, 𝑡 < 1 and  ρ >
0, we have, 

(1 − 𝑥)−(𝑛+𝛽+1) (1 + 𝑥)𝛽+𝜌 𝑃𝑛
(𝛼,𝛽+𝜌)

(𝑥) 

=
  2𝜌𝑃𝑛

(𝛼,𝛽+𝜌)
(−1)

𝐵(𝛽 + 1, 𝜌)
× 

∫
𝑃𝑛

(𝛼,𝛽)
(𝑡)

𝑃𝑛
(𝛼,𝛽)

(−1)
(1 + 𝑡)𝛽(1 − 𝑡)−(𝑛+𝛽+𝜌+1)(𝑥 − 𝑡)𝜌−1𝑑𝑡.

𝑥

−1

 

 
Proof: If we substitute by the hypergeometric functions in equation 
(28) by its equivalence from equation (39), we arrive at the follow-
ing integral representation of JPs, 
 

(1 − 𝑥)𝛼+𝜌  𝑃𝑛
(𝛼+𝜌,𝛽−𝜌)

(𝑥) = 

  𝑃𝑛
(𝛼+𝜌,𝛽−𝜌)

(1)

𝐵(𝛼 + 1, 𝜌)
∫

𝑃𝑛
(𝛼,𝛽)

(𝑡)

𝑃𝑛
(𝛼,𝛽)

(1)
(1 − 𝑡)𝛼(𝑡 − 𝑥)𝜌−1𝑑𝑡 , 𝜌 > 0,

1

𝑥

   

where 𝑥 > −1, 𝑡 < 1. Employing the symmetry property of JPs (58) 
in the last equation leads to, 
(1 + 𝑥)𝛽+𝜌  𝑃𝑛

(𝛼−𝜌,𝛽+𝜌)
(𝑥) = 

  𝑃𝑛
(𝛼−𝜌,𝛽+𝜌)

(−1)

𝐵(𝛽 + 1, 𝜌)
∫

𝑃𝑛
(𝛼,𝛽)

(𝑡)

𝑃𝑛
(𝛼,𝛽)

(−1)
(1 + 𝑡)𝛽(𝑥 − 𝑡)𝜌−1𝑑𝑡 

𝑥

−1

.    

 
Now employing equation (29) in the last equation leads to, 
(1 + 𝑥)𝑛+𝛼+𝛽   𝑃𝑛

(𝛼−𝜌,𝛽)
(𝑥) = 

1

𝐵(𝑛 + 𝛼 + 𝛽 − 𝜌 + 1, 𝜌)
∫ 𝑃𝑛

(𝛼,𝛽)
(𝑡)(1 + 𝑡)𝑛+𝛼+𝛽−𝜌(𝑥 − 𝑡)𝜌−1𝑑𝑡 .

𝑥

−1

  

Again implementing the symmetry property of JPs (58) in the last 
equation leads to, 
(1 − 𝑥)𝑛+𝛼+𝛽   𝑃𝑛

(𝛼,𝛽−𝜌)
(𝑥) = 

1

𝐵(𝑛 + 𝛼 + 𝛽 − 𝜌 + 1, 𝜌)
∫ 𝑃𝑛

(𝛼,𝛽)
(𝑡)(1 − 𝑡)𝑛+𝛼+𝛽−𝜌(𝑡 − 𝑥)𝜌−1𝑑𝑡 

1

𝑥

 

 

Using the transformation (30) leads to, 
(1 + 𝑥)−(𝑛+𝛼+1) (1 − 𝑥)𝛼+𝜌 𝑃𝑛

(𝛼+𝜌,𝛽)
(𝑥) 

=
  𝑃𝑛

(𝛼+𝜌,𝛽)
(1)

𝐵(𝛼 + 1, 𝜌)
∫

𝑃𝑛
(𝛼,𝛽)

(𝑡)(1 − 𝑡)𝛼

(1 + 𝑡)𝑛+𝛼+𝜌+1
(𝑡 − 𝑥)𝜌−1𝑑𝑡 ,

1

𝑥

     

Recalling the symmetry property of JPs (58) in the last equation 
leads to, 
(1 − 𝑥)−(𝑛+𝛽+1) (1 + 𝑥)𝛽+𝜌 𝑃𝑛

(𝛼,𝛽+𝜌)
(𝑥) 

=
  2𝜌𝑃𝑛

(𝛼,𝛽+𝜌)
(−1)

𝐵(𝛽 + 1, 𝜌)
× 

∫
𝑃𝑛

(𝛼,𝛽)
(𝑡)

𝑃𝑛
(𝛼,𝛽)

(−1)
(1 + 𝑡)𝛽(1 − 𝑡)−(𝑛+𝛽+𝜌+1)(𝑥 − 𝑡)𝜌−1𝑑𝑡                               (109)

𝑥

−1

 

 

Thus we obtain an integral formula for JPs (
  𝑃𝑛

(𝛼+𝜌,𝛽)
(𝑥)

  𝑃𝑛
(𝛼+𝜌,𝛽)

(1)
)  in terms of 

other JPs (
  𝑃𝑛

(𝛼,𝛽)
(𝑥)

  𝑃𝑛
(𝛼,𝛽)

(1)
) . Actually, it is advantageous to have an integral 

expansion of a positive kernel for JPs. These integral expansions are 
of great importance in obtaining some useful inequalities of 
positive coefficients sum for JPs such as the following inequality. 
Theorem 19 (Feldheim, 1963): For |𝑥| ≤ 1 , and 𝑛  is a non-
negative integer number, 

∑
  𝑃𝑘

(𝛼,𝛽)
(𝑥)

  𝑃𝑘
(𝛼,𝛼)

(1)

𝑛
𝑘=0 ≥ 0                                                                                   (110)     

The following example shows that why it is advantageous to have a 
series or integral expansion of a positive kernel. This example is 
designed for Legendre polynomials which are defined by the 
following series expansion of alternative-sign kernel, 

𝑃𝑛(𝑥) = ∑
(−1)𝑘 (

1
2

)
𝑛−𝑘

(2𝑥)𝑛−2𝑘

𝑘! (𝑛 − 2𝑘)!

[𝑛 2⁄ ]

𝑘=0

                                              (111) 

Also, the Legendre polynomials defined by the following series 
expansion of positive kernel as, 
 

𝑃𝑛(cos 𝜃) = ∑ (
1

2
)

𝑛

𝑛

𝑘=0

(
1

2
)

𝑛−𝑘
cos  (𝑛 − 2𝑘)𝜃                                 (112) 

Taking the absolute value of both sides of equation (112) to obtain, 

|𝑃𝑛(cos 𝜃)| = |∑ (
1

2
)

𝑛

𝑛

𝑘=0

(
1

2
)

𝑛−𝑘
cos  (𝑛 − 2𝑘)𝜃|.  

 

|𝑃𝑛(cos 𝜃)| ≤ ∑ |(
1

2
)

𝑛
(

1

2
)

𝑛−𝑘
|

𝑛

𝑘=0

|cos  (𝑛 − 2𝑘)𝜃|, 

|𝑃𝑛(cos 𝜃)| ≤ 𝑃𝑛(1). 
Thus, one obtains the following important inequality of Legendre 
polynomials as, 
 
|𝑃𝑛(cos 𝜃)| ≤ 1                                                                                        (113) 
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Therefore we obtain this property in a straightforward manner, 
whereas this cannot be that obvious from the representation (111). 
Hence, it is very beneficial to have a series expansion of positive 
kernel rather than a mixed- sign kernel. 

12. Discussion and Conclusion  

To conclude this review was devoted on very important class of 
orthogonal polynomials known as Jacobi polynomials. Their im-
portance lies in the generalization feature that such polynomials 
possess because they implicitly include many common orthogonal 
polynomials. This narrative review began with deriving some sig-
nificant hypergeometric representations of JPs as shown in section 
4. Such hypergeometric representations were exploited to deduce 
most of the properties of JPs. Actually the hypergeometric ap-
proach have been adopted to gain some differential recurrence re-
lations, generating function in terms of the hypergeometric func-
tion and obtain some special values of JPs as shown in section 8. 
The differential recurrence relations (45), (46) and (47) are useful 
in computing the nodes and the corresponding weights in any 
Gaussian quadrature. We show how to reduce the Rodrigues for-
mula of JPs (51) to the corresponding formula for the Legendre and 
Chebyshev polynomials of the first and second kinds (55), (56) and 
(57) respectively. The Rodrigues formula of JPs (51) was exploited 
to derive the symmetry property of JPs (58) which is of great use in 
deriving some integral expansions of JPs as shown in section 11. 
Some special values either exact or asymptotic were obtained 
through some hypergeometric formulae of JPs as shown in section 
8. This is followed by showing how to obtain the Chebyshev poly-
nomials of the first and second kinds with the variable 𝑥 = cos(𝜃).  

Section 10 was dedicated to a prominent property of any or-
thogonal polynomials which is the orthogonality property. In fact 
the standard orthogonality property of the Jacobi polynomials is 
hold for the classical values of the indexes 𝛼, 𝛽 > −1 over the inter-
val  𝑥 ∈ [−1,1]. Some previous works were summarized on extend-
ing the orthogonality property of the Jacobi polynomials to include 
more values of the indexes 𝛼, 𝛽 ∈ ℝ or even more values , 𝛽 ∈ ℂ. 
Then we show how to take advantage of Jacobi polynomials in ap-
proximating a definite integral of certain function using a variety of 
Gaussian quadrature types such as the Gaussian-Jacobi quadrature 
(98), Gaussian-Legendre quadrature (99) and Gaussian- 1𝑠𝑡 and 
2𝑛𝑑  kinds Chebyshev quadrature respectively (100) and (101). The 
orthogonality property is an essential feature for any spectral ap-
proximation, moreover such property extremely affect the loca-
tions of the zeros of any orthogonal polynomials which are of great 
significance in any Gaussian quadrature. We conclude this review 
by summarizing some integral expansions of JPs (103)-(109) with 
a remarkable feature of possessing positive kernel. Such feature 
should grant us a variety of applications of JPs such as obtaining 
some useful inequalities of positive coefficients (110) and (113). A 
future work should be devoted on reducing the JPs to the less com-
mon Zernike polynomials, because there is no much research on 
such polynomials. 
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