
Libyan Journal of Science & Technology 15:1 (2024) 181-185 

 

Using Markov Chains to Predicate Pandemic Trend: A Case Study in Libya for COVID–19.1 

Elmabrok H. Abdelrahim 

Department of Industrial and Manufacturing Systems Engineering, Faculty of Engineering, University of Benghazi, Libya 

Email: elmabrokabdelrahim@gmail.com 

Highlights 

 This research, discusses using mathematical models to predict the long-term trends of pandemics. 
 In this study, the stationary Markov chain is applied to predict the status of the COVID-19 pandemic in 

Libya. 
 The data used (from WHO) and the results showed that the chain was convergent (the limiting probability 

being very close to the initial distribution). 
 The study results show that the probability of staying in a good situation is 70.9%, and the probability of 

becoming worse is 29.1%. 
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Many predictive models have been developed by various academic institutions to support health 
systems in strategic decision-making, planning, and policies that help in the challenge against 
COVID-19. These models are useful in determining, the expected number of cases and deaths due 
to COVID–19, as well as the required resources such as hospital beds for isolation period and 
ICU, and necessary supplies such as protective equipment. In this article, the stationary Markov 
Chain is applied to the Libyan population to predict the status of the pandemic in Libya after 
more than four years of its spread. The data used was collected by WHO, and the results showed 
that the chain had converged due to the large sample size taken, resulting in the limiting proba-
bility being very close to the initial distribution. Additionally, the probability of staying in a good 
situation is 70.9% and to become worse is 29.1%. Finally, due to the convergence of the chain, 
these results will remain the same regardless of the initial state of the chain. 
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1. Introduction 

One of the most serious problems resulting from changes in 
weather patterns is disease spread. According to the WHO climate 
change has exacerbated over 200 infectious diseases such as 
COVID-19, Lyme disease and various fungal afflictions. Despite the 
severity of climate change's impact on life on Earth, the steps taken 
by the world, especially the industrialized countries, are very mod-
est and do not meet the level of imminent danger. On the other 
hand, scientists in various fields have begun working on preparing 
ways to confront the dangers resulting from these rapid changes. 

One of these efforts, in the health field, aims to understand the 
behaviour of viruses that cause epidemics after they begin to 
spread (not to mention working on finding vaccines resistant to 
them). In this research, the Markov chains will be used to identify 
the behaviour of the spread of the epidemic, specifically the Corona 
epidemic that swept the world at the end of 2019 and is still among 
us now. 

The methods used up to now can be classified into three cate-
gories: statistics-based method, deep learning method, and ma-
chine learning method (Ma et al., 2021). However, researchers in 
this field tend to prefer mathematical models due to their simplicity 
and ability to predict the long-term trends of a pandemic. 

Aldila et al., (2018) studied the MERS – CoV and introduced a 
SIR model, while Wang et al., (2016) used a stationary Markov 
chain for optimizing combinatory drugs, and their algorithm 
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showed better performance compared to two other stochastic al-
gorithms in terms of reliability and efficiency. Another application 
to the Markov chain was by Szczepanik and Mrozek (2013) to esti-
mate the electron conditions in atomic orbitals. LSTM-Markov was 
the model introduced by Ma, et al., (2021), where they used the 
Markov model to minimise the prediction error of LSTM model. De-
pending on confirmed records in Russia, Brazil, the US and Britain, 
they determined the training errors of LSTM and created the PTM 
of the Markov model based on these errors. Then, by combining the 
results of LSTM with the errors in the prediction of the Markov 
Model, the results were obtained. In this article, we aim to predict 
the long-term spread of COVID-19 in Libya by using a stationary 
Markov chain, with its probability transition matrix (PTM) associ-
ated with data collected by WHO from the first case in March 2019 
up to the 23rd of November 2023.  

2. Stochastic Process 

Definition: A stochastic process is a collection of random vari-
ables that is indexed by some mathematical set {Xt}. The state space 
{Xt} will be denoted by S. If S is countable then it is called a discrete 
state process. 

2.1 Types of Stochastic Processes 

The following are the most important types of stochastic pro-
cesses: 
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1. Independent stochastic sequence. 
2. Renewal process. 
3. Independent increment process. 
4. Markov process. 
5. Martingale process. 
6. Stationary process. 
7. Point processes. 

2.2 Discrete Time Markov Chain 

Definition: as stated by Cassady and Nachlas, (2009, p.137), “If 
{X(t), t = 0, 1, ... } is a discrete-valued stochastic process having a 
countable state space K, then {X(t), t = 0, 1, ... } is said to be a dis-
crete-time Markov chain if and only if for all {i0, i1, ... , it-1, i, j} ⊆ K 
and for all t = 0, 1, …, 

𝑃𝑟(𝑋(𝑡 + 1) = 𝑗│𝑋(𝑡) = 𝑖, 𝑋(𝑡 − 1) = 𝑖𝑡−1, … , 𝑋(1) = 𝑖1, 𝑋(0) = 𝑖0) 

= 𝑃𝑟(𝑋(𝑡 + 1) = 𝑗│𝑋(𝑡) = 𝑖) = 𝑃𝑖𝑗                               (1) 

This is known as the Markov property. Also, Pij is referred to as 
the probability value of transition from state i to state j. Colloqui-
ally, the property (Markov property) can be stated as Given the pre-
sent, the future is independent of the past”. Let us suppose that the 
Markov chain (discrete-time) has three state spaces {1, 2, 3} then, 
the PTM is  

𝑃 = [

𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

]                                                                                  (2) 

Where,  

𝑃𝑖𝑗 ≥ 0 𝑎𝑛𝑑 ∑ 𝑃𝑖𝑗 = 1 

Assume {X(t), t = 0, 1, ... } be a discrete-time Markov chain with 
S state space and PTM P. A class of states is a subset of S if and only 
if:  

(1) All states in the subset communicate with one another and; 

(2) No state not in the subset communicates with any state in the 
subset. 

Also, the discrete-time Markov chain is said to be irreducible if it 
has only one class. Otherwise, the chain is reducible. 

2.3 Limiting Behavior 

If a discrete-time Markov chain is irreducible and has a finite 
state space, then as the number of transitions increases, the initial 
state of the process becomes irrelevant. This can be summarized by 
saying that the process approaches steady-state (stationary) be-
havior (Cassady and Nachlas, 2009, p.149). 

Let {X(t), t = 0, 1, ... } be a Markov chain with discrete-time state 
space S and TPM P. Let πj denote the stationary (or limiting) prob-
ability of state j where: 

𝜋𝑗 = lim
𝑛→∞

𝑃𝑖𝑗
(𝑛)

                                                                                                       (3) 

For all 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆,  if 

𝜋 = [𝜋0 𝜋1 …] 

Then, the vector π is referred to as the limiting probability. Equiv-
alently, the elements of vector π can be defined as follows: 

𝜋𝑗 = lim
𝑛→∞

𝑣𝑗
(𝑛)

                                                                                                (4) 

As implied by the definition, we use the TPM to compute the limit-
ing probabilities. 

Let {X(t), t = 0, 1, ... } be a Markov chain with discrete-time state 
space S and TPM P. The vector π is the unique non-negative solu-
tion to the set of linear equations 

 

𝜋𝑗 = ∑ 𝜋𝑖𝑃𝑖𝑗𝑖∈𝑆                                                                                               (5) 

For all 𝑗 ∈ 𝑆 and  

∑ 𝜋𝑖 = 1𝑗∈𝑆                                                                                                     (6) 

The previous set of equations (Eq.(3, 4, 5 & 6)) can be representing 
by the following matrix: 

𝜋 = 𝜋𝑃                                                                                                              (7) 

3. The case study 

In this study, based on the data from WHO regarding the infec-
tion status in Libya starting from the first detection of Covid-19 in 
March 2019 up to November 23th , 2023, we will analyze the status 
of the pandemic after more than four years. A sample of the data 
used is shown in Table 1. 

3.1 Markov Model 

To design the Markov chain and define its states, we found that 
there are only three possible cases for the daily infection status: 

1. The number of cases today is greater than the number of 
cases yesterday (increased). 

2. The number of cases today is less than the number of cases 
yesterday (decreased). 

3. The number of cases today is equal to the number of cases 
yesterday (stable). 

Therefore, the possible state space for the Markov model (Fig. 1) 
includes the following:  

 the daily cases of the pandemic have decreased from the 
previous day (denoted by N0), 

 the daily cases of pandemic are the same as the previous 
day (denoted by N1), 

 the daily cases of pandemic have increased from the previ-
ous day (denoted by N2).  

 

 
 

Fig. 1. Markov chain for the considered case 

From analyzing the available data (containing 1399 daily fig-
ures), the following totals are observed for each status: 

N0: the number of occurrences of state 0 = 477 

N1: the number of occurrences of state 1 = 515 

N2: the number of occurrences of state 2 = 407 

Based on the data provided in Table 1 and the observed daily 
fluctuation, Table 2 shows the number of transitions between the 
different states in the chain at the front of each row of the data 
sample in Table 1. 
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Table 1 

Sample of the used data (Daily cases of Cov-19 in Libya from Dec. 23rd, 2021 to Jun 20th, 2022) 

Date 12/23/2021 
 

12/24/2021 12/25/2021 12/26/2021 12/27/2021 12/28/2021 12/29/2021 12/30/2021 12/31/2021 1/1/2022 1/2/2022 1/3/2022 1/4/2022 1/5/2022 1/6/2022 

New 
Cases 

561 
 

560 658 0 735 881 599 665 640 551 0 916 634 651 698 

Date 1/7/2022 
 

1/8/2022 1/9/2022 1/10/2022 1/11/2022 1/12/2022 1/13/2022 1/14/2022 1/15/2022 1/16/2022 1/17/2022 1/18/2022 1/19/2022 1/20/2022 1/21/2022 

New 
Cases 

643 
 

592 0 579 536 487 599 618 765 0 867 736 885 1173 1331 

Date 1/22/2022 
 

1/23/2022 1/24/2022 1/25/2022 1/26/2022 1/27/2022 1/28/2022 1/29/2022 1/30/2022 1/31/2022 2/1/2022 2/2/2022 2/3/2022 2/4/2022 2/5/2022 

New 
Cases 

1700 
 

0 2281 2333 3063 2245 3157 3320 0 5694 4429 4266 4371 3656 3917 

Date 2/6/2022 
 

2/7/2022 2/8/2022 2/9/2022 2/10/2022 2/11/2022 2/12/2022 2/13/2022 2/14/2022 2/15/2022 2/16/2022 2/17/2022 2/18/2022 2/19/2022 2/20/2022 

New 
Cases 

0 
 

4242 2832 3326 3272 3773 3345 0 3648 2800 2490 2884 2457 1208 0 

Date 2/21/2022 
 

2/22/2022 2/23/2022 2/24/2022 2/25/2022 2/26/2022 2/27/2022 2/28/2022 3/1/2022 3/2/2022 3/3/2022 3/4/2022 3/5/2022 3/6/2022 3/7/2022 

New 
Cases 

2292 
 

2307 1815 1373 1276 938 0 1394 898 669 857 806 501 0 679 

Date 3/8/2022 
 

3/9/2022 3/10/2022 3/11/2022 3/12/2022 3/13/2022 3/14/2022 3/15/2022 3/16/2022 3/17/2022 3/18/2022 3/19/2022 3/20/2022 3/21/2022 3/22/2022 

New 
Cases 

495 
 

386 293 333 302 0 233 304 193 129 134 104 0 151 120 

Date 3/23/2022 
 

3/24/2022 3/25/2022 3/26/2022 3/27/2022 3/28/2022 3/29/2022 3/30/2022 3/31/2022 4/1/2022 4/2/2022 4/3/2022 4/4/2022 4/5/2022 4/6/2022 

New 
Cases 

76 
 

85 83 41 0 75 64 51 47 48 33 0 0 0 0 

Date 4/7/2022 
 

4/8/2022 4/9/2022 4/10/2022 4/11/2022 4/12/2022 4/13/2022 4/14/2022 4/15/2022 4/16/2022 4/17/2022 4/18/2022 4/19/2022 4/20/2022 4/21/2022 

New 
Cases 

0 
 

0 96 0 0 0 0 0 0 28 0 0 0 0 0 

Date 4/22/2022 
 

4/23/2022 4/24/2022 4/25/2022 4/26/2022 4/27/2022 4/28/2022 4/29/2022 4/30/2022 5/1/2022 5/2/2022 5/3/2022 5/4/2022 5/5/2022 5/6/2022 

New 
Cases 

0 
 

42 0 0 0 0 0 0 12 0 0 0 0 0 0 

Date 5/7/2022 
 

5/8/2022 5/9/2022 5/10/2022 5/11/2022 5/12/2022 5/13/2022 5/14/2022 5/15/2022 5/16/2022 5/17/2022 5/18/2022 5/19/2022 5/20/2022 5/21/2022 

New 
Cases 

3 
 

0 0 0 0 0 0 35 0 0 0 0 0 0 33 

Date 5/22/2022 
 

5/23/2022 5/24/2022 5/25/2022 5/26/2022 5/27/2022 5/28/2022 5/29/2022 5/30/2022 5/31/2022 6/1/2022 6/2/2022 6/3/2022 6/4/2022 6/5/2022 

New 
Cases 

0 
 

0 0 0 0 0 29 0 0 0 0 0 0 24 0 

Date 6/6/2022 
 

6/7/2022 6/8/2022 6/9/2022 6/10/2022 6/11/2022 6/12/2022 6/13/2022 6/14/2022 6/15/2022 6/16/2022 6/17/2022 6/18/2022 6/19/2022 6/20/2022 

New 
Cases 

0 
 

0 0 0 0 36 0 0 0 0 0 0 34 0 0 
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Table 2 

The state of transitions in front of each row of sample dates in Table 1 

From →  to 0 → 0 0 → 1 0 → 2 1 → 0 1 → 1 1 → 2 2 → 0 2 → 1 2 → 2 
N

o
. o

f 
tr

an
si

ti
o

n
s 

2  6    7   

         

4  5    5  1 

         

2  6    5  2 

         

3  4    4  4 

         

1  5    5  4 

         

4  5    6   

         

7  4    3  1 

         

5  4    5  1 

         

6 1 3  2  3   

         

 2   9 2 2   

         

 2   9 2 2   

         

 2   8 3 2   

         

 2   8 2 3   

         

 3   8 2 2   

         

 2   9 2 2   

 

The overall transition status for all the data is shown in Table 3. 

Table 3 

Total number of transitions between the different states 

From → to  0 → 0  0 → 1  0 → 2  1 → 0  1 → 1  1 → 2  2 → 0  2 → 1  2 → 2 

# of  transitions 151 66 260 5 443 67 322 6 79 

Total transitions 
from each state 

477 515 407 

 

Based on the results in Table 3, the transition probability 𝑝𝑖𝑗 

and the probability transition matrix (Eq.(2)) are as follows: 

𝑃 = [
0.32 0.14 0.55
0.01 0.86 0.13
0.79 0.01 0.19

] 

From Fig. 1 and the PTM P shown above, it is clear that the con-
sidered chain is irreducible because it has only one class. Therefore, 

the chain is stationary, and the steady state probability exists. How-
ever, because the stationarity of the chain is a condition that must 
be met to lay on the study results, the reader can prove the irreduc-
ibility of the chain (Medhi J., 2009, p.80) 

3.2 Steady state probability (π0, π1, π2) 

The stationary distribution Markov chain for daily cases of 
Covid-19 (Eq.(7)) is: 
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(𝜋0 𝜋1 𝜋2) = (𝜋0 𝜋1 𝜋2) [
0.32 0.14 0.55
0.01 0.86 0.13
0.79 0.01 0.19

] 

Then,  

𝜋0 = 0.32𝜋0 + 0.01𝜋1 + 0.79𝜋2 

𝜋1 = 0.14𝜋0 + 0.86𝜋1 + 0.01𝜋2 

𝜋2 = 0.55𝜋0 + 0.13𝜋1 + 0.19𝜋2 

and from Eq.(6); 

𝜋0 + 𝜋1 + 𝜋2 = 1 

Mathematically, it is clear that any one of the first three equations 
is redundant. By solving any two of them with equation three, we 
obtain: 

(𝜋0 𝜋1 𝜋2) = (0.344 , 0.365 , 0.291) 

So, from the previous calculations, we found that the probability of 
increasing the infliction rate, denoted as π2 is 0.291 (29.1%), the 
probability of decreasing π0 is 0.344 (34.4%), and the probability 
of remaining stable, denoted as π1 is 0.365 (36.5%).  

3.3 Initial Probability of the Chain states 

The probability that the chain will now be at any one of the 
given statuses (initial probability) can be determined depending on 
the data in Table 4 as follows: 

Table 4 

Probability of transition from state i to status j in the chain 

0 → 0 0 → 1 0 → 2 1 → 0 1 → 1 1 → 2 2 → 0 2 → 1 2 → 2 Total 

0.1080 0.0472 0.1860 0.0029 0.3169 0.0479 0.2303 0.0043 0.0565 1 

Then, the probability that the states are now at status 0, 1, or 2 is as in Table 5: 

Table 5 

Initial Probability 

In "0" 
(0→0 + 1→0 + 2→0) 

In "1" 
(0→1 + 1→1 + 2→1) 

In "2" 
(0→2 + 1→2 + 2→2) 

0.341 0.368 0.290 

 

The reader could note the convergence in the values between 
the limited probability and the initial probability. As we mentioned 
earlier, a regular Markov chain with transition matrix P has a 
unique stationary distribution vector π such that πP = π. In addi-
tion, it is proven that starting from any initial distribution q, if the 
iteration q, qP, qP2 . . . converges, then it must converge to this 
unique stationary distribution. This can happen (but not neces-
sarily) when the experiment has a large sample of data, and this is 
actually what has happened in the studied case. However, in this 
instance, the Markov Chain is denoted as “Convergence Markov 
Chain” and it must be a stationary chain. 

4. Conclusion 

In this article, a stationary Markov chain was introduced as a 
method to predict the behaviour of the COVID-19 pandemic in the 
long term. The proposed method was applied to the Libyan popu-
lation in the period from March 2019 up to November 2023. The 
analyzed data showed that the probability that the virus will reac-
tivate and increase the number of infected cases is about 29.1%. 
While the probability will remain in its current state (weak) or de-
crease further (semi-dormant) is 70.9% (stable + decreases). Addi-
tionally, the study showed that the Markov chain converged due to 
the long period of recorded data, making the results more confident 
and reliable. Moreover, the limited probability will remain the 
same regardless of the starting state of the chain. Finally, it is hoped 
that nowadays with the increases in the epidemic emergence rates, 
the methods of prediction and tracing their behaviour will receive 
more attention from researchers in different fields of sciences. 
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