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Highlights 

 Time Independent Schrödinger Equation (TISE) has been solved numerically for an infinite potential square 
well in one dimension. 

 Two approximation methods, Numerov and Matrix methods have been employed to find the energy eigen-
values and wave functions for the particle inside the infinite square well potential. 

 By comparisons with exact analytical solutions, the validity and accuracy of the two methods have been 
demonstrated. 

 The merits of these numerical methods are to avoid a huge expense in time when solving Schrödinger Equa-
tion.  
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The objective of this study is to numerically solve and apply two approximate methods to inves-
tigate the Time Independent Schrödinger Equation (TISE) in one dimension for an infinite po-
tential square well. These two numerical methods are the Numerov Method (NM) and Matrix 
Method (MM). As a simulation tool, MATLAB, a high-level programming language and an efficient 
simulation tool, is used for modeling and solving TISE in one dimension. Exact analytical solu-
tions for these potential functions are obtained and compared with numerical solutions and com-
putational techniques. The energy eigenvalues and Eigen functions of a particle (such as an elec-
tron) restricted to move inside this potential are discussed as an illustration. The numerically 
calculated energies of several states with increasing numbers of points were obtained from both 
methods and compared with the simulation results of the exact solution. As an exemplary case, 
the first five wave functions are accurately determined numerically where the discreteness is 
found since the wave function vanishes at the boundary. The obtained results show very good 
agreement and the similarity is clearly confirmed between the three cases. This agreement con-
firms that this approach was highly accurate and efficient. The accuracy and the convergence of 
the numerical obtained results were easily checked. The stability of these methods is due to the 
fact that there are no restrictions on the time steps to be taken. The merits of these numerical 
methods are to avoid a huge expense in time when solving Schrödinger equation. 
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1. Introduction 

There are numerous fundamental equations for representing 
quantum mechanical behavior in material science. The progress of 
quantum mechanics at the beginning of the twentieth century oc-
curred as a shock to the physics community at that time. In spite of 
the great successes of quantum mechanics and a century that has 
passed since its introduction, quantum mechanics was initially 
questioned due to its limitation regarding non-relativistic particles 
and arguments still continue about its meaning and its future 
(Weinberg, 2017). Niels Bohr said, “If you are not confused by 
quantum physics then you haven’t understood it”. Richard Feyn-
man also remarked, “I think I can safely say that nobody under-
stands quantum mechanics” (Griffiths, 2005). As Griffiths says in 
his book that quantum mechanics does not flow smoothly and nat-
urally from earlier theories, but, on the contrary, it represents an 
abrupt and revolutionary departure from classical ideas (Griffiths, 
2005). The most significant equation among these is the Schrö-
dinger equation which is employed to explain the variations of 
quantum system with time (Arora et al., 2019). Erwin Schrödinger 
developed this linear partial differential equation of second order 
to explain the wave nature of matter and particles associated with 

                                                             
1 1  2024 University of Benghazi. All rights reserved.1ISSN 2663-1407; National Library of Libya, Legal number: 390/2018 

the wave. This equation is called as Schrödinger Equation (SE) 
(Griffiths, 2005; Arora et al., 2019; Schrödinger, 1926; Serway et al., 
2005). It is analogous to the wave equation in optics which is cen-
tered on the assumption that a particle behaves as a wave. The so-
lution of the Schrödinger Equation contains both the wave function 
(ψ) and the energy (E) of the particle under consideration. The 
wave function ψ is most important because when the wave function 
is obtained, everything about the particle can be known. For exam-
ple, the probability of finding the particle in a particular region at a 
position x (within a region of length dx) at a particular instant of 
time t can be expressed by the absolute square of 𝛹 , |𝜓(𝑥, 𝑡)|2. The 
energy of the particle (E) depends on the potential V and the bound-
ary conditions. These are very important parameters (constraints 
on the particle) and they are either quantized or continuous. De-
pending on its dependency on time, Schrödinger equation can be 
classified under two headings: Time-dependent Schrödinger equa-
tion (TDSE) and Time independent Schrödinger equation (TISE) 
(Barde et al., 2015). The Schrödinger equation can be thought of as 
playing a role equivalent to Newton’s second law, where 𝜓(𝑥, 𝑡) is 
determined for all future times by the Schrödinger equation; ex-
actly as Newton’s law determines x(t) for all future time (Griffiths, 
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2005). Even though, the Schrödinger equation has been constantly 
solved numerically using different methods (Bhatia and Mittal, 
2018; Yadav and Jiwari, 2019; Ledoux and Van Daele, 2014; Ma and 
Chen, 2009; He and Lin, 2020; Ward and Volkmer, 2006; Pitkanen, 
1955), the need for simple and less complicated methods are de-
sired. For this aim, the following sub-sections discuss briefly both 
main types of Schrödinger equation in some detail. 

1.1. Time-Dependent Schrödinger Equation 

When a particle has a fixed energy E, its wave function could be 
written in the following form: 

ψ(x, t) = Aei(kx−ωt)                                                    (1) 

where A is the amplitude of the wave and ω is the angular fre-
quency. 

Eq. (1) represents a wave travelling in the positive x direction, 
and it is a wave function for a free particle of momentum p = ℏk 
and energy E = ℏω. The second derivative for ψ(x, t) with respect 
to x is: 

∂2ψ(x,t)

∂x2
= −k2ψ(x, t)                                                                     (2) 

Energy can be written as: 

E = p2/2m = ℏ2k2/2𝑚                                                                             (3) 

where m is the mass of the particle, ℏ=h/2π, where h is Planck con-
stant, p is the momentum, and k is the wave number. 

ℏ2

2m

∂2ψ(x,t)

∂x2
=

p2

2m
ψ(x, t)                                                                                (4) 

Similarly 

∂ψ(x,t)

∂t
= −iωψ(x, t)                                                                                     (5) 

From E = ℏω, and by substituting ω = E/ℏ in Eq. (5), the equation 
can be further modified to obtain: 

iℏ
∂ψ(x,t)

∂t
= Eψ(x, t)                                                                                     (6) 

But the total energy is equal to sum of the kinetic energy and the 
potential energy V(x), hence: 

E =
P2

2m
+ V(x)                                                                                               (7) 

and  

Eψ(x, t) =
ℏ2

2m
ψ(x, t) + V(x, t)ψ(x, t)                                                     (8) 

Consequently, the time dependent Schrödinger equation can be 
written in the form (Briggs and Rost, 2001; Hamdan et al., 2022): 

−
ℏ2

2m

∂2ψ(x,t)

∂x2
+ V(x, t)ψ(x, t) = iℏ

∂ψ(x,t)

∂t
                                                (9) 

1.2. Time Independent Schrödinger Equation 

According to the classical description, total energy E can be 
written as in Eq. (7) and when multiplying both sides by ψ (x, t), Eq. 
(7) becomes:  

Eψ(x, t) =
p2

2m
ψ(x, t) + V(x, t)ψ(x, t)                                                   (10) 

The operator of momentum can be expressed as P = −iℏd/dx, 
and the wave function as  ψ = ei(kx−ωt), where k is the wave num-
ber (k=2π/λ).  

Replacing p2 and d2ψ(x, t)/dx2 = −k2ψ into Eq. (9), the following 
equation is obtained:  

−
ℏ2

2m

d2ψ(x)

dx2
+ V(x)ψ(x) = Eψ(x)                                                          (11) 

Eq. (11) represents the time independent Schrödinger equation 
in one dimension (Zettili, 2003). Typical examples in quantum me-
chanics that exemplify differences between classical and quantum 

mechanical situations are the square well and infinite well poten-
tials (Barde et al., 2015; Harrison, 2009). To this end and in this pa-
per, this equation is solved and modeled for the infinite potential 
well using two approximation methods; Numerov Method (NM) 
and Matrix Method (MM). 

2. Materials and Method 

2.1. Infinite Potential Well 

In this paper, the infinite potential well is chosen to solve the 
Time Independent Schrödinger Equation (TISE) in one dimension 
(see Fig. 1) 

 

x 

Fig. 1. The infinite square well potential. 

Consider the potential energy: 

𝑉(𝑥) = {
0,     −𝐿/2 ≤ 𝑥 ≤ 𝐿/2

∞,       𝑥 < −𝐿/2 𝑜𝑟 𝑥 >
𝐿

2
 (𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒),

                      (12) 

The potential energy function V(x) is equal to zero within the 
well and Schrödinger Equation becomes: 

−ℏ²

2𝑚

𝑑²𝜓(𝑥)

𝑑𝑥²
= 𝐸𝜓(𝑥)                (13) 

Since the wave function 𝜓(𝑥), is continuous and is equal to zero 
within the walls of the well, the wave function approach zero as x 
approaches –L/2 or +L/2. The solution of Eq. (13) is required to sat-
isfy the following boundary (constraints on the particle) condi-
tions: 

𝜓(−𝐿/2) = 0 and 𝜓(+𝐿/2) = 0                                      (14) 

Eq. (13) is rewritten and multiplied by −2𝑚/ℏ to obtain the follow-
ing equation: 

𝑑2𝜓

𝑑𝑥2
+ (

2𝑚𝐸

ℏ2
)𝜓 = 0 

Substituting 

𝑘2 =
2𝑚𝐸

ℏ2
                                     (15) 

then the Schrödinger equation becomes: 

𝑑2𝜓

𝑑𝑥2
+ 𝑘2𝜓 = 0                                                                   (16) 

Hence, the even and odd solutions of this equation have the fol-
lowing forms, respectively (i.e. the classical simple harmonic oscil-
lator): 

𝜓(𝑥) = 𝐴𝑐𝑜𝑠(𝑘𝑥), 𝑓𝑜𝑟 − 𝐿/2 ≤ 𝑥 ≤ 𝐿/2                                                 (17) 

𝜓(𝑥) = 𝐴 𝑠𝑖𝑛(𝑘𝑥), 𝑓𝑜𝑟 − 𝐿/2 ≤ 𝑥 ≤ 𝐿/2                                                (18) 

where A is a normalization constant. 

The conditions imposed upon the even and odd solutions lead 
to the distinct solutions: 

𝑘 = 𝑛𝜋/𝐿 , 𝑤𝑖𝑡ℎ 𝑛 = 1, 2, 3, …                                                (19) 

where n is an odd integer or an even integer, depending on the par-
ticular case with respect to the center of the well.  

 -L/2                                      L/2 
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Hence, the possible values of the energy are obtained from Eq. (3). 
Written in terms of the integer n as: 

𝐸 = 𝑛2𝜋2ℏ2/2𝑚𝐿2                                (20) 

This means that, in contrast to the classical problem, a particle 
in the infinite square well can have only one of these special al-
lowed values and that energy quantization arises as a technical out-
come of the boundary conditions on the solutions to the TISE. The 
lowest energy is the ground state and the other energies increasing 
in proportion to n2 are the excited states. The probability of getting 
a specific energy is independent of time. This is just a manifestation 
of energy conservation in quantum mechanics. There is also no ac-
ceptable solution to the TISE for this well with E=≤0 (Griffiths, 
2005). 

For the normalization constant, the wave functions and the val-
ues of the energy of a particle moving in an infinite well depend 
upon a positive quantum number integer n. As the probability of 
finding the particle in an infinite well in the region between –L/2 
and +L/2 must be equal to unity, therefore: 

∫  |𝜓(𝑥)|2𝑑𝑥 = 1
+𝐿/2

−𝐿/2
                                (21) 

The even solutions for the particle in the infinite well can be ob-
tained using Eq. (17) into Eq. (18), one gets an infinite set of solu-
tions; one for each positive integer n: 

𝜓(𝑥) = 𝐴𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝐿
) 

Substituting this equation into Eq. (21) gives: 

𝐴2∫ 𝑐𝑜𝑠2 (
𝑛𝜋𝑥

𝐿
)𝑑𝑥 = 1

+𝐿/2

−𝐿/2

 

Using the identity, 

 𝑐𝑜𝑠2(𝑥) =
1

2
[𝑠𝑖𝑛2(𝑥) + 𝑐𝑜𝑠2(𝑥)] =

1

2
 

the above equation becomes: 

𝐴2∫  1/2 𝑑𝑥 = 1
+𝐿/2

−𝐿/2

 

Since the above integral has the value L/2, the following value 
for A is obtained: 

𝐴 = √𝐿/2 

The normalization constant A for the odd functions can be shown 

to be given by the same equation. Using this result the wave func-
tion of a particle in an infinite well, with respect to the center of the 
well, can be written as: 

𝜓𝑛(𝑥) =

{
 
 

 
 
√
2

𝐿
cos (

𝑛𝜋𝑥

𝐿
) ,        𝑛 𝑜𝑑𝑑 (1,3,5,… )

√
2

𝐿
sin (

𝑛𝜋𝑥

𝐿
) ,           𝑛 𝑒𝑣𝑒𝑛 (2,4,6,… )

 (22) 

In this part arbitrary potential width L=2 nm has been assumed. 
Taking the mass of the electron, me=5.687510-12 eV/C2, and Planck 
constant, ℏ =0.658 x 10-15 eV.S , the exact values of E in terms of n, 
for an electron in an infinite quantum well with a width 2 nm, is 
found to be: 

𝐸 =
𝑛2𝜋2ℏ2

2𝑚𝐿2
 

𝐸 =
𝑛2𝜋2 × (0.658 × 10−15)2

2 × 5.6875 × 10−12(2 × 10−9)2
 

2.2. Numerical Simulations 

A code was written to solve the TISE using MATLAB, one of the 
efficient simulation tools commonly used to attain accurate solu-
tions readily with the aid of short and easily constructed program-
ming codes (Cooper, 2012). Tables 1 and 2 present the numerically 
calculated energies of the first six infinite square well states with 
an increasing number of points obtained from the Matrix and the 
Numerov Methods, where the simulation results are compared to 
the exact solution (Eq. (22)). As an exemplary case, the first five 
wave functions are accurately determined numerically. In the case 
of this infinite well, the discreteness is clear because 𝜓 = 0 at the 
boundary, as shown in Fig. 2. The first five wave functions are 
shown in Fig. 2 as obtained from the Numerov and matrix methods 
and compared to the exact solution. The similarity is clearly 
confirmed between the three cases. 

As can be seen from the above Tables, the numerical results ob-
tained from the Matrix, and Numerov Methods are very close to the 
exact analytical solutions, particularly when the number of points 
is increased. Hence, as expected, this input parameter affects the 
results and increasing the number of points leads to the exact solu-
tion. For the eigenvalues, Table 3 shows a comparison of exact so-
lution of energy eigenvalues for the first ten states, for an infinite 
well with width L=2 nm and number of points N=500, with the ei-
genvalues obtained from the NM and the MM. Fig. 3 shows 
graphically the comparison between the three methods.  

 

Table 1  

Numerically calculated energies of the first six infinite square well states with an increasing number of points obtained from Matrix Method and compared 
to the exact solution. 

Solution E1 (eV) E2 (eV) E3 (eV) E4 (eV) E5 (eV) E6 (eV) 

Exact Solution 0.0939 0.3757 0.8452 1.5027 2.3479 3.3809 
Matrix Method solution (N=50) 0.0940 0.3746 0.8436 1.4962 2.3306 3.3434 
Matrix Method solution (N=100) 0.0940 0.3760 0.8456 1.5024 2.3457 3.3748 
Matrix Method solution (N=500) 0.0940 0.3769 0.8479 1.5044 2.3505 3.3846 

 

Table 2  

Numerically calculated energies of the first six infinite square well states with an increasing number of points obtained from Numerov’s Method and com-
pared to the exact solution. 

Solution E1 (eV) E2 (eV) E3 (eV) E4 (eV) E5 (eV) E6 (eV) 
Exact  0.0939 0.3756 0.8452 1.5026 2.3479 3.3809 
Numerov Method (N=50) 0.0868 0.3470 0.7795 1.3826 2.1542 3.0913 
Numerov Method (N=100) 0.0904 0.3615 0.8130 1.4445 2.2554 3.2449 
Numerov Method (N=500 0.0933 0.3733 0.8400 1.4933 2.3333 3.3598 
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Table 3  

Comparison of the exact solution of energy eigenvalues for the first ten states for infinite well with width L=2 nm. 

N point Quantum Number n Exact solution (eV) Energy Eigenvalue (eV) (MM) 
Energy Eigenvalue (eV) 

(NM) 

500 

1 0.0939 0.0942 0.0933 
2 0.3757 0.3769 0.3733 
3 0.8452 0.8479 0.8400 
4 1.5027 1.5044 1.4933 
5 2.3479 2.3505 2.3333 
6 3.3809 3.3846 3.3598 
7 4.6019 4.6158 4.5728 
8 6.0106 6.0285 5.9724 
9 7.6072 7.6294 7.5584 

10 9.3916 9.4185 9.3308 
 

As can be seen from Table 3, the obtained results from the Ma-
trix Method are in better agreement and very close to the exact so-
lution results than those obtained from the Numerov Method. 
Hence, the validity and accuracy of the two methods are exhibited 
by the good agreement obtained. These results from the numerical 

simulations prove the advantages of the method. The stability of 
these methods is due to the fact that there are no restrictions on the 
time steps to be taken. The merits of these numerical methods are 
to avoid a huge expense in time when solving Schrödinger equa-
tion. 

 

 

(a)                                                                                                                              (b) 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Fig. 2. First five wave function for a particle in an infinite well using (a) Matrix 
Method (b) Numerov’s Method and (c) Exact solution. 
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Fig. 3. A comparison of exact solution of energy eigenvalues for the first ten states for 
the infinite well with, width L=2 nm and number of points N=500, with the values ob-
tained from Numerov and Matrix methods.  

3. Conclusions 

This paper is concerned with solving the Time-Independent 
Schrödinger Equation using numerical analysis. An attempt is made 
to find the energy eigenvalues and wave functions for the particle 
inside the infinite square well potential via the approximation 
methods; in particular Numerov and Matrix methods. The numeri-
cal results obtained are physically acceptable. The obtained results 
from both methods are in better agreement and very close to the 
exact solution results. However, the Matrix Method results are very 
close to the exact solution than those from the Numerov Method, 
the validity and accuracy of the two methods are demonstrated and 
the numerical simulations prove the advantages of the two meth-
ods. The merits of these numerical methods are to avoid a huge ex-
pense in time when solving Schrödinger equation. The accuracy 
and efficiency of this scheme may be also used to solve the Time-
Dependent Schrödinger Equation. 
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