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1. Introduction 

Meta-model based algorithms are used to capture the 

performance of a component in a multiple component system 

such as a transformer in a micro-grid system [1]-[3]. To achieve 

that, the concept of scaling laws is introduced. By deriving the 

meta-model for each component, system-based optimization can 

be conducted to obtain efficient and compact systems with the 

possibility of varying frequency over ratings.       

Global optimization techniques such as genetic algorithms 

may be utilized to derive the meta-model on the basis of the 

trade-off between competing performance equations [4]-[8]. This 

trade-off may be between mass and power loss or between 

volume and cost. To set the stage, a scaled analytical model of 

the two winding transformer is first derived in terms of general 

quantities such as current density, frequency, and rated power. 

Such quantities do not depend on the transformer size or ratings 

and thus the meta-model will be general to a wide range of 

transformer ratings. 

To achieve an optimum design of a multi-component system, 

the coupling between the components of the system should be 

taken into account. Therefore, it is not accurate to optimize each 

component separately since the performance of one component 

affects the performance of another component in the system [1]. 

For instance, the temperature of a transformer has an affect on 

the performance of a cascaded converter. In other words, an 

optimum design of an individual device may not be necessarily 

the optimum design if the device is a component of a multi-

component system.  

In another perspective, when all components are considered as 

a single optimization problem this will lead to a large number of 

parameters and thus large number of degrees of freedoms. This 

may preclude the optimization based design of the system to 

converge to the desired solution. By introducing component‟s 

meta-model based scaling laws this issue may be resolved.  

The objective of the work presented in this paper is to explore 

the possibility of developing meta-model based scaling laws for a 

power transformer. Such scaling laws enable one to approximate 

key performance metrics, i.e. loss and mass, based upon device 

power ratings without requiring one to perform a component 

optimization. Often, large degree of freedom component-level 

optimization cannot be performed when system-level 

optimization is considered.  

This paper is organized as follow. In Section 2, a model is 

derived for the two-winding transformer. The scaling laws are 

then defined in Section 3. The scaled design process is 

considered in Section 4. In Section 5, the meta-model which 

represent the transformer optimum designs as function of rated 

power, frequency, and current density is obtained. Finally, 

Section 6, concludes the work of this paper. 

2. Two-Winding Transformer Model 

To explore scaling laws, a simplified two winding, core type 

transformer shown in Fig. 1. The α-winding (lighter orange) is 

wound on the left leg and the β-winding (darker orange) is wound 

on the right leg. For simplicity, the two windings are assumed to 

have the same dimensions and the clearances between the 

windings and the core are neglected; therefore, 
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where w , w , and 
ciw  are the widths of α-winding, β-winding, 

and core interior window respectively and h , h , and cih  are 

the heights of α-winding, β-winding, and core interior window 

respectively.  

Prior to considering scaling, it is useful to define and describe 

several key parameters of the transformer. The rms current 

density for winding j  is expressed as 
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where jN  and jI  are winding x number of turns and rms current 

respectively, pfk  is the winding packing factor, and 
jA  is the 

area of winding j . The winding area is represented by 

 j j j
A w h

 

(4) 
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In the work herein, the α-winding and β-winding rms current 

densities are assumed to be equal 
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(5) 

The mass is another quantity of interest and it is given by 
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where c  and 
jc  are the mass density of core material and j -

winding conductor respectively and 
jU  is the volume of winding 

x  which is calculated by  

   2
j j j c l j

U h w d w w  

 

(7) 

Typically, it is convenient to utilize a T-equivalent circuit 

when analyzing transformers. The T-equivalent circuit shown in 

Fig. 2 is considered herein. Within the circuit, the referred 

(primed) α-winding rms voltage, rms current and resistance are 

expressed as 
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As shown, the leakage flux is neglected in the model 

considered for scaling. The flux path inside the core is assumed 

to be the average path. The peak flux density is expressed 
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where 
mI  is the rms magnetizing current, 

cA  is the core cross-

sectional area, and P  is the core permeance which is calculated 

using the relationship  
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In (12),   is the core material permeability and 
pl  is the flux 

path average length inside the core which is expressed as 
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Neglecting the core loss resistance and the voltage drop on the 

resistance of the β-winding, r ; the rms magnetizing current can 

be approximated 
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where V  is the rms value of the β-winding terminal voltage, e  

is the angular frequency of the sinusoidal primary voltage, and 

mL  is the magnetizing inductance which is defined as 

 
2

m
L N P




 

(15) 

Using (3), (12)-(15) and (11) and simplifying one can 

approximate the peak flux density using: 
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where 
rP  is the transformer rated power. 

Typically, the magnetizing current is required to be much less 

than the rated current. This can be achieved by enforcing this 

constraint 
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where 
mk  is a constant which is much less than 1. Substituting 

equations (3), (14), and (15) into (17) and simplifying yields 
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Fig. 1: Two Winding Core Type Transformer Cross-Section 

View 

 

Fig. 2: Transformer T-equivalent Circuit 
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It is very interesting to consider (17) and (18). Although the 

magnetizing current is equal to the sum of the α-winding and the 

β-winding currents as in Fig. 2, its upper limit can be enforced by 

setting a lower limit on the β-winding current density. 

3. Scaling Laws 

The objective of this section is to set the stage for the 

normalization process by defining the normalization base. The 

goal is to scale all quantities tied to ratings (i.e. dimensions) and 

not those that are rating independent (i.e. flux density and field 

intensity).   

One can note from the previous section that many of the key 

constraints can be expressed in terms of current density. This 

makes the current density a good candidate to be a parameter in 

the scaling laws (in addition to power and frequency). Another 

advantage of selecting the current density as a parameter is that it 

is a general quantity. In other words, a particular value of the 

current density may correspond to a wide range of transformer 

sizes, power ratings, and voltage levels.   

3.1. Geometrical Quantities 

To establish the meta-model, the linear dimensions are scaled 

as [1] 

 ˆ /x x D

 

(19) 

In (19), the notation „^‟ denotes the scaled quantity and D is 

the normalization base. The area and volume are scaled 

accordingly using [1] 
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(20) 
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Substituting (19) and (21) into (6), normalized mass is 

expressed as 
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where 

 
3ˆ /M M D
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3.2. Electrical Quantities 

It is desired not to scale the flux density when deriving the 

meta-model. Considering (11), (12), (19), and (20), to keep 
mB  

unscaled the current must be scaled as [1] 

 ˆ /i i D

 

(24) 

From (3), (20), and (24), the current density is expressed 

 Ĵ JD

 

(25) 

The flux linkage associated with winding j  is expressed as  
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where B is the flux density and
j

S is the surface. 

Since the flux density is not scaled [1], then from (20), the 

scaled flux linkage can be expressed as 

 
2ˆ / D 

 

(27) 

The -j winding instantaneous voltage is calculated using 
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where 
jl and 

j
a  are the winding j  wire length and area 

respectively, 
j

i is winding j  instantaneous current and  is the 

winding conductor material conductivity. 

If time is scaled as [1] 
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then from (1), (2), (5), (10), (11) and (12), the voltage can be 

expressed in terms of scaled quantities as [1] 
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From which one can observe that voltage is not scaled. 

The frequency is the reciprocal of time and therefore, from 

(29) the frequency is scaled as 
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Since the relationship between the angular frequency and the 

frequency is 

 2 f 

 

(32) 

then 
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From (16), (19), (25), and (33), the flux density is expressed in 

terms of the scaled quantities as  
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where the scaled rated power is defined as [1] 
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From (12), (19), and (20) the scaled permeance is 
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where 
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The constraint on current density (18) can be expressed in 

terms of scaled quantities 
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3.3. Voltage Regulation 

Due to the winding resistances and leakage inductances, the 

secondary voltage of a transformer varies with load condition. It 

is desired in practice to keep this variation within a specified 

margin which depends on the type of the load and its sensitivity 

to voltage variations. During normal operation of a transformer, 

the largest variation in the secondary voltage occurs when the 

load condition changes from no-load to full-load. Thus, the 

voltage regulation is defined as the absolute difference between 

the secondary voltage at full-load and the one at no-load relative 

to the voltage at no-load: 
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To simplify analysis, the leakage inductances are neglected in 

the initial scaling derivations as shown by the transformer 

electric equivalent circuit in Fig. 2. The leakage inductances will 

be accounted for in the future research. In addition, the voltage 

drop on the primary resistance is neglected at no-load since the 

magnetizing impedance is relatively large compared to the 

primary resistance. The magnetizing current is neglected at full-

load since it is much smaller than the rated load current as 

enforced by (17).  Therefore, the transformer voltage regulation 

can be approximated as 
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Using (3), (9), (10), and (40) the voltage regulation can be 

expressed as 
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Although voltage is not scaled, the voltage regulation can be 

expressed in terms of scaled quantifies 
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(42) 

3.4. Loss 

Transformer power loss is comprised of transformer winding 

electrical resistance loss and core loss. The resistive power lost in 

winding j  is calculated using 
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From (3) and (43), the resistive power lost due to windingj 
may be formulated in terms of the rms current density as 
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It is noted that the resistive power loss in both windings are 

equal since the current density and the winding dimensions are 

assumed to be the same for both windings. Thus, the total 

resistive loss is twice that in (44). Expressed in terms of scaled 

quantities using, (21), (25), and (35) to (44) yields 
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Core loss includes hysteresis loss and eddy current loss. To 

demonstrate the hysteresis loss, Fig. 3 is first considered. At each 

cycle, the flux density follows the lower path when it is 

increasing and it follows the upper path when it is decreasing. 

Therefore, the trajectory of the flux density forms a loop and the 

area of this loop represents energy lost in the core in form of 

heat. This lost energy is referred to as hysteresis loss. Typically, 

the flux density waveform is not a pure sinusoidal function due to 

the effect of saturation. In the analysis herein, the flux density 

waveform is assumed to be sinusoidal by neglecting the 

saturation effect. Thus the hysteresis loss is estimated using 
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where 
h

k , h
 , and 

h
  are the hysteresis loss constants. 

The eddy current loss is also approximated using MSE [8] 
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where 
e

k is the eddy current loss constant. 

The total core loss is the sum of the hysteresis and eddy 

current loss; thus, 

 cl h e
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(48) 

To enable scaling of the hysteresis loss in (46), the constant 

h
 must be an integer. Typically 

h
 is very close to 1 and thus it 

is herein approximated to be 1. The hysteresis loss is thus 

modeled 
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Applying (21), (31), and (35) to (49) yields a scaled loss 
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To obtain the scaled eddy current loss, (21), (31), and (35) are 

substituted into (47) which yields 
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Fig. 3: Magnetizing Curve for a Soft Magnetic Material. 

The scaled eddy current loss is a function of the nominal 

frequency which is undesired in the scaling process. This 

problem can be addressed by not scaling the frequency or by 

considering only the hysteresis loss to represent the total core 

loss. The latest resolution is acceptable in the low frequency 

range where the hysteresis loss is the dominant core loss. 

Therefore, if only low frequencies are of interest then only the 

hysteresis loss is used to represent the total core loss. 

3.5. Nominal Design Performance 

Before starting the scaled design process, it is useful to 

explain how one can apply the equations derived thus far to a 

specific design. If the voltage of winding j and transformer rated 

power are defined, then the winding j rated current is calculated 

using 
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If the winding j current density is defined and the winding 

dimensions are known, then the number of turns for the 
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corresponding winding is calculated using (3). After calculating 

the current density, the transformer performance equations can be 

evaluated. 

3.6. Normalization Base Selection 

The selection of the normalization base is a very crucial step. 

Since transformers are typically defined in terms of the rated 

power, the base of normalization is selected to be the rated 

power; thus, 

 r
D P

 

(53) 

4. Scaled Design Process 

Using the scaled model defined by equations (19)-(51), 

transformer design is considered to establish Pareto-optimal 

fronts from which a meta-model can be proposed.   

The first step in the design process is to define the design 

vector as  
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The second step is to implement the design constraints. The 

less-than and greater-than functions are used to represent the 

scaled design constraints. [7] 

The first constraint is the constraint on the current density 
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where the minimum required current density ˆ
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The second constraint is imposed on the voltage regulation as 
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In the analysis used to develop the scaled model, the magnetic 

material is assumed to be linear. Therefore, a constraint is 

imposed on the flux density as 
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A final constraint is imposed on the total power loss ˆ
lP as 

follows 
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The fitness function used for the performance evaluations is 

defined as: 
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where c is defined as  

 
1

1 cn

i
i

c

c c
n 

 

 

(64) 

and
cn  is the number of constraints.  

 

The fitness function is calculated using the Pseudo-code as 

illustrated in Fig. 4. 

 

 

Fig. 4: Multi-Objective Optimization Pseudo-Code. 

To define the search space of the multi-objective optimization 

process, the range of the scaled parameters is defined as follows: 
5 20ˆ10 10J  AW/m

2
, 

12 ˆ10 0.1cih     m/W, 0.1 10cir  , 
210 10lr
   , and 0.1 10cr  , where

cir , 
lr , 

cr , and  are unit-

less. The packing factor pfk  is selected to be 0.6, the maximum 

allowed ratio between the magnetizing and the rated current 
mk  

is chosen to be 0.05, the maximum voltage regulation
mxa  is set 

to 0.05, the upper limit on the flux density 
mxaB is 1.4 T, the 

winding conductor is selected to be copper which has a 

conductivity   of 5.959*10
7
 S/m and a mass density of 8890 

Kg/m
3
, and the steel material is chosen to be linear with relative 

permeability 
r  that is equal to 5000, mass density of 7402 

Kg/m
3
, and the hysteresis loss constants are chosen to be 64.064 

J/m
3
 for 

hk  and 1.7991 for 
h . After defining the design 

parameters, specifications, and constraints, a multi-objective 

optimization is conducted with a population size of 2000 and for 

2000 generations.  

5. Multi-Objective Optimization Results 

The normalized loss versus normalized mass when the 

normalized frequency is 3.75*10
10

 HzW
2
 is shown in Fig. 5. This 

value corresponds to a nominal frequency of 60 Hz at rated 

power of 25 kW. As shown by Fig. 5, the relationship between 

normalized loss and normalized mass is composed of two linear 

regions in the log-log scale. Typically, transformers tend to 

operate around the knee of the magnetization curve. Since the 

steel material in the work herein is assumed to be linear, the 

operating point of the transformer will tend to be against the 

upper flux density limit. Therefore, the region where the designs 

are against the upper flux density limit (plotted in red) is selected 

to obtain the meta-model based scaling law. 
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In order to construct meta-model based scaling laws that relate 

normalized mass and normalized loss to normalized frequency 

and normalized current density, the multi-objective optimization 

is conducted at several values of the normalized frequency. Then 

the values of Ĵ  at each frequency is evaluated and used to obtain 

plots of the normalized mass versus normalized current density 

and normalized loss versus normalized current density at each 

normalized frequencies. These are depicted in Fig. 6 and Fig. 7 

respectively. 

 

 

Fig. 5: Normalized Pareto-Optimal Front 

By using curve-fitting techniques, a meta-model based scaling 

law can be constructed from the results shown in Fig. 6 and Fig. 

7. The goal is to express the normalized mass and loss as 

functions of normalized frequency and current density. 

Relationships of the form 

 ˆˆ ˆnfM nJM

M
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  1 2ˆ ˆˆ ˆ
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(66) 

are considered herein. 

 

 

The parameters of the meta-model expressed by (65) and (66) 

are calculated using curve fitting techniques and listed in Table. 1 

The resulting curves are plotted with the original data in Fig. 6 

and Fig. 7. Comparing values, one can see that the meta-model 

obtained by the curve fitting techniques represents the 

normalized mass and loss for different values of normalized 

frequency and current density very well. 

 

 

 

 

 

 

 

 

 

Fig. 6: Normalized Mass versus Normalized Current Density. 

 

 

 

Fig. 7: Normalized Loss versus Normalized Current Density 

 

Table 1. Meta-Model Parameters. 

 

In practice, it is most useful to express the meta-model in 

terms of the physical quantities. This can be achieved by 

applying (25), (33), (35), and (52) to (65) and (66) which yields 

    3 2
nfM nJM

M r r r
M C P fP JP

 

(67) 

     
1 2

2 2
nJl

nfl nfl

l l r r r Jl r
P C P JP fP b fP 

 

(68) 

Paramet

er Value Parameter Value 

M
C  4.0298*104 

Jl
b  1.9054*105 

fM
n  -0.7656 

Jl
n  1.5276 

JM
n  -0.7251 

1fl
n  -0.5142 

l
C  3.5328*10-10 

2fl
n  -0.1069 
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Equations (67) and (68) can be used to generate the pareto-

optimal front for transformers whith specified power rating, 

(low) operating frequency, and current density. Thus, for any 

transformer with a defined operating voltage, rated power, and 

frequency, pareto-optimal front for that transformer can be 

obtained by sweeping the range of the current density values.   

6. Conclusion 

In the work herein, meta-model that capture the optimum 

designs of wide range of two-winding transformer ratings and 

frequencies is derived using scaling laws.  First, the transformer 

performance equations are derived in terms of general quantities 

such as rated power, frequency, and current density. Then scaling 

laws are applied to the transformer model. Using genetic 

algorithms, a pareto-optimal front which represent the trade-off 

between scaled mass and loss is obtained. Using curve fitting 

techniques, a meta-model which relate the transformer mass and 

loss to its general parameters is derived. 
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