Existence and unique of the mild solution of stochastic integro-differential equation

Hanan Salem Abd Alhafid

Faculty of Education, Department of Mathematics, University of Benghazi, Libya.

Received: 12 / 07 / 2020; Accepted: 31 / 12 / 2020

Abstract

This paper is devoted to show the existence of the mild solution of the stochastic integro-differential equation by employing the successive approximation with standard Brownian motion \(W(t) \).

\[
\frac{dx(t)}{dt} - h(t)x(t) = \int_0^t B(t,s)x(s)dw(s), \tag{1.1}
\]

Using theorem (2.1), to find the mild solution

\[
X(t) = \psi + \int_0^t a(s,X(s))ds + \int_0^t b(s,X(s))dW(s) \quad \text{For } 0 \leq t \leq T.
\]

This is done by applying the stochastic differential equation (2.1) and that provides the solution (2.2) and by compensation (2.2) for (2.1) we get:

\[
V(t) = \int_0^t B(t,s)Q(s)dw(s) + \int_0^t \int_0^t B(t,s)Q(s,\tau)V(\tau)d\tau dw(s)
\]

It proves its existence by the successive approximation and its equivalent integral stochastic in equation (1.1), then we can say:

\[
X(t) = \psi + \int_0^t a(s,X(s))ds + \int_0^t b(s,X(s))dW(s) \quad \text{For } 0 \leq t \leq T.
\]

To find the mild solution of the stochastic integro-differential equation, we used the descriptive and experimental approach. Also, we used Gronwall inequality to ensure the uniqueness of the solution.

Keywords: Standard Brownian motion \(W(t) \), stochastic differential equation, the successive approximation, the mild solution, stochastic integr-differential equation.

1. INTRODUCTION

Many differential equations that were developed to describe physical phenomena have ignored stochastic effects because of the solution difficulty. Deterministic models can often be improved by including stochastic effects; however, a more detailed study of the properties of solutions to stochastic differential equations (SDEs) is needed nowadays. These

*Correspondence:
Hanan Salem Abd Alhafid
hanan_e_m74@yahoo.com
stochastic differential equations occur naturally in many fields of mechanics, mathematical physics and physics and mathematical finance. They also rise as representation formulas for the solutions of integral equations according to their boundary conditions. Integral equations also form one of the most useful tools in many branches of pure analysis, such as a functional analysis and stochastic calculus.

The transition from ordinary differential equation (ODE) to (SDE) takes place by incorporating random elements in the differential equation. Randomness can be included in the initial value problem; alternatively, the function that describes the physical system can be a random function.

This randomness is suitable for describing the rapidly fluctuating random phenomena and can be modeled by a Brownian motion or Wiener process see Refs. 5, 6, 7, 8, 9, 10, 11.

Now consider the stochastic integro-differential equation

\[
\frac{dx(t)}{dt} = h(t)x(t) = \int_{\Omega} B(t, s)x(s)dw(s),
\]

with the initial condition \(x(0) = x_0\).

for each \(t \in [0, T]\), \(x\) is unknown function, \(W(t)\) is a standard Brownian motion defined over the filtered probability space \((\Omega, F, P)\). And \(h\) is a bounded Borel function from \([0, x) \times R^d \rightarrow R^d\) to \(R^d\). It is supposed that \([B(t, s), 0 \leq s \leq T]\) are family of bounded operators, and \(B(t, s)\) is continuous on \(0 \leq s \leq T, 0 \leq t \leq T\) for every \(g \in H\), where \(H\) a Hilbert space then \(B(t, s)g \leq K > 0\).

1.1. Definition A probability space is a measured space with total mass. The space \(\Omega\) is called the sample space, and its sample points \(\omega \in \Omega\) are the elementary outcomes of the experiment, \(F\) is a \(\sigma\)-algebra of \(\Omega\). The measurable sets in \(F\) are called events. \(P\) is a probability measure. \(X: \Omega \rightarrow \mathbb{R}\) with values in some measurable space \(S\). A random variables \(X\) is a measurable function.

1.2. Lemma See 1 If \(A_n\) is a sequence of independent events and if \(\bigcap_{n=1}^{\infty} P(A_n) < \infty\) then \(P(\bigcap_{n=1}^{\infty} A_n) = 0\), where \(P(\bigcap_{n=1}^{\infty} A_n) = 1\) for every \(A_n\) finite \(\sigma\)-algebra of \(\Omega\).

1.3. Definition If \(X\) is a random variable on \((\Omega, F, P)\) which is finite \(w.p.1\) then its distribution function is \(F(t) = P(\omega \mid X(\omega) \leq t)\). This gives us the convenient expressions \(\int_{h} P(\omega \mid X(\omega) \leq t)\) for any Borel set \(h\).

1.4. Definition Let \(W(t)\) is a standard Brownian motion in \(R^m\) with respect to a right continuous filtration \(\mathcal{F}(t)\) and \(\psi\) on \(R^d\)-valued. Fix \(0 < T < \infty\), assume the function \(a: [0, T] \times R^d \rightarrow R^d, b: [0, T] \times R^d \rightarrow R^{d_{x}}, \) satisfy Lipschitz condition \(|a(t, x) - a(t, y)| + |b(t, x) - b(t, y)| \leq L|x - y|\), and bound \(|a(t, x)| + |b(t, x)| \leq L(1 + |x|)\) for constant \(L\) and all \(0 \leq t \leq T, x, y \in R^d\) then there exists a unique continuous process that is adapted to and satisfies:

\[
X(t) = \psi + \int_{0}^{t} a(s, X(s))ds + \int_{0}^{t} b(s, X(s))dW(s)
\]

For \(0 \leq t \leq T\).

2.2. The solution

Now to find the solution of eq. (1.1) we assume the stochastic differential equation

\[
\frac{dx(t)}{dt} = h(t)x(t) V(t)
\]

Has a solution

\[
x(t) = Q(t)x_0 + \int_{0}^{t} Q(t, s)V(s)ds
\]

Where \(Q(t)\) is a bounded operator. And substitute (1.2), (2.2) in (1.1), we get

\[
V(t) = \int_{0}^{t} B(t, s)Q(s) x_0 ds + \int_{0}^{t} B(t, s)Q(s, x)V(t) x(t) dr ds
\]

3. THE EXISTENCE AND UNIQUENESS THEOREM:

In this section, we prove the existence and uniqueness of a solution (2.3), which provided the solution of eq. (1.1).

3.1. Definition The integral of \(X\) with respect to \(P\) is called the expectation of
\[X, \text{ and written as } E[X] = \int_X X(\omega) dP(\omega), \text{ while} \]
\[E[X; A] = \int_A X(\omega) dP(\omega). \text{ Where } A \text{ any event.} \]

3.2. Proposition If \(f \geq 0 \) then \(E[f(X)] = \int f(x) P_X(dx) \).

If \(X, Y \) are independent and \(f, g \) are Borel measurable functions, then \(f(X) \) and \(g(Y) \) are independent.

If \(X, Y \) and \(X, Y \) are integrable then \(E[X(Y)] = (E[X])(E[Y]). \)

The characteristic function of random variable \(X \) is Fourier transform of distribution
\[\int e^{iax} P_X(dx) = E[e^{iaX}] \] if \(X, Y \) are independent then
\[E[e^{ia(X+Y)}] = E[e^{iaX}]E[e^{iaY}], \] and the invers also hold.

3.3. Definition A sequence of random variables \(\{X_n(\omega)\} \) converges in the mean square to \(\{X(\omega)\} \) if \(\lim_{n \to \infty} E[|X_n - X|^2] = 0, \ E(X^2) < \infty. \)

Now we will use the method of successive approximation to find the existing of eq. (2.3) get:
\[V_{k+1}(t) = \int_0^t B(t, s)Q(s) x_0 dw(s) \]
\[+ \int_0^t \int_0^s B(t, s)Q(s, \tau)V_k(\tau) d\tau dw(s), \] (3.1)

Then
\[V_{k+1}(t) - V_k(t) = \int_0^t \int_0^s B(t, s)Q(s, \tau)[V_k(\tau) - V_{k-1}(\tau)] d\tau dw(s), \]

Hence
\[||V_{k+1}(t) - V_k(t)||^2 = \int_0^t \int_0^s ||B(t, s)Q(s, \tau)||^2 |V_k(\tau) - V_{k-1}(\tau)||^2 d\tau dw(s), \]

\[E[||V_{k+1}(t) - V_k(t)||^2] \leq \int_0^t \int_0^s E[||B(t, s)Q(s, \tau)||^2 E[|V_k(\tau) - V_{k-1}(\tau)||^2] d\tau dw(s), \]

Or
\[E[||V_{k+1}(t) - V_k(t)||^2] \leq K^2 \int_0^t E[||V_k(\tau)||^2] d\tau dw(s), \] (3.2)

3.4. Theorem If the series \(\sum_{k=0}^n E[||V_{k+1}(t) - V_k(t)||^2] \)

uniformly converges on \([0, T]\), (i.e.
\[E[V_{k+1}(t) - V_k(t)] \leq K^2 \int_0^t E[||V_k(\tau)||^2] d\tau dw(s), \] (3.3)

Using eq.(3.1), we get
\[||V_1(t)||^2 = \int_0^t \int_0^s ||B(t, s)Q(s, \tau)||^2 x_0 dw(s) \]
\[E[||V_1(t)||^2] = \int_0^t \int_0^s ||B(t, s)||^2 ||Q(s, \tau)||^2 E[|x_0|^2] d\tau dw(s), \]
\[E[||V_1(t)||^2] = K^2 \int_0^t \int_0^s E[|x_0|^2] d\tau dw(s), \]

Where \[M = \max_{\tau \in [0, T]} E[|x_0|^2] \] \(\subseteq \{K^2 C^2 E[|x_0|^2] \}

Now substitute (3.4) in eq. (3.3) we get
\[E[V_{n+1}(t) - V_n(t)] \leq K^2 \int_0^t \int_0^s E[V_k(\tau)] d\tau dw(s), \]

Now at \(k=n+1 \), from eq. (3.2)
\[E[||V_{n+2}(t) - V_{n+1}(t)||^2] \leq K^2 \int_0^t \int_0^s E[|V_k(\tau)|^2] d\tau dw(s), \]
\[E[||V_{n+2}(t) - V_{n+1}(t)||^2] \leq K^2 \int_0^t \int_0^s E[|V_k(\tau)|^2] d\tau dw(s), \]

or
\[E[V(t) - V^*(t)]^2 \leq K^2 \int_0^t \int_0^s E[V(t)] d\tau dw(s), \]

Or
\[E[V(t)] - V^*(t)]^2 \leq K^2 \int_0^t \int_0^s E[V(t)] d\tau dw(s), \]

Then by Gronwall inequality \(E[V(t) - V^*(t)]^2 \rightarrow 0. \)

4. CONCLUSION

The paper concluded that the mild solution of the stochastic integral-differential equation has been found by using successive approximation method. Also some of compensation of a solution of its stochastic differential equation was reached by using Gronwall inequality to guarantee a unique solution.

5. REFERENCES

1. David AM. Uniqueness of solutions of stochastic differential equations, Mathematics Subject Classification, 2000, Primary 60H10, Secondary 34F05.
2. Seppalarnen T. Basic of stochastic Analysis, Department of Mathematic, University of Wisconsin Madison, 2003, 53706.