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Abstract

This paper is devoted to show the existence of the mild solution of the stochastic integro-differential equation by
employing the successive approximation with standard Brownian motion W(t).
dx(t)
dt

t
— h(®)x(t) = J- B(t, s)x(s)dw(s), (11D
0
Using theorem (2.1), to find the mild solution
X®) =y + fota(s,X(s))ds + fotb(s,X(s))dW(s) Foro<t<T.

This is done by applying the stochastic differential equation (2.1) and that provides the solution (2.2) 2 and by
compensation (2.2) for (2.1) we get:

t t s
V() = j B(t, 5)0(s) xodw(s) + j j B(t, $)0(s, D)V ()dzdw(s)
0 0 YO0

It proves its existence by the successive approximation and its equivalent integral stochastic in equation (1.1), then we can
say:

X(@®) =+ [, a(s,X(s))ds + [, b(s, X(s))dW (s) For0 <t <T.

To find the mild solution of the stochastic integro-differential equation, we used the descriptive and experimental approach.
Also, we used Gronwall inequality to ensure the uniqueness of the solution.

Keywords: Standard Brownian motion W(t), stochastic differential equation, the successive approximation, the mild
solution, stochastic integr- differential equation.

1. INTRODUCTION the solution difficulty. Deterministic models can often be
) ) ) ) improved by including stochastic effects; however, a more

Many differential equations that were developed to describe detailed study of the properties of solutions to stochastic

physical phenomena have ignored stochastic effects because of differential equations (SDE's) is needed nowadays. These
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stochastic differential equations occur naturally in many fields
of mechanics, mathematical physics and physics and
mathematical finance. They also rise as representation formulas
for the solutions of integral equations according to their
boundary conditions. Integral equations also form one of the
most useful tools in many branches of pure analysis, such as a
functional analysis and stochastic calculus® 34,

The transition from ordinary differential equation (ODE) to
(SDE) takes place by incorporating random elements in the
differential equation. Randomness can be included in the initial
value problem; alternatively, the function that describes the
physical system can be a random function.

This randomness is suitable for describing the rapidly
fluctuating random phenomena and can be modeled by a
Brownian motion or Wiener process see>67:8910.11,

Now consider the stochastic integro-differential equation

d
9;(:) ~ h@®x(0)
_ f B(t, )x(s)dw(s), (1.1)
0

with the initial condition x(0)=x_0,

for each t€J=[0,T], x is unknown function, W(t) is a standard
Browning motion defined over the filtered probability space
(QFP). And h is a bounded Borel function from
[0,00)xR*"d—R"d to R™d. It is supposed that {B(t,s),0<s<t<T}
are family of bounded operators, and B(t,s)g is continuous on
0<t<T , 0<s<t<T for every geH, where H a Hilbert space then
IB(t,s)gI<K>0.

1.1. Definition A probability space is a measured space with
total mass. The space Q is called the sample space, and its
sample points ®€Q are the elementary outcomes of the
experiment, F is a c-algebra of Q. The measurable sets in F
are called events. P is a probability measure. X:Q—S with
values in some measurable space S. A random variables X is
a measurable function.

1.2. Lemma Seel If A_nis a sequence of independent events
and if Y ,;P(A,) <cothen P(Aui.0.)=0,where
P(Ani.0.) = lim P(U7; Ay).

1.3. Definition If X is a random variable on (Q,F, P) which
is finite w.p.1 then its distribution function is F(t) =
P(w: X(w) < t).this gives us the convenient expressions
f(w:X(w) €h) = fh dF(t), for any Borel set h of F.

1.4. Definition Let W(t) is a standard Browning motion in
R™m with respect to a filtration {F}. Let { be R9- valued
F_0-measurable random variable. Often { is a nonrandom
point x,. The assumption of Fy-measurability implies that s
is independent of the Browning motion. Then an equation

dX() = a(t, X())dt + b(t, X())dW(D), X(0) =y, is called
It6 stochastic differential equation or in integral form

X =y+ fota(s,X(s))ds + fotb(s, X(s))dW(s), where
a(t,x),b(t,x) are Borel measurable functions of (t,x) €
[0, ) x RA.

1.5. Definition let 0 < t; < t, < --- < t,, be a partition of the
interval [0,T] and let g(W (¢t),t) = g(t) is a continuous
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function in [0, T]. The stochastic integral fOT g(@)dw (t)
is defined by

T
1) = [ g@aw® = lim 9(5)W (t2) =Wty

1.6. Theorem consider the equation
X@®)=H(®) + f(o‘t] F(s,X)dW (s) (1.2),
Where W is a given R™-valued cadlag semimartingle His
agiven R%-valued process. The coefficient F is a d X m-
matrix valued function of its arguments.

e If F is a map from the space R} X £2 X Opa[0, ) into the
space R¥*™ of d xm matrices. F satisfies a spatial
Lipschitz condition uniformly in the other variables (i.e) 3 a
finite constant L st |F(t,n) — F(t &)| < L supln(s) —
&(s)| for all t € R, and 1, & € ORa[0, ) where Oga be an
open subset of R,

e Given any adapted R%-valued cadlag process X on £, the
function (w) » F(T,w,X(w)) is a predictable process, and
there exist stopping times t;, /7 oo such that 1 ;,)(t)F(t, X)
is bounded for each k.

Then there exists a unique cadlag process X(t):0 <t < o
adapted to F; that satisfies equation (1.2).

2. THE MILD SOLUTION:

2.1. Theorem Let W (t) be a standard Browning motion in
R™ with respect to a right continuous filtration F(t) and
1 on R%-valued. Fix 0 < T < oo, assume the function
a:[0,T] x RE - R4,  b:[0,T] x R* - R¥™  satisfy
Lipschitz condition la(t,x) —a(t,y)| + |b(t,x) —
b(t,y)| < L|lx —y|, and bound |a(t,x)| + |b(t,x)| <
L(1+|x|) for constant L and all 0<t<T, x,y€
R® then there exists a unique continuous process that is
adapted to and satisfies :

t t
X@®) =9+ f a(s, X())ds + f b(s, X(s))dW(s)
0 0

Foro<t<T.

The solution

Now to find the solution of eq. (1.1) we assume the
stochastic differential equation

2.2.

d’;(tt) — hOx®) V() 2.1)
Has a solution
t
() = Q(t) xo + j 0t )V (s)ds 2.2)
0

Where Q(t) is a bounded operator2. And substitute (2.1),
(2.2) in (1.1), we get
V(t)

t
_ f B(t,5)Q(s) xodw(s)
0

t s
+ f fB(t,s)Q(s,r)V(T)dew(s) (2.3)
0 Jo

3. THE EXISTENCE AND UNIQUENESS
THEOREM :

In this section, we prove the existence and uniqueness of a

solution (2.3), which provided the solution of eqg. (1.1).

3.1. Definition The integral of X with respect to P is called the
expection of
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X, and written as E[X] = fﬂ X(w)dP(w), while

E[X;A] = [, X(w)dP(w), Where A any event.
3.2. Proposition If f = 0 then E[f(X)] = [ fF(X)PxdX.
If X,Y are independent and f, g are Borel measurable functions,
then f(X) and g(Y) are independent.
If X,Y and X Y are integrable then E[X Y] = (E[X])(E[Y]).
The characteristic function of random variable X is Fourier
transform of distribution
[ e™XPy(dX) = E[e™X], if X,Y are independent then
E[e!®X+v")] = E[e™X]E[e"], and the invers also hold.
3.3. Definition A sequence of random variables {X,(w)}
converges in the mean square to
(X(w)}if 1}1905(|Xn —X|?) =0, E(X?) < .
Now we will use the method of successive approximation to
find the existing of eq. (2.3) we get:

Vk+1t(t)

- f B(t, 5)0(s) xodw(s)
Ol' S

+ f f B(t, 5)Q(s, D)V, ()drdw(s),
0 Y0

Then

Viesa (6) = Ve(©) = f f B(t,5)Q(s, DV ()
0 Y0
= Vi1 (D)]drdw (s),

(3.1)

Hence
Vi1 () = Ve (@II? =

t s
j j B(t,5)Q(5, D[V (2) = Vie—y ()] drdw(s)
0 Y0

2

’

, E|lVis1(®) =V, OI? <
f f IBCE NG, DI EllVe (@) — Veoy (DIPdrds,
0 Y0

Or
EllVit1(@®) =V @DII? <

t rs
k2¢? [ [ BV = Vi @I drds, (32)
0 70

3.4. Theorem If the series R0 EllVies1(®) = V@12
uniformly converges on [0,T], (i.e)

EIV_(k+1) (t)-V_k (t)I"2<L "k t*2k/((2k)!) then solution
(2.3) exist.
Proof. The proof by induction. Set V_0 (t)=0. First at k=1
we have from eq. (3.2)
I AGERAG] G
K2C? [ [T EIIV, (D)2 dds,
Using eq.(3.1), we get

WO = |1 B )00 xodws)]|
t
EIMOI = [ 1BEIPI0IPE] xpl7ds,

0
E Vi (OII* = K2C2E|l xolI*¢t
— M,

(3.3)

(3.4)
1"2}.]
Now substitute (3.4) in eg. (3.3) we get
EIV_2 ()-V_1 (H)I"2<K"2 C2 M t"2/2<L t"2/2!
Where L=K~"2 C"2 M.
At k=n, we assume that
t"2n/(2n)! .

EIV_(n+1) ()-V_n (§1"2<L’n
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Now at k=n+1, from eq.(3.2)
ElVy42(8) = Vara (OII?

t S

< K2c? f f EllVysy (1)
0 Y0

— V(@ Pdrds,

t S .[Zn
EllVis2(6) = Vig (D12 < K2C?2 fo fo ' G drds,
EIV (n+2) (0-V_(n+1) (OI2<LA(n+1)  1/2(n+1))!

t"2(n+1) ,
Where LN(n+1)=K”2 C*2 L"n. Thus the inequality is true
for all value of n.
Gronwall inequalitiesSee® assume that the continuous
function
x,v:[0,T] - [0,) and K > 0 satisfy x(t) < K +
Jy y(s)x(s)ds forall, ¢ € [0,T]. Then the usual
Gronwall inequality is x(t) < K exp (foty(s)ds).

3.6. Uniqueness theorem Let Let V(¢),V*(t) are two
solutions of equation (2.3), then

t rs
V(O - V(O = f f B(t,$)Q(s, D) (V (D)
0 Y0
- V*(T))drdw(s),

3.5.

Ve -v-l? =

f f B(t,5)Q(s, 1)(V(7)
0 J0 2

- V*(T))drdw(s)

’

EIIVt(t) Al
< f f IB(t, 9)I21Q(s, DIZENV(D) — v*(2)|12dds,
0J0

Or
t S
E||V -V 2 < K2c? E||lV
W@ - vl fo fo e

—V*(0)||?>dtds,
Then by Gronwall inequality E||V(t) — V*(t)]|? - 0.

4. CONCLUSION

The paper concluded that the mild solution of the stochastic
integr- differential equation has been found by using successive
approximation method. Also some of compensation of a
solution of its stochastic differential equation was reached by
using Gronwall inequality to guarantee a unique solution.
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