

http://journals.uob.edu.ly/sjuob

On Matrix Representations of Octonions

Hassan. S. Ali

Department of Mathematics, Faculty of Education, University of Benghazi, Ghemines, Libya.

Received date: 20-9-2021 Accepted date: 10 / 12 / 2021

الملخص:

الأعداد الرباعية الحقيقية H على R جبر قسمة تنسيقي هي قابلة للتمثيل بمصفوفات رباعية حقيقية .الأعداد الثمانية الحقيقية @ على R جبر قسمة غير تنسيقي وبذلك لا يمكن تمثيلها خطيا بمصفوفات حقيقية كما في حالة H . النقطة الأساسية في هذا البحث هي تمثيل الأعداد الثمانية بزوج مرتب من المصفوفات الرباعية الحقيقية.

الكلمات المفتاحية:

الأعداد الرباعية، الأعداد الثمانية، جبر قسمة غبر تنسبقي، مصفوفات حقيقية، التمثيل الخطي.

Abstract

The real Quaternions \mathbb{H} over \mathbb{R} is an associative division algebra. They can be linearly represented by 4×4 real matrices. The real Octonions \mathbb{O} over \mathbb{R} is a non –associative division algebra. They can't be represented linearly by matrices as in the case of \mathbb{H} . The point of this paper is to represent Octonions linearly by ordered pairs of two 4×4 matrices.

Keywords: hypercomplex; quaternions; octonions; associative; alternative and division algebras

1. INTRODUCTION

Hypercomplex numbers of importance are of dimensions 1,2,4 and 8. They are respectively the reals \mathbb{R} , the complex numbers \mathbb{C} , the quaternions (Hamiltonians) \mathbb{H} , and the Octonions (Cayley numbers) \mathbb{O} . The basis of \mathbb{H} is $\{1, i, j, k\}$ where $i^2 = j^2 = k^2 = ijk = -1$. For q = a + bi + cj + dk in \mathbb{H} , the conjugate and norm of q are respectively defined by $q^* = a - bi - cj - dk$ and $||q||_{\mathbb{H}} = q^*q = a^2 + b^2 + c^2 + d^2$. Thus we have

Lemma 1.

$$\begin{aligned} &(i)q^{**} = q & (ii)qq^{*} = q^{*}q & (iii)(q_{1}q_{2})^{*} = q_{2}^{*}q_{1}^{*} \\ &(iv)\|rq\|_{\mathbb{H}} = |r|\|q\|_{\mathbb{H}} & (v)\|q_{1}q_{2}\|_{\mathbb{H}} = \|q_{1}\|_{\mathbb{H}}\|q_{2}\|_{\mathbb{H}} . \end{aligned}$$

 \mathbb{R} , \mathbb{C} , and \mathbb{H} are associative algebras over \mathbb{R} . Therefore they can be represented linearly by matrices as follows ^[1].

$$\mathbb{R}: r \mapsto [r]$$

$$\mathbb{C}: a + bi \mapsto \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$\mathbb{H}: a + bi + cj + dk \mapsto \begin{bmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{bmatrix}$$

Also, \mathbbmss{H} can be represented by 2×2-complex matrices as follows :

 $z + wj \mapsto \begin{bmatrix} z & -w^* \\ w & z^* \end{bmatrix}$

*Correspondence:

Hassan. S. Ali Hassansamor 1972@gmail.com \mathbb{O} is a non-associative algebra over \mathbb{R} (see theorem 7). Therefore \mathbb{O} cannot be linearly represented by the same way above. However, there are different approaches to this problem. They produce different results ^[2, 3]. The point of this paper is to represent octonions linearly by ordered pairs of two matrices.

2. CONSTRUCTION

We use the Cayley-Dikson theorem ^[4] to construct hypercomplex numbers.

Let Γ be the set of all hypercomplex numbers of dimension n (n=1,2, or 4). The next set of hypercomplex numbers Γ' of dimension 2n is constructed as follows

$$\Gamma' = \{(\alpha, \beta) : \alpha, \beta \in \Gamma\}$$

Addition and scalar multiplication on Γ' are defined by

$$(\alpha, \beta) + (\gamma, \delta) = (\alpha + \gamma, \beta + \delta)$$
, and

 $r(\alpha, \beta) = (r\alpha, r\beta)$ where $r \in \mathbb{R}$

Theorem 2. Γ' is a vector space over \mathbb{R} of dimension 2n

Proof.

 Γ is a vector space over \mathbb{R} of dimension n.

Let u_1, u_2, \ldots, u_n be the basis of Γ .

 Γ' is a vector space with respect to the addition and scalar multiplication just defined. The basis of Γ' is $(u_1, 0), (u_2, 0), \dots, (u_n, 0), (0, u_1), (0, u_2), \dots, (0, u_n)$. Therefore the dimension of Γ' is 2n.

Corollary 3 : $\Gamma' \cong \Gamma \bigoplus \Gamma$ as vector space .

We introduced the conjugate and multiplication on Γ' in terms of conjugate and multiplication of Γ as follows :

 $(\alpha, \beta)^* = (\alpha^*, -\beta)$ and

^{©2021} Unuiversity of Benghazi. All rights reserved. ISSN:Online 2790-1637, Print 2790-1629; National Library of Libya, Legal number : 154/2018

 $(\alpha,\beta)(\gamma,\delta) = (\alpha\gamma - \delta^*\beta, \delta\alpha + \beta\gamma^*).$ **Lemma 4**. (*i*) $\phi^{**} = \phi$ (*ii*) $(\phi \psi)^* = \psi^* \phi^*$, for any $\phi, \psi \in \Gamma'$

Proof.

Let $\phi, \psi \in \Gamma'$. Then $\phi = (\alpha, \beta)$, $\psi = (\gamma, \delta)$ where $\alpha, \beta, \gamma, \delta \in \Gamma$ (i) $\phi^* = (\alpha, \beta)^* = (\alpha^*, -\beta)$ $\phi^{**} = (\alpha^*, -\beta)^* = (\alpha^{**}, \beta) = (\alpha, \beta) = \phi$ (ii) $(\phi\psi) = (\alpha,\beta)(\gamma,\delta) = (\alpha\gamma - \delta^*\beta, \delta\alpha + \beta\gamma^*)$ $(\phi\psi)^* = (\alpha\gamma - \delta^*\beta, \delta\alpha + \beta\gamma^*)^*$ $= (\gamma^* \alpha^* - \beta^* \delta, -\beta \gamma^* - \delta \alpha) = (\gamma^*, -\delta)(\alpha^*, -\beta)$ $=\psi^*\phi^*$

The norm of a hyper complex number θ is defined by $\|\theta\|_{\Gamma'} = \theta^*\theta.$

Lemma 5 . $\|\phi\psi\|_{\Gamma'} = \|\phi\|_{\Gamma'} \|\psi\|_{\Gamma'}$

Proof.

 $\|\phi\psi\|_{\Gamma'} = (\phi\psi)^*(\phi\psi) = (\psi^*\phi^*)(\phi\psi) = \psi^*(\phi^*\phi)\psi$ $=\psi^* \|\phi\|_{\Gamma'} \psi = \|\phi\|_{\Gamma'} \psi^* \psi = \|\phi\|_{\Gamma'} \|\psi\|_{\Gamma'}$ **Lemma 6**. $\|(\alpha, \beta)\|_{\Gamma'} = \|\alpha\|_{\Gamma} + \|\beta\|_{\Gamma}$

Proof.

$$\|(\alpha,\beta)\|_{\Gamma'} = (\alpha,\beta)^*(\alpha,\beta) = (\alpha^*,-\beta)(\alpha,\beta)$$
$$= (\alpha^*\alpha + \beta^*\beta,\beta\alpha^* - \beta\alpha^*)$$
$$= (\alpha^*\alpha + \beta^*\beta,0) = \|\alpha\|_{\Gamma} + \|\beta\|_{\Gamma}$$

Octonions O

 $\mathbb{O} = \{(q_1, q_2): q_1, q_2 \in \mathbb{H}\}, \text{ and } \|(q_1, q_2)\|_{\mathbb{O}} = \|q_1\|_{\mathbb{H}} +$ $\|q_2\|_{\mathbb{H}}$

Theorem 7. \mathbb{O} is a non-commutative , a non-associative and alternative division algebra over \mathbb{R} of dimension 8.

Proof.

Let $(i, j), (k, i) \in \mathbb{O}$ (i, j)(k, i) = (ik + ij, -1 - jk) = (-j + k, -1 - i)(k,i)(i,j) = (ki + ji, jk + 1) = (j - k, i + 1)

Then \mathbb{O} is a non-commutative.

Let $(i, j), (k, i), (j, k) \in \mathbb{O}$ ((i,j)(k,i))(j,k) = (-j+k,-1-i)(j,k) = (1-i-i)(j,k)k + j, i - 1 + j + k(i,j)((k,i)(j,k)) = (i,j)(-i+j,-1-k) = (1+k+i)(-j,-1-k) = (1+k+i)(-jj + i, -i - j - k + 1)

Then \mathbb{O} is non-associative .

Let $\phi = (q_1, q_2)$, $\psi = (q_3, q_4) \in \mathbb{O}$ $(\phi\psi)\psi = ((q_1, q_2)(q_3, q_4))(q_3, q_4) =$ $(q_1q_3 - q_4^*q_2, q_4q_1 + q_2q_3^*)(q_3, q_4)$ $((q_1q_3)q_3 - (q_4^*q_2)q_3 - q_4^*(q_4q_1)$ $q_4^*(q_2q_3^*), q_4(q_1q_3) - q_4(q_4^*q_2) + (q_4q_1)q_3^* + (q_2q_3^*)q_3^*)$ $(q_1(q_3q_3) - (q_4^*q_4)q_1 - q_4^*(q_2q_3)$ $q_4^*(q_2q_3^*), (q_4q_1)q_3 + (q_4q_1)q_3^* - (q_4q_4^*)q_2 + q_2(q_3^*q_3^*))$ = $(q_1(q_3q_3) - q_1(q_4^*q_4) - (q_4^*q_2)q_3 (q_4^*q_2)q_3^*, q_4q_1(q_3+q_3^*) - q_2(q_4q_4^*) + q_2(q_3^*q_3^*)$ $= (q_1(q_3q_3 - q_4^*q_4) - q_4^*q_2(q_3 + q_3^*), q_4q_1(q_3 + q_3^*) +$ $q_2(q_3^*q_3^* - q_4q_4^*))$ $= (q_1(q_3q_3 - q_4^*q_4) - (q_3 + q_3^*)q_4^*q_2, q_4(q_3 + q_3^*)q_1 +$ $q_2(q_3^*q_3^* - q_4q_4^*))$ $= (q_1(q_3q_3 - q_4^*q_4) - (q_4q_3^* + q_4q_3)^*q_2, (q_4q_3 +$ $(q_4q_3^*)q_1 + q_2(q_3q_3 - q_4^*q_4)^*) = (q_1, q_2)(q_3q_3 - q_4q_4)^*$ $q_4^*q_4, q_4q_3 + q_4q_3^*) = \phi(\psi\psi)$ $(\phi\phi)\psi = ((q_1, q_2)(q_1, q_2))(q_3, q_4) = (q_1q_1 - q_1)(q_2)(q_3, q_4) = (q_1q_1 - q_2)(q_1, q_2)(q_3, q_4) = (q_1q_1 - q_2)(q_1q_2)(q_1q_2)(q_1q_2)(q_1q_2)(q_1q_2)(q_1q_4) = (q_1q_1 - q_2)(q_1q_2)(q_1q_2)(q_1q_2)(q_1q_2)(q_1q_2)(q_1q_2)(q_1q_4) = (q_1q_1 - q_2)(q_1q_2)$ $q_2^*q_2, q_2q_1 + q_2q_1^*)(q_3, q_4)$ $((q_1q_1)q_3 - (q_2^*q_2)q_3 - q_4^*(q_2q_1)$ $q_4^*(q_2q_1^*), q_4(q_1q_1) - q_4(q_2^*q_2) + (q_2q_1)q_3^* + (q_2q_1^*)q_3^*)$ $= ((q_1q_1)q_3 - q_4^*q_2(q_1 + q_1^*) - (q_2^*q_2)q_3, q_4(q_1q_1) +$ $q_2(q_1 + q_1^*)q_3^* - q_4(q_2^*q_2))$ $= ((q_1q_1)q_3 - (q_1 + q_1^*)q_4^*q_2 - (q_2^*q_2)q_3, (q_4q_1)q_1 +$ $q_2q_3^*(q_1 + q_1^*) - q_4(q_2q_2^*))$ $(q_1(q_1q_3) - q_1(q_4^*q_2) + q_1^*(q_4^*q_2)$ $q_3(q_2^*q_2), (q_4q_1)q_1 + (q_2q_3^*)q_1 + q_2(q_3^*q_1^*) - q_2(q_2^*q_4))$ $= (q_1(q_1q_3 - q_4^*q_2) - (q_4q_1 + q_2q_3^*)^*q_2, (q_4q_1 + q_4q_3)^*q_2) + (q_4q_1 + q_4q_3)^*q_2, (q_4q_1 + q_4q_3)^*q_2) + (q_4q_1 + q_4q_3)^*q_2 + (q_4q_1 + q_4q_4)^*q_2 + (q_4q_1 + q_4q$ $q_2q_3^*)q_1 + q_2(q_1q_3 - q_4^*q_2)^*)$ $= (q_1, q_2)(q_1q_3 - q_4^*q_2, q_4q_1 + q_2q_3^*)$ $= (q_1, q_2) ((q_1, q_2)(q_3, q_4)) = \phi(\phi \psi)$ Then \mathbb{O} is alternative algebra . Let $(q_1, q_2) \neq 0$ in . \mathbb{O} Then $(q_1, q_2)^{-1} = \frac{(q_1, q_2)^*}{\|(q_1, q_2)\|_{\mathbb{O}}} = \frac{(q_1^*, -, q_2)}{\|q_1\|_{\mathbb{H}} + \|, q_2\|_{\mathbb{H}}}$

Thus \mathbb{O} is division algebra over \mathbb{R} .

^{©2021} Unuiversity of Benghazi. All rights reserved. ISSN:Online 2790-1637, Print 2790-1629; National Library of Libya, Legal number : 154/2018

3. LINEAR REPRESENTATIONS

Let $\mu g: \mathbb{H} \to M_4(\mathbb{R})$ be the algebra monomorphism of the matrix representation of \mathbb{H} .

Then $\mu_{\mathbb{H}}(a+bi+cj+dk) = \begin{bmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{bmatrix}$

Define $\mu_{\mathbb{O}}: \mathbb{O} \to M_4(\mathbb{R}) \oplus M_4(\mathbb{R})$ be given by

$$\mu_{\mathbb{O}}(q_1, q_2) = (\mu_{\mathbb{H}}(q_1), \mu_{\mathbb{H}}(q_2)).$$

Theorem 8. $\mu_{\mathbb{O}}$ is an algebra monomorphism.

Proof.

Let (q_1, q_2) , $(q_3, q_4) \in \mathbb{O}$ and $a \in \mathbb{R}$. $\mu_{\mathbb{O}}(a(q_1, q_2)) = \mu_{\mathbb{O}}(aq_1, aq_2) = (\mu_{\mathbb{H}}(aq_1), \mu_{\mathbb{H}}(aq_2))$ $= (a \ \mu_{\mathbb{H}}(q_1), a \ \mu_{\mathbb{H}}(q_2))$ since $\mu_{\mathbb{H}}$

 $= (a \ \mu_{\mathbb{H}} \ (q_1), a \ \mu_{\mathbb{H}} \ (q_2)) \text{ sin}$ monomorphism

$$= a (\mu_{\mathbb{H}} (q_1), \mu_{\mathbb{H}} (q_2)) = a \mu_{\mathbb{O}} ((q_1, q_2)).$$

 $\mu_{\mathbb{O}}\left((q_1, q_2) + (q_3, q_4)\right) = \mu_{\mathbb{O}}\left(q_1 + q_3, q_2 + q_4\right)$ $= (\mu_{\mathbb{H}} \ (q_1 + q_3), \mu_{\mathbb{H}} \ (q_2 + q_4))$

= $(\mu_{\mathbb{H}} (q_1) + \mu_{\mathbb{H}} (q_3), \mu_{\mathbb{H}} (q_2) + \mu_{\mathbb{H}} (q_4))$ since $\mu_{\mathbb{H}}$ monomorphism

 $=(\mu_{\mathbb{H}} (q_{1}), \mu_{\mathbb{H}} (q_{2})) + (\mu_{\mathbb{H}} (q_{3}), \mu_{\mathbb{H}} (q_{4})) = \mu_{\mathbb{O}}$ $(q_{1}, q_{2}) + \mu_{\mathbb{O}} (q_{3}, q_{4})$ $\mu_{\mathbb{O}} ((q_{1}, q_{2})(q_{3}, q_{4})) = \mu_{\mathbb{O}} (q_{1}q_{3} - q_{4}^{*}q_{2}, q_{4}q_{1} + q_{2}q_{3}^{*})$ $= (\mu_{\mathbb{H}} (q_{1}q_{3} - q_{4}^{*}q_{2}), \mu_{\mathbb{H}} (q_{4}q_{1} + q_{2}q_{3}^{*}))$ $=(\mu_{\mathbb{H}} (q_{1}) \mu_{\mathbb{H}} (q_{3}) - \mu_{\mathbb{H}} (q_{4}^{*}) \mu_{\mathbb{H}} (q_{2}), \mu_{\mathbb{H}} (q_{4}) \mu_{\mathbb{H}}$ $(q_{1}) + \mu_{\mathbb{H}} (q_{2}) \mu_{\mathbb{H}} (q_{3}^{*}))$ since $\mu_{\mathbb{H}}$ monomorphism and $\mu_{\mathbb{H}} (q_{4}^{*}) = (\mu_{\mathbb{H}} (q_{4}))^{*}$,

 $\mu_{\mathbb{H}}(q_3^*) = (\mu_{\mathbb{H}}(q_3))^*$

 $= (\mu_{\mathbb{H}} (q_1), \mu_{\mathbb{H}} (q_2)) (\mu_{\mathbb{H}} (q_3), \mu_{\mathbb{H}} (q_4))$

 $= \mu_{\mathbb{O}} (q_1, q_2) \mu_{\mathbb{O}} (q_3, q_4)$

Therefore $\mu_{\mathbb{O}}$ is homomorphism .

Suppose that $\mu_{\mathbb{O}}(q_1, q_2) = (0, 0)$.

Then $(\mu_{\mathbb{H}} (q_1), \mu_{\mathbb{H}} (q_2)) = (0,0)$ and

 $\mu_{\mathbb{H}}(q_1) = 0, \ \mu_{\mathbb{H}}(q_2) = 0.$ Then $q_1 = 0, \ q_2 = 0$ since $\mu_{\mathbb{H}}$ monomorphism

Therefore $\mu_{\mathbb{O}}$ is an algebra monomorphism.

Corollary 9. $\mu_{\mathbb{O}}(\mathbb{O})$ is a subalgebra of $M_4(\mathbb{R}) \bigoplus M_4(\mathbb{R})$ of dimension 8 with basis (1,0), (i,0), (j,0), (k,0), (0,1), (0,i), (0,j), (0,k). Let $\phi \in \mathbb{O}$. Then $\phi = (q_1, q_2)$; $q_1, q_2 \in \mathbb{H}$. $\mu_{\mathbb{O}}: \mathbb{O} \to (\mu_{\mathbb{H}}(q_1), \mu_{\mathbb{H}}(q_2))$ Let $\mu_{\mathbb{O}}: \mathbb{O} \to M_4(\mathbb{R}) \oplus M_4(\mathbb{R})$ be give by $(\mu_{\mathbb{H}}(q_1) = 0)$

$$\mu_{\mathbb{O}}(\phi) = \begin{bmatrix} r_{\mathbb{H}}(q_1) \\ 0 \end{bmatrix}$$

Theorem 10 . $\mu_{\mathbb{O}}$ is an algebra monomorphism **Proof** .

Let
$$\phi = (q_1, q_2)$$
 , $\psi = (q_3, q_4) \in \mathbb{O}$ and $a \in \mathbb{R}$

$$\mu_{\mathbb{O}}(a\phi) = \mu_{\mathbb{O}}(aq_1, aq_2) = \begin{bmatrix} \mu_{\mathbb{H}}(aq_1) & 0\\ 0 & \mu_{\mathbb{H}}(aq_2) \end{bmatrix}$$

$$= \begin{bmatrix} a\mu_{\mathbb{H}}(q_1) & 0\\ 0 & a\mu_{\mathbb{H}}(q_2) \end{bmatrix} = a \begin{bmatrix} \mu_{\mathbb{H}}(q_1) & 0\\ 0 & \mu_{\mathbb{H}}(q_2) \end{bmatrix} = a \mu_{\mathbb{O}}$$

(\$\phi\$).

$$\begin{split} & \mu_{\mathbb{O}} \left(\phi + \psi \right) = \mu_{\mathbb{O}} \left(q_1 + q_3, q_2 + q_4 \right) = \\ & \left[\mu_{\mathbb{H}} (q_1 + q_3) & 0 \\ 0 & \mu_{\mathbb{H}} (q_2 + q_4) \right] \end{split}$$

$$= \begin{bmatrix} \mu_{\mathbb{H}}(q_1) + \mu_{\mathbb{H}}(q_3) & 0\\ 0 & \mu_{\mathbb{H}}(q_2) + \mu_{\mathbb{H}}(q_4) \end{bmatrix}$$

$$= \begin{bmatrix} \mu_{\mathbb{H}}(q_1) & 0\\ 0 & \mu_{\mathbb{H}}(q_2) \end{bmatrix} + \begin{bmatrix} \mu_{\mathbb{H}}(q_3) & 0\\ 0 & \mu_{\mathbb{H}}(q_4) \end{bmatrix}$$

$$= \acute{\mu_{\mathbb{O}}} (\phi) + \acute{\mu_{\mathbb{O}}} (\psi) .$$

$$\begin{split} & \mu_{\mathbb{O}} \left(\phi \psi \right) = \mu_{\mathbb{O}} \left((q_1, q_2) (q_3, q_4) \right) = \ \mu_{\mathbb{O}} \left(q_1 q_3 - q_4^* q_2, q_4 q_1 + q_2 q_3^* \right) \end{split}$$

$$= \begin{bmatrix} \mu_{\mathbb{H}}(q_1q_3 - q_4^*q_2) & 0\\ 0 & \mu_{\mathbb{H}}(q_4q_1 - q_2q_3^*) \end{bmatrix} =$$

$$\begin{bmatrix} \mu_{\mathbb{H}}(q_1)\mu_{\mathbb{H}}(q_3) - \mu_{\mathbb{H}}(q_4^*)\mu_{\mathbb{H}}(q_2) & 0\\ 0 & \mu_{\mathbb{H}}(q_4)\mu_{\mathbb{H}}(q_1) + \mu_{\mathbb{H}}(q_2)\mu_{\mathbb{H}}(q_3^*) \end{bmatrix}$$

$$= (\mu_{\mathbb{H}} (q_1) , \mu_{\mathbb{H}} (q_2))(\mu_{\mathbb{H}} (q_3), \mu_{\mathbb{H}} (q_4)) = \mu_{\mathbb{O}} (\phi)$$

$$\mu_{\mathbb{O}} (\psi) .$$

Then $\mu_{\mathbb{O}}$ is homomorphism. Suppose that $\mu_{\mathbb{O}}(\phi) = \mu_{\mathbb{O}}(q_1, q_2) = 0$

^{©2021} Unuiversity of Benghazi. All rights reserved. ISSN:Online 2790-1637, Print 2790-1629; National Library of Libya, Legal number : 154/2018

 $\begin{array}{l} \text{Ind} \ \mu_{\text{H}} \ (q_{1}) = 0, \ \mu_{\text{H}} \ (q_{2}) = 0 \end{array}$

Then $\mu_{\mathbb{O}}'$ is an algebra monomorphism.

Our main result is therefore given as follows.

Corollary 11. The matrix representation of Octonions is

given by

 $(q_1, q_2) \mapsto \begin{bmatrix} \mu_{\mathbb{H}}(q_1) & 0\\ 0 & \mu_{\mathbb{H}}(q_2) \end{bmatrix}$, a diagonal block matrix.

4. CONCLUSIONS

The real Octonions have been represented linearly by order pairs of two real 4×4 matrices.

Our method maybe extended to represent the real sedenions by order pairs of two real 8×8 matrices.

5. ACKNOWLEDGMENTS

The author wishes to express the utmost gratitude to Prof. Kahtan H. Alzubaidy for suggesting the problem and for his numerous useful comments during the preparation of this paper.

6. REFERENCES

- Jacobson N. Basic algebra 1 (2nd edition). New York: W.H. Freeman; 1996.
- 2. Körtesi P. Modeling hypercomplex numbers. Acta Electrotechnica et Informatica. 2012, Jul 1,12(3): 38-41
- Tian Y. Matrix representations of octonions and their applications. Advances in applied Clifford Algebras 2000, 10 (1): 61-90
- Baez J. The Cayles-Dickson construction, in the octonions. Bulletin of the American Mathematical Society. 2002, 39:145-205.