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 الملخص 

ح  عليها في وجود التأثيرات الحرارية. في هذا العمل،  حُصِل  ظهر وضوح صارخ لأوجه القصور في الوصف البسيط للموائع في علاقة التشتت التي  بأن  وُضِّ

باستعمال معادلة.  نظام الحركة ويوُص فخطية  f_αاستبدال وصف السوائل بأدوات النظرية الحركية يؤدي إلى معالجة هذه القيود. تكون دالة التوزيع 

“Vlasov– Poisson”، المصطلحات الثلاثة التي تتحكم في تطور دالة التوزيع المضطرب وتأثيراتها الفزيائية. نوُقشِ ت 

 الاستقرار. وعدم والتخميد والاضطراب التشتتالكلمات المفتاحية: 

Abstract 

A striking illustration of the shortcomings of the simple fluid description appeared in the dispersion relation obtained in the 

presence of thermal effects. In this work, it is shown that the substitution of the fluid description with the tools of the 

kinetic theory leads to solving these limitations. The distribution function f_α is linearized and the Vlasov–Poisson kinetic 

system is described. The three terms that control the evolution of the perturbed distribution function and their physical 

effects are discussed. 

Keywords: dispersion, perturbation, damping, instabilities. 

 

1. INTRODUCTION 

In the framework of the fluid theory, the relation has been 

established that the properties of the various waves propagating 

in the plasma have been obtained by solving Maxwell's 

equations in which the anisotropic, time and space dispersive 

relation between the current and the electromagnetic field has 

been injected. However, for the problem at hand, this approach 

has limitations; some of them have been encountered in the 

fluid theory [1,2] . For instance, the individuality of particles is 

not taken into account, which has the consequence that the 

plasma fluid can exchange energy with the wave only if a 

resonance relation such as ω=k ⃗∙υ ⃗_(th,α) is verified. The 

υ_(th,)  α, is an averaged velocity for the species α. The given 

relation clearly does not allow the selection of a class of 

particles with a given velocity. Realistically, however, we 

expect that something will happen for particles having velocity 

υ ⃗ such as ω=k ⃗∙υ ⃗, regardless of the details of the distribution 

function f_α. Another striking illustration of the shortcomings 

of the simple fluid description appeared in the dispersion 

relation obtained in the presence of thermal effects. In this 

work, we will show that the substitution of the fluid description 

with the tools of the kinetic theory leads to curing these 

limitations [3,4] . In Section 2, the distribution function f_α is 

linearized and the Vlasov–Poisson kinetic system is described. 

The three terms that control the evolution of the perturbed 

distribution function and their physical effects are discussed. In 

Section 3, it is possible to construct a hierarchy of 

approximations to answer and learn many interesting physics in 

the process; the technique of the initial value problem is 

outlined. Finally, in Section 4, the dielectric function is 

calculated using the Landau contour to deal with the Langmuir 

waves. 

 

 

2. LINEARIZED KINETIC THEORY 

Formally, what we are embarking on is an attempt to set up a 

mean-field theory, separating slow (large-scale) and fast (small-

scale) parts of the distribution function, [4]: 

𝒇(𝒓, 𝝊, 𝒕) = 𝒇(𝝐𝒓, 𝝊, 𝝐𝒕) + 𝒇̂(𝒓, 𝝊, 𝒕)                                        (1)                               

 Where 𝜖  is some small parameter characterizing the scale 

separation between fast and slow variation (note that this 

separation need not be the same for spatial and time scales. For 

simplicity, the spatial dependence of the equilibrium 

distribution will be dropped altogether and considered 

homogeneous systems: 

𝒇𝟎 = 𝒇(𝒓, 𝝊, 𝒕)                                                                          (2)                               

Which also means 𝐸⃗⃗ 0 (there is no equilibrium electric field). 

Equivalently, all our considerations are restricted to scales much 

smaller than the characteristic system size. This equilibrium 

distribution can be defined as the average of the exact 

distribution over the volume of space that we are considering 

and over time scales intermediate between the fast and the slow 

ones: 

𝒇𝟎(𝝊, 𝒕) = 〈𝒇(𝒓, 𝝊, 𝒕)〉 =
𝟏

∆𝒕
∫ 𝒅𝒕, ∫

𝒅𝟑𝒓

𝓥

𝒕+∆𝒕/𝟐

𝒕−∆𝒕/𝟐
 𝒇(𝒓, 𝝊, 𝒕,)           (3)                            

Where  𝜔−1 ≪ ∆𝑡 ≪ 𝑡𝑒𝑞  ,   where 𝑡𝑒𝑞 represents the 

equilibrium time scale. In the collisionless limit, the kinetic 

equation for a neutral gas: 

 
𝝏 𝒇𝜶

𝝏𝒕 
+ 𝝊 ⃗⃗⃗ ⃗ ∙ 𝛁⃗⃗⃗ 𝒇𝜶 = 𝟎                                                                 (4)        

Simply describes particles with some initial distribution 

individualistically flying in straight lines along their initial 

directions of travel. In contrast, for a plasma, even the 

collisionless kinetics (and, indeed, especially the collisionless—

or weakly collisional— kinetics) is interesting and nontrivial 

because the particles, via the average properties of their 

*Correspondence: Awad. S. Alhasi  

 Alhasiawad@gmail.com                          

http://www.sjuob.uob.edu.ly/
http://www.sjuob.uob.edu.ly/
mailto:%20??????????????????@uob.edu.ly%20


 
 

SJUOB (2022) 35 (1) Applied Sciences: 204 – 209                                                                                             Alhasi et al.  

©2022 University of Benghazi. All rights reserved. ISSN:Online 2790-1637, Print 2790-1629;  National Library of Libya, Legal number : 154/2018 

205 
 

distribution—charge densities and currents,—collectively 

modify 𝐸⃗⃗ and 𝐵⃗⃗, which then act on individual particles and thus 

modify 𝑓𝛼, etc. [5]. Thus, we shall henceforth consider a 

simplified kinetic system, called the Vlasov– Poisson system:       

  

𝝏 𝒇𝜶

𝝏𝒕
+ 𝝊⃗⃗⃗ ∙ 𝛁⃗⃗⃗ 𝒇𝜶 −

𝒒𝜶

𝒎𝜶
(𝛁⃗⃗⃗𝝋) ∙ 𝛁⃗⃗⃗𝝊 𝒇𝜶 = 𝟎                                    (5)          

 

 −𝛁𝟐𝝋 = 𝟒𝝅∑ 𝒒𝜶 ∫𝒅
𝟑𝝊𝜶  𝒇𝜶                                                 (6)                  

 Formally, considering collisionless plasma would appear to be 

legitimate as long as the collision frequency is small compared 

to the characteristic frequencies of any other evolution that 

might be going on. It is convenient to work in Fourier space:  

 

𝝋(𝒓, 𝒕) = ∑ 𝒆𝒊𝒌⃗⃗⃗∙𝒓⃗⃗𝒌 𝝋𝒌(𝒕) 𝒇(𝒓, 𝝊, 𝒕) = 𝒇𝟎(𝝊, 𝒕) + ∑ 𝒆𝒊𝒌⃗⃗⃗∙𝒓⃗⃗𝒌  𝒇̂𝒌(𝝊, 𝒕  (7)                 

Then the Poisson Eq. (6) becomes  

𝝋𝒌 =
𝟒𝝅

𝒌𝟐
 ∑ 𝒒𝜶𝜶 ∫𝒅𝟑𝝊 𝒇̂𝒌𝜶                                                        (8)                               

The Vlasov Eq. (5) can be written for k = 0 (i.e., the spatial 

average of the equation) as; 

   
𝝏𝒇𝟎

𝝏𝒕
+
𝝏𝒇̂𝒌=𝟎

𝝏𝒕
= −

𝒒

𝒎
∑ 𝝋 −𝒌𝒌  𝒊𝒌⃗⃗⃗ ∙

𝝏𝒇̂𝒌

𝝏𝝊
                                       (9)                           

Where we can replace 𝜑−𝑘  = 𝜑𝑘
∗   because 𝜑(𝑟, 𝑡) is a real 

field. Averaging over time according to Eq. (3) eliminates fast 

variation and gives 

 
𝝏𝒇𝟎

𝝏𝒕
= −

𝒒

𝒎
 ∑ 〈𝝋𝒌

∗  𝒊𝒌⃗⃗⃗ ∙
𝝏𝒇̂𝒌

𝝏𝝊
〉𝒌                                                    (10)                           

The right-hand side of Eq.(10) describes the slow evolution of 

the equilibrium (mean) distribution due to the effect of 

fluctuations. In practice, the main question is often how the 

equilibrium evolves and so we need a closed equation for the 

evolution of 𝑓0. This should be obtainable at least in principle 

because the fluctuating fields appearing in the right-hand side of 

Eq.(10) themselves depend on  𝑓0.  Indeed, writing the Vlasov 

equation Eq. (5) for the 𝑘 ≠ 0 modes, we find the following 

evolution equation for the fluctuations,[4]:  

  
𝝏𝒇̂𝒌

𝝏𝝊
+ 𝒊𝒌⃗⃗⃗ ∙ 𝝊⃗⃗⃗𝒇̂𝒌 =

𝒒

𝒎
𝝋 𝒌 𝒊𝒌⃗⃗⃗ ∙

𝝏𝒇̂𝒌

𝝏𝝊
+

𝒒

𝒎
∑ 𝝋 𝒌,   𝒊𝒌⃗⃗⃗

′ ∙
𝝏𝒇̂𝒌−𝒌,

𝝏𝝊𝒌,       (11)                

The three terms that control the evolution of the perturbed 

distribution function in Eq.(11) represent the three physical 

effects that we shall focus on in this work. The second term on 

the left-hand side describes the free streaming motion of 

particles. It gives rise to the phenomenon of phase mixing and 

in its interplay with plasma waves, leading to Landau damping 

and kinetic instabilities. The first term on the right-hand side 

contains the interaction of the electric-field perturbations 

(waves) with the equilibrium particle distribution. The second 

term on the right-hand side captures the nonlinear interactions 

between the fluctuating fields and the perturbed distribution—it 

is negligible only when fluctuation amplitudes are small enough 

(which, they rarely are) and is responsible for plasma turbulence 

and other nonlinear phenomena [6]. The programme for 

determining the slow evolution of the equilibrium is “simple”: 

solve Eq.(11) together with Eq.(8), calculate the correlation 

function of the fluctuations, 〈𝜑𝑘
∗𝑓𝑘〉, as a functional of 𝑓0, and 

use it to close Eq.(10); then proceed to solve the latter. 

Obviously, this is impossible to do in most cases. However, it is 

possible to construct a hierarchy of approximations to the 

answer and learn many interesting physics in the process [4,7] . 

3. HIERARCHY OF APPROXIMATIONS 

 3.1 Linear Theory Waves 

 Consider first infinitesimal perturbations of the equilibrium. All 

nonlinear terms can then be ignored, Eq. (10) turns into 𝑓0 =
𝑐𝑜𝑛𝑠𝑡 and Eq.(11) becomes; 

 
𝝏𝒇̂𝒌

𝝏𝒕
+ 𝒊𝒌⃗⃗⃗ ∙ 𝝊⃗⃗⃗𝒇̂𝒌 =

𝒒

𝒎
𝝋 𝒌 𝒊𝒌⃗⃗⃗ ∙

𝝏𝒇̂𝟎

𝝏𝝊
                                              (12)     

Eq. (12) is the linearized kinetic equation. Solving this together 

with Eq. (8) allows one to find oscillating and growing or 

decaying perturbations of a particular equilibrium 𝑓0. The 

theory for doing this is very well developed and contains some 

of the core ideas that give plasma physics its intellectual shape. 

Physically, the linear solutions will describe what happens over 

the short term, that is on times 𝑡 such that 

 𝝎−𝟏  ≪  ∆𝒕 ≪ 𝒕𝒆𝒒  𝐨𝐫    𝒕𝒏𝒍                                                  (13)                               

where 𝜔 is the characteristic frequency of the perturbations, 𝑡𝑒𝑞 

is the time after which the equilibrium starts getting modified by 

the perturbations via Eq. (10) (which depends on the amplitude 

to which they can grow; if perturbations do grow, i.e., the 

equilibrium is unstable, they can modify the equilibrium by this 

mechanism so as to render it stable), and 𝑡𝑛𝑙 is the time at which 

perturbation amplitudes become large enough for nonlinear 

interactions between individual modes to matter (the second 

term on the right-hand side of Eq.(11); if perturbations grow, 

they can saturate by this mechanism), [4,8] . 

We are concerned with the linearized Vlasov–Poisson system, 

Eq.(12) and Eq. (8): 

𝝏𝒇̂𝒌

𝝏𝒕
+ 𝒊𝒌⃗⃗⃗ ∙ 𝝊⃗⃗⃗𝒇̂𝒌 =

𝒒

𝒎
𝝋 𝒌 𝒊𝒌⃗⃗⃗ ∙

𝝏𝒇̂𝟎

𝝏𝝊
                                               (14)                           

 𝝋𝒌 =
𝟒𝝅

𝒌𝟐
 ∑ 𝒒𝜶𝜶 ∫𝒅𝟑𝝊 𝒇̂𝒌𝜶                                                     (15)                                             

For compactness of notation, we have dropped both the species 

index 𝛼 and the wave number 𝑘 in the subscripts. We will 

discover that electrostatic perturbations in a plasma described 

by Eq. (14) and Eq.(15) oscillate can pass their energy to 

particles (damp) or even grow, sucking energy from the 

particles. We will also discover that it is useful to comprehend 

some complex analyses.  

3.2. Initial-Value Problem 

We shall follow Landau’s original paper [4, 8] in considering an 

initial-value problem—because, as we will see, perturbations 

can be damped or grow, so it is not appropriate to think of them 

over 𝑡 ∈ (−∞,+∞). So we look for 𝑓(𝜐, 𝑡) satisfying Eq.(14) 

with the initial condition: 

 𝒇̂(𝝊, 𝒕 = 𝟎) = 𝒈(𝝊)                                                               (16) 

It is, therefore, appropriate to use the Laplace transform to solve 

Eq. (14): 

𝓛𝒇̂(𝒑) = ∫ 𝒆−𝒑𝒕𝒇̂(𝒕)
∞

𝟎
                                                            (17) 
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 It is a mathematical certainty that if there exists a real number 

𝜎 > 0 such that  

|𝒇̂(𝒕)| < 𝒆𝝈𝒕  𝒕 → ∞                                                               (18) 

 Then the integral Eq. (17) exists (i.e., is finite) for all values of 

𝑝 such that 𝑅𝑒 𝑝 >  𝜎. The inverse Laplace transform, giving 

us back our distribution function as a function of time, is: 

𝒇̂(𝒕) =
𝟏

𝟐𝝅𝒊
∫ 𝒅𝒑𝒆𝒑𝒕𝓛
𝒊∞+𝝈

−𝒊∞+𝝈
𝒇̂(𝒑)                                             (19)  

Where the integral in the complex plane is along a straight line 

parallel to the imaginary axis and intersecting the real axis at  

𝑅𝑒 𝑝 = 𝜎 , see (Fig.1a). Since we expect to be able to recover 

our desired time-dependent function 𝑓(𝜐, 𝑡) from its Laplace 

transform, it is worth knowing the latter. To find it, we Laplace 

transform Eq. (14): 

∫ 𝒅𝒕𝒆−𝒑𝒕
𝝏𝒇̂

𝝏𝒕

∞

𝟎
→ [𝒆−𝒑𝒕𝒇̂]

𝟎

∞
+ 𝒑∫ 𝒅𝒕𝒆−𝒑𝒕𝒇̂

∞

𝟎
→ −𝒈 + 𝒑𝓛𝒇̂  

= −𝒊𝒌⃗⃗⃗ ∙ 𝝊⃗⃗⃗𝓛𝒇̂ + 𝒊
𝒒

𝒎
𝓛𝝋𝒌⃗⃗⃗ ∙

𝝏𝒇𝟎

𝝏𝝊
                                                 (20)   

Rewriting Eq. (20) we find the following expression:  

𝓛𝒇̂(𝒑) =
𝟏

(𝒑+𝒊𝒌⃗⃗⃗∙𝝊⃗⃗⃗)
(𝒊

𝒒

𝒎
𝓛𝝋𝒌⃗⃗⃗ ∙

𝝏𝒇𝟎

𝝏𝝊
+ 𝒈)                                   (21)  

 

 

Figure (1): Layout of the complex-p plane: (a) Original 

contour. (b) Deformation of the integration contour 

following Landau’s method. The poles are denoted by 

crosses. 𝒇̂(𝒑), is analytic for𝑹𝒆 𝒑 > 𝝈.  At  𝑹𝒆 𝒑 < 𝝈, 𝒇̂(𝒑) 
may have singularities (poles). 

 

The Laplace transform of the potential, ℒ𝜑(𝑝), itself depends 

on 𝑓(𝑝)  by Eq. (14):  

  𝓛𝝋(𝒑) = ∫ 𝒅𝒕𝒆−𝒑𝒕𝝋(𝒕) =
𝟒𝝅

𝒌𝟐
∞

𝟎
∑ 𝒒𝜶𝜶 ∫𝒅𝟑𝝊𝓛𝒇̂𝜶(𝒑) 

 =
𝟒𝝅

𝒌𝟐
∑ 𝒒𝜶𝜶 ∫𝒅𝟑𝝊

𝟏

(𝒑+𝒊𝒌⃗⃗⃗∙𝝊⃗⃗⃗)
(𝒊

𝒒𝜶

𝒎𝜶
𝓛𝝋(𝒑)𝒌⃗⃗⃗ ∙

𝝏𝒇𝜶𝟎

𝝏𝝊
+ 𝒈𝜶)            (22)                                                                                                                                                                                                                                                        

 This is an algebraic equation for ℒ𝜑(𝑝) .  Collecting terms, we 

get  

[𝟏 + ∑ 𝒊𝜶
𝟒𝝅𝒒𝜶

𝟐

𝒌𝟐𝒎𝜶
∫𝒅𝟑𝝊

𝟏

(𝒑+𝒊𝒌⃗⃗⃗∙𝝊⃗⃗⃗)
𝒌⃗⃗⃗ ∙  

𝝏𝒇𝜶𝟎

𝝏𝝊
] 𝓛𝝋(𝒑) ≡ 𝝐(𝒑, 𝒌⃗⃗⃗)𝓛𝝋(𝒑)  

  =
𝟒𝝅

𝒌𝟐
∑ 𝒒𝜶𝜶 ∫𝒅𝟑𝝊

𝒈𝜶

(𝒑+𝒊𝒌⃗⃗⃗∙𝝊⃗⃗⃗)
                                                             (23) 

Where 𝜖(𝑝, 𝑘⃗⃗) is called the dielectric function because it 

encodes all the self-consistent charge-density perturbations that 

plasma sets up in response to an electric field. This is going to 

be an important function, written as: 

𝝐(𝒑, 𝒌⃗⃗⃗) ≡ 𝟏 + ∑ 𝒊𝜶
𝟒𝝅𝒒𝜶

𝟐

𝒌𝟐𝒎𝜶
∫𝒅𝟑𝝊

𝟏

(𝒑+𝒊𝒌⃗⃗⃗∙𝝊⃗⃗⃗)
𝒌⃗⃗⃗ ∙  

𝝏𝒇𝜶𝟎

𝝏𝝊
                     (24) 

Where the plasma frequency of species 𝛼 is defined by: 

 𝝎𝒑𝒆 = √
𝟒𝝅𝒆𝟐𝒏𝒆

𝒎𝒆
                                                                      (25) 

The solution of Eq.(23) is: 

  𝓛𝝋(𝒑) =
𝟒𝝅

𝒌𝟐𝝐(𝒑,𝒌⃗⃗⃗)
∑ 𝒒𝜶𝜶 ∫𝒅𝟑𝝊

𝒈𝜶

(𝒑+𝒊𝒌⃗⃗⃗∙𝝊⃗⃗⃗)
                                 (26)                                                                                                                        

To calculate 𝜑(𝑡), we need to inverse-Laplace-

transform ℒ𝜑(𝑝): similar to Eq.(19): 

𝝋(𝒕) =
𝟏

𝟐𝝅𝒊
∫ 𝒅𝒑𝒆𝒑𝒕
𝒊∞+𝝈

−𝒊∞+𝝈
𝓛𝝋(𝒑)                                           (27) 

Recall that ℒ𝑓(𝑝) and, therefore, ℒ𝜑(𝑝) only exists (i.e., is 

finite) for 𝑅𝑒 𝑝 > 𝜎, whereas at 𝑅𝑒 𝑝 < 𝜎, it can have 

singularities, i.e., poles-let us call them 𝑝𝑖, indexed by 𝑖. If we 

analytically continue ℒ𝜑(𝑝)   everywhere to 𝑅𝑒 𝑝 < 𝜎 except 

those poles, the result must have the form: 

 𝓛𝝋(𝒑)  = ∑
𝒂𝒊

𝒑−𝒑𝒊
𝒊 + 𝑨(𝒑)                                                     (28) 

 Where 𝑎𝑖 are some coefficients (residues) and 𝐴(𝑝) is the 

analytic part of the solution. The integration contour in Eq.(27) 

can be shifted to 𝑅𝑒 𝑝 →  −∞ but with the condition that it 

cannot cross the poles, as shown in Fig. (1b) (this is proven by 

making a closed loop out of the old and the new contours, 

joining them at ±𝑖∞, and noting that this loop encloses no 

poles). Then the contributions to the integral from the vertical 

segments of the contour are exponentially small, the 

contributions from the segments leading towards and away from 

the poles cancel, and the contributions from the circles around 

the poles can, by Cauchy’s formula, be expressed in terms of 

the poles and residues: 

 𝝋(𝒕) = ∑ 𝒂𝒊𝒊 𝒆𝒑𝒊𝒕                                                                   (29)  

Thus, in the long-time limit, perturbations of the potential will 

evolve ∝  𝑒 𝑝𝑖𝑡, where 𝑝𝑖 , are poles of ℒ𝜑(𝑝). In general, 𝑝𝑖 =
−𝑖𝜔𝑖 + 𝛾𝑖, where 𝜔𝑖  is a real frequency (giving wavelike 

behavior of perturbations), 𝛾𝑖 < 0 represents damping and 𝛾𝑖 >
0 growth of the perturbations (instability).  

Note that we need not be particularly interested in what 𝑎𝑖’s are 

because, if we set up an initial perturbation with a given 𝑘 and 

then wait long enough, only the fastest growing or, failing 

growth, the slowest-damped mode will survive, with all others 

having exponentially small amplitudes. Thus, a typical outcome 

of the linear theory is 𝜑(𝑡) oscillating at some frequency and 

growing or decaying at some unique rate. Since this is a 

solution of a linear equation, the coefficient in front of the 

exponential can be scaled arbitrarily and so does not matter. 

Going back to Eq.(26), we realize that the poles of ℒ𝜑(𝑝) are 

zeros of the dielectric function, [8] : 

 𝝐(𝒑𝒊, 𝒌⃗⃗⃗) = 𝟎          ⟹    𝒑𝒊 = 𝒑𝒊(𝒌) = −𝒊𝝎𝒊(𝒌) + 𝜸𝒊(𝒌)   (30)  
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To find the wave frequencies 𝜔𝑖 and the damping/growth 

rates 𝛾𝑖, we must solve this equation, which is called the plasma 

dispersion relation.  

4. CALCULATING THE DIELECTRIC 

FUNCTION (Landau Prescription): 

 Thus in order to be able to solve 𝜖(𝑝, 𝑘⃗⃗) = 0, we must learn 

how to calculate 𝜖(𝑝, 𝑘⃗⃗) for any given 𝑝 and 𝑘⃗⃗. The 

function ℒ𝜑(𝑝)  given by Eq. (26), must be analytically 

continued to the entire complex plane from the area where its 

analyticity was guaranteed (𝑅𝑒 𝑝 > 𝜎), [4]. In order to do it, we 

must learn how to calculate the velocity integral in Eq. (24)—if 

we want 𝜖(𝑝, 𝑘⃗⃗) and, therefore, its zeros 𝑝𝑖—and also how to 

calculate the similar integral in Eq.(26) containing 𝑔𝛼. First of 

all, let us turn these integrals into a 1𝐷 form. Given 𝑘, we can 

always choose the 𝑧-axis to be along 𝑘 → 𝑖𝑘⃗⃗ ∙ 𝜐⃗ = 𝑖𝑘𝜐𝑧. Thus 

 

∫𝒅𝟑𝝊
𝟏

(𝒑 + 𝒊𝒌⃗⃗⃗ ∙ 𝝊⃗⃗⃗)
𝒌⃗⃗⃗ ∙  

𝝏𝒇𝟎
𝝏𝝊

 

 = ∫𝒅𝝊𝒛
𝟏

𝒑+𝒊𝒌𝝊𝒛
𝒌

𝝏

𝝏𝝊𝒛
∫𝒅𝝊𝒙 ∫𝒅𝝊𝒚 𝒇𝟎(𝝊𝒙, 𝝊𝒚, 𝝊𝒛} 

= ∫𝒅𝝊𝒛
𝟏

𝒑+𝒊𝒌𝝊𝒛
𝒌

𝝏

𝝏𝝊𝒛
𝓕(𝝊𝒛) = −𝒊∫ 𝒅𝝊𝒛

𝓕′(𝝊𝒛)

𝝊𝒛−𝒊𝒑/𝒌

+∞

−∞
                (31) 

Assuming, reasonably, that ℱ′(𝜐𝑧) is a nice (analytic) function 

everywhere, we conclude that the integrand in Eq. (31) has one 

pole, 𝜐𝑧 = 𝑖𝑝/𝑘. When 𝑅𝑒 𝑝 > 𝜎 > 0, this pole is harmless 

because, in the complex plane associated with the 𝜐𝑧 variable, it 

lies above the integration contour, which is the real axis, 𝜐𝑧 ∈
(−∞,+∞). We can think of analytically continuing the above 

integral to 𝑅𝑒 𝑝 < 𝜎 as moving the pole 𝜐𝑧 = 𝑖𝑝/𝑘 down, 

towards and below the real axis. As long as 𝑅𝑒 𝑝 > 0, this can 

be done with impunity, in the sense that the pole stays above the 

integration contour, and so the analytic continuation is simply 

the same integral Eq.(31), still along the real axis. 

 

 

Figure (2): The Landau prescription for the contour of integration in Eq.(31). 

However, if the pole moves so far down that 𝑅𝑒 𝑝 = 0 

or 𝑅𝑒 𝑝 <  0, we must deform the contour of integration in such 

a way as to keep the pole always above it, as shown in Fig. (2). 

This is called the Landau prescription and the contour thus 

deformed is called the Landau contour, 𝐶𝐿. Let us prove that 

this is indeed an analytic continuation, i.e., that the integral Eq. 

(31) adjusted to be along 𝐶𝐿, is an analytic function for all 

values of 𝑝. Let us cut the Landau contour at 𝜐𝑧  = ±𝑅 and 

close it in the upper half-plane with a semicircle 𝐶𝑅 of radius 

𝑅 > 𝜎/𝑘 see, Fig. (.3). Then, with integration running along 

the truncated 𝐶𝐿 and counterclockwise along 𝐶𝑅, we get, by 

Cauchy’s formula, [4,9] : 

 

 

Figure (3):. Proof of Landau’s prescription, see Eq. (32). 
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∫𝑪𝑳
𝒅𝝊𝒛

𝓕′(𝝊𝒛)

𝝊𝒛−𝒊𝒑/𝒌
+ ∫𝑪𝑹

𝒅𝝊𝒛
𝓕′(𝝊𝒛)

𝝊𝒛−𝒊𝒑/𝒌
= 𝟐𝝅𝒊 𝓕′(𝒊𝒑/𝒌)              (32) 

 Since analyticity is guaranteed for 𝑅𝑒 𝑝 > 𝜎, the integral along 

𝐶𝑅 is analytic. The righthand side is also analytic, by 

assumption. Therefore, the integral along 𝐶𝐿 is analytic— this is 

the integral along the Landau contour if we take 𝑅 → ∞. With 

the Landau prescription, our integral is calculated as follows:  

∫𝑪𝑳
𝒅𝝊𝒛

𝓕′(𝝊𝒛)

𝝊𝒛−
𝒊𝒑

𝒌

=

{
 
 

 
    ∫ 𝒅𝝊𝒛

+∞

−∞

𝓕′(𝝊𝒛)

𝝊𝒛−
𝒊𝒑

𝒌

,                               𝑹𝒆 𝒑 > 𝟎

𝓟∫ 𝒅𝝊𝒛
+∞

−∞

𝓕′(𝝊𝒛)

𝝊𝒛−𝒊𝒑/𝒌
+ 𝒊𝝅𝓕′(𝒊𝒑/𝒌),     𝑹𝒆 𝒑 = 𝟎     

∫ 𝒅𝝊𝒛
+∞

−∞

𝓕′(𝝊𝒛)

𝝊𝒛−𝒊𝒑/𝒌
+ 𝒊𝟐𝝅𝓕′(𝒊𝒑/𝒌)} , 𝑹𝒆 𝒑 < 𝟎

             (33) 

                                                                  

Where the integrals are again over the real axis and the 

imaginary bits come from the contour making a half 

(when 𝑅𝑒 𝑝 = 0) or a full (when  𝑅𝑒 𝑝 < 0) circle around the 

pole. In the case of 𝑅𝑒 𝑝 = 0, or 𝑖𝑝 = 𝜔, the integral along the 

real axis is formally divergent and so we take its principal value, 

defined as 

 𝓟∫ 𝒅𝝊𝒛
+∞

−∞

𝓕′(𝝊𝒛)

𝝊𝒛−𝝎/𝒌
= 𝒍𝒊𝒎𝝐→𝟎 {∫ 𝒅𝝊𝒛

𝓕′(𝝊𝒛)

𝝊𝒛−𝝎/𝒌

𝝎

𝒌
−𝝐

−∞
+

∫ 𝒅𝝊𝒛
𝓕′(𝝊𝒛)

𝝊𝒛−𝝎/𝒌

+∞
𝝎

𝒌
+𝝐

}                                                                     (34) 

The difference between Eq.(34) and the usual Lévesque 

definition of an integral is that the latter would be: 

∫ 𝒅𝝊𝒛
+∞

−∞

𝓕′(𝝊𝒛)

𝝊𝒛−𝝎/𝒌
= {𝒍𝒊𝒎𝝐𝟏→𝟎 ∫ 𝒅𝝊𝒛

𝓕′(𝝊𝒛)

𝝊𝒛−𝝎/𝒌

𝝎

𝒌
−𝝐𝟏

−∞
+

𝒍𝒊𝒎𝝐𝟐→𝟎 ∫ 𝒅𝝊𝒛
𝓕′(𝝊𝒛)

𝝊𝒛−𝝎/𝒌

+∞
𝝎

𝒌
+𝝐𝟐

}                                                     (35) 

And this, with, in general, 𝜖1 ≠ 𝜖2, diverges logarithmically, 

whereas in Eq.(34), the divergences neatly cancel. 

The 𝑅𝑒 𝑝 = 0 case in Eq. (33): 

∫
𝑪𝑳
𝒅𝝊𝒛

𝓕′(𝝊𝒛)

𝝊𝒛−
𝝎

𝒌

= 𝓟∫ 𝒅𝝊𝒛
+∞

−∞

𝓕′(𝝊𝒛)

𝝊𝒛−𝝎/𝒌
+ 𝒊𝝅𝓕′(𝝎/𝒌)                (36) 

Which tends to be of most use in analytical theory, is a 

particular instance of Plemelj’s formula: for a real 𝜁 and a well-

behaved function 𝑓 (no poles on or near the real axis) 

𝒍𝒊𝒎𝝐→+𝟎 ∫ 𝒅𝒙
+∞

−∞

𝒇(𝒙)

𝒙−𝜻±𝒊𝝐
= 𝓟∫ 𝒅𝒙

+∞

−∞

𝒇(𝒙)

𝒙−𝜻
+ 𝒊𝝅𝒇(𝜻)             (37)    

Also sometimes written as  

  𝒍𝒊𝒎𝝐→+𝟎
𝟏

𝒙−𝜻±𝒊𝝐
= 𝓟 

𝟏

𝒙−𝜻
± 𝒊𝝅𝜹(𝒙 − 𝜻)                               (38) 

Finally, armed with Landau’s prescription, we are ready to 

calculate. The dielectric function Eq. (24) becomes 

𝝐(𝒑, 𝒌⃗⃗⃗) ≡ 𝟏 + ∑
𝝎𝒑𝜶
𝟐

𝒌𝟐𝜶
𝟏

𝒏𝟐
∫𝑪𝑳

𝒅𝝊𝒛
𝓕𝜶
′ (𝝊𝒛)

𝝊𝒛−𝒊𝒑/𝒌
                                 (39) 

And, analogously, our Laplace-transformed solution Eq. (26) 

becomes 

𝓛𝝋(𝒑)   =
𝟒𝝅𝒊

𝒌𝟑𝝐(𝒑,𝒌⃗⃗⃗)
∑ 𝒒𝜶𝜶 ∫𝒅𝝊𝒛

𝑮𝜶(𝝊𝒛)

(𝝊𝒛+𝒊𝒑/𝒌)
                                (40) 

 

Where  𝐺𝛼(𝜐𝑧) = ∫𝑑𝜐𝑥 ∫𝑑𝜐𝑦𝑔𝛼(𝜐𝑥, 𝜐𝑦 , 𝜐𝑧) 

4.1. Solving the Dispersion Relation 

The limit of slow damping and growth is a particularly 

analytically solvable and physically interesting case is one in 

which, for 𝑝 = −𝑖𝜔 + 𝛾, 𝛾 ≪ 𝜔 and 𝛾 ≪ 𝑘𝜐𝑡ℎ𝛼 that is the case 

of the damping or growth time of the waves being longer than 

either their period or the time particles take to cross them. In 

this limit, the dispersion relation Eq. (30), [4, 9] is: 

   𝝐(𝒑, 𝒌⃗⃗⃗) ≈ 𝝐(−𝒊𝝎, 𝒌⃗⃗⃗) + 𝒊𝜸
𝝏

𝝏𝝎
𝝐(−𝒊𝝎, 𝒌⃗⃗⃗) = 𝟎                    (41)  

Setting the real part of  Eq. (41) to zero gives the equation for 

the real frequency: 

 𝑹𝒆 𝝐(−𝒊𝝎, 𝒌) = 𝟎                                                                 (42)  

Setting the imaginary part of  Eq. (41) to zero gives us the 

damping/growth rate in terms of the real frequency:  

𝜸 = 𝑰𝒎𝝐(−𝒊𝝎, 𝒌⃗⃗⃗) [
𝝏

𝝏𝝎
𝑹𝒆𝝐(−𝒊𝝎, 𝒌⃗⃗⃗)]

−𝟏
                                (43) 

Hence, we need only 𝜖(𝑝, 𝑘⃗⃗) with 𝑝 = −𝑖𝜔. Using Eq. (36), we 

get 

𝑹𝒆𝝐 = 𝟏 − ∑
𝝎𝒑𝜶
𝟐

𝒌𝟐𝜶
𝟏

𝒏𝟐
∫
𝑪𝑳
𝒅𝝊𝒛

𝓕𝜶
′ (𝝊𝒛)

𝝊𝒛−𝝎/𝒌
                                      (44) 

𝑰𝒎𝝐 = −∑
𝝎𝒑𝜶
𝟐

𝒌𝟐𝜶
𝝅

𝒏𝟐
𝓕𝜶
′ (

𝝎

𝒌
)                                                    (45) 

Let us consider two-species plasma, consisting of electrons and 

a single species of ions. There will be two interesting limits:  

• “High-frequency” electron waves: 𝜔 ≫ 𝑘𝜐𝑡ℎ, where 𝜐𝑡ℎ,𝑒 =

√ 2𝑇𝑒/𝑚𝑒 is the “thermal speed” of the electrons; this limit will 

give us Langmuir waves, slowly damped or growing.  

• “Low-frequency” ion waves: a particularly tractable limit will 

be that of “hot” electrons and “cold” ions, viz., 𝜐𝑡ℎ,𝑒 ≫ 𝜔 ≫

𝜐𝑡ℎ, i, where 𝜐𝑡ℎ,𝑖 = √ 2𝑇𝑖/𝑚𝑖 is the “thermal speed” of the 

ions; this limit will give us the sound “ion-acoustic waves”, 

which also can be damped or growing.  

5. CONCLUSION: 

 Consider the limit 
𝜔

𝑘
≫ 𝜐𝑡ℎ,𝑒 that is the phase velocity of the 

waves is much greater than the typical velocity of a particle 

from the “thermal bulk” of the distribution. This means that in 

Eq. (44), we can expand in 𝜐𝑧  ∼  𝜐𝑡ℎ,𝑒  being small compared to 

𝜔/𝑘 (higher values of 𝜐𝑧 are cut off by the "thermal" fall-off of 

the equilibrium distribution function). Note that 𝜔 ≫ 𝑘𝜐𝑡ℎ,𝑒  

also implies 𝜔 ≫ 𝑘𝜐𝑡ℎ,𝑖 because 
𝜐𝑡ℎ,𝑖

𝜐𝑡ℎ,𝑒
= √

𝑇𝑖

𝑇𝑒

𝑚𝑒

𝑚𝑖
≪ 1, this is as 

long as that 
𝑇𝑖

𝑇𝑒
 is not too huge. Thus, Eq. (44) becomes: 

𝑅𝑒𝜖 = 1 + ∑
𝜔𝑝𝛼
2

𝑘2𝛼
1

𝑛𝛼

𝑘

𝜔
𝒫 ∫𝑑𝜐𝑧ℱ𝛼

′ (𝜐𝑧) [1 +
𝑘𝜐𝑧

𝜔
+ (

𝑘𝜐𝑧

𝜔
)
2
+

(
𝑘𝜐𝑧

𝜔
)
3
+⋯]  
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       =  𝟏 +    ∑
𝝎𝒑𝜶
𝟐

𝒌𝝎𝜶 [
𝟏

𝒏𝜶
∫𝒅𝝊𝒛𝓕𝜶

′ (𝝊𝒛) −
𝒌

𝝎

𝟏

𝒏𝜶
∫𝒅𝝊𝒛𝓕𝜶(𝝊𝒛) −

𝟐 (
𝒌

𝝎
)
𝟐 𝟏

𝒏𝜶
∫𝒅𝝊𝒛 𝝊𝒛𝓕𝜶(𝝊𝒛) −        𝟑 (

𝒌

𝝎
)
𝟑 𝟏

𝒏𝜶
∫𝒅𝝊𝒛𝝊𝒛

𝟐𝓕𝜶(𝝊𝒛)] =

𝟏 + ∑
𝝎𝒑𝜶
𝟐

𝝎𝟐𝜶 [𝟏 +
𝟑

𝟐

𝒌𝟐𝝊𝒕𝒉,𝜶
𝟐

𝝎𝟐
+⋯]                                               (46)                                                                        

Where we have integrated by parts everywhere and assumed 

that there are no mean flows, 〈𝜐𝑧〉 = 0, and for the terms inside 

the bracket we obtain zeros for the 1st term and the 3 rd terms 

because the integrals are odd in 𝜐𝑧. The 2nd term is unity and in 

the last term, we used:  〈𝜐𝑧
2〉 =

𝜐𝑡ℎ,𝛼
2

2
, Which is the result in the 

case for a Maxwellian ℱ𝛼 or, if ℱ𝛼 is not a Maxwellian, can be 

viewed as the definition of 𝜐𝑡ℎ,𝛼. The ion contribution to Eq. 

(46) is small because   
𝜔𝑖
2

𝜔𝑒
2 =

𝑍𝑚𝑒

𝑚𝑖
≪ 1 so that ions do not 

participate in this dynamics at all. Therefore, in the lowest 

order, the dispersion relation Eq. (42) becomes  

  𝑹𝒆𝝐 = 𝟏 −
𝝎𝒑𝒆
𝟐

𝝎𝟐
= 𝟎      ⇒  𝝎𝟐 = 𝝎𝒑𝒆

𝟐 =
𝟒𝝅𝒆𝟐𝒏𝒆

𝒎𝒆
                  (47)  

This is the Langmuir dispersion relation or plasma oscillations.  

We can do a little better if we retain the (small) 𝑘-dependent 

term in Eq. (46):  

𝑹𝒆𝝐 ≈ 𝟏 −
𝝎𝒑𝒆
𝟐

𝝎𝟐
(𝟏 +

𝟑

𝟐

𝒌𝟐𝝊𝒕𝒉,𝜶
𝟐

𝝎𝟐
) = 𝟎    ⇒  𝝎 ≈

𝝎𝒑𝒆√(𝟏 + 𝟑𝒌
𝟐𝝀𝑫𝒆

𝟐 )                                                               (48) 

Where 𝜆𝐷𝑒 =
𝜐𝑡ℎ,𝑒

√2𝜔𝑝𝑒
= √

𝑇𝑒

4𝜋𝑒2𝑛𝑒
   is the electron Debye length. 

Eq. (48) is the Bohm and Gross dispersion relation, describing 

an upgrade of the Langmuir oscillations to dispersive Langmuir 

waves, which have a non-zero group velocity (this effect is due 

to the electron pressure perturbation joining the electric field in 

providing the restoring force for the waves. Note that all this is 

only valid for 𝜔 ≫ 𝑘𝜐𝑡ℎ,𝑒 which we now see is equivalent to 

𝑘𝜆𝐷𝑒 ≪ 1   This shows that the wavelength of the perturbation 

is long compared to the Debye length, 𝜆𝐷𝑒. 
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