
 

 

http://journals.uob.edu.ly/sjuob   

 

©2023 University of Benghazi. All rights reserved. ISSN:Online 2790-1637, Print 2790-1629;  National Library of Libya, Legal number : 154/2018 

106 
 

 

The Scientific Journal of University of Benghazi 

Existence and Uniqueness Solution for a Semimartingale Stochastic 

Integral Equation  

Hanan Salem Abd Alhafid  1* 

1Department of Mathematics, College of Education, University of Benghazi, Benghazi, Libya 

Received 22 / 11 / 2022; Accepted 21 / 03 / 2023   

 الملخص 

 عشوائية تكاملية:semimartingaleهذه الورقة تقوم بإيضاح إيجاد الحل الوحيد لمعادلة 

X(t, ω) = H(t, ω) + ∫ F(s, ω, X(ω))dY(s, ω)
(0,t]

                       (2.1)             

Xحيث   Xللمتغير العشوائي   {Xn}, وذلك باستخدام مفهوم التقارب لمتتالية كوشي martingaleباستخدام نظرية الوجود والوحدانية في معالجة  ∈ ℒ2  ممكن ,

Xnإيجاد تقارب لمتتالية كوشي للتكامل العشوائي  ∙ M  حيث ,M  تكونa square-integrable cadlag martingale  على الفضاء العشوائي (Ω, F, P) 

Y           و = lim
n→∞

Xn ∙ M = X ∙ M = I(X). 

𝑌حيث   ∈ ℳ2  فضاءmartingles  وبعض الفرضيات المهمة , 

i-  الدالة𝐹  المعرفة من الفضاء العشوائي𝑅+ ×  𝛺 × DRd[0,  تحقق 𝑅𝑑×𝑚الى   (∞

 a spatial Lipschitz condition:  0لكل < 𝑇 <  بحيث 𝐿(𝑇)يوجد  ∞

 |𝐹(𝑡, ω, 𝜂) − 𝐹(𝑡, ω, 𝜉)| ≤ 𝐿(𝑇) ∙  sup
𝑠∈(0,𝑡]

|𝜂(𝑠) − 𝜉(𝑠)|  

,𝑡)لكل   ω) ∈ [0, 𝑇] ×  𝛺  و 𝜂, 𝜉 ∈ DRd[0, ∞). 

ii-يلأي متغير عشوائ  𝑋  يوجد دالة توقف مقيدة𝑣𝑘 → ,𝐹(𝑡(𝑡)(𝑣𝑘,0)1بحيث  ∞ 𝑋)  مقيدة لأي𝑘 . 

 Semimartingale, Stochastic Integral Equation, Lipschitz Condition, Stopped Processالكلمات المفتاحية: 

Abstract 

This paper studied existence and uniqueness of a solution for a semimartingale stochastic integral equation 

𝑋(𝑡, ω) = 𝐻(𝑡, ω) + ∫ 𝐹(𝑠, ω, 𝑋(ω))𝑑𝑌(𝑠, ω)
(0,𝑡]

                       (2.1),            

by using Existence and Uniqueness Theorem on the martingale process. Using the concept of convergence Cauchy sequence 
{𝑋𝑛} to a cadlag process 𝑋, where  𝑋 ∈ ℒ2, we can find a convergence Cauchy sequence {𝑋𝑛 ∙ 𝑀} to  a cadlag process 𝑌 on 

the space ℳ2 of martingales, where 𝑀 is a square-integrable cadlag martingale on a probability space (𝛺, 𝐹, 𝑃), as 

         𝑌 = lim
𝑛→∞

𝑋𝑛 ∙ 𝑀 = 𝑋 ∙ 𝑀 = 𝐼(𝑋). 

 And some important assumptions are 

𝐢. 𝐹 is a map from the space 𝑅+ ×  𝛺 × DRd[0, ∞) into the space 𝑅𝑑×𝑚 of  𝑑 × 𝑚-matrices. 𝐹 satisfies a spatial Lipschitz 

condition uniformly in the other variables: for each 0 < 𝑇 < ∞ there exists a finite constant 𝐿(𝑇) such that this holds for 

(𝑡, ω) ∈ [0, 𝑇] ×  𝛺 and all 𝜂, 𝜉 ∈ DRd[0, ∞):   |𝐹(𝑡, ω, 𝜂) − 𝐹(𝑡, ω, 𝜉)| ≤ 𝐿(𝑇) ∙  sup
𝑠∈(0,𝑡]

|𝜂(𝑠) − 𝜉(𝑠)|.  ii. Given any 

adapted 𝑅𝑑-valued cadlag process 𝑋 on  𝛺, the function (𝑡, ω) → 𝐹(𝑡, ω, 𝑋(ω)) is a predictable process, and there exist 

stopping times 𝑣𝑘 → ∞ such that 1(0,𝑣𝑘)(𝑡)𝐹(𝑡, 𝑋) is bounded for each 𝑘. 
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1. INTRODUCTION 

Integral equations form one of the most useful tools in many 

branches of pure analysis, such as functional analysis and 

stochastic calculus see [1,2,3,4]. Stochastic integral equations are 

extremely important in the study of many physical phenomena in 

life sciences and engineering [5,6,7]. There are currently two basic 

versions of stochastic integral equations being studied by 

probabilists and mathematical statisticians, namely, those 

integral equations involving Ito integral and those which can be 

formed as probabilistic analogues of classical deterministic 

integral equations whose formulation involves the usual 

Lipschitz conditions of the variables. 

Several papers have appeared on the problem of the existence of 

solutions of stochastic integral equations and are discussed in 
[8,9,10,11,12]. In this paper, we will prove an existence and 

uniqueness for the semimartingale stochastic integral equation by 

the Existence and Uniqueness theorem.  

2. PRELIMINARIES 

Let (𝛺, 𝐹, 𝑃) be a probability space with a filtration {𝐹𝑡}. We 

consider 

𝑋(𝑡, ω) = 𝐻(𝑡, ω) +

∫ 𝐹(𝑠, ω, 𝑋(ω))𝑑𝑌(𝑠, ω)
(0,𝑡]

                       (2.1)              

Where 𝑌 is a given  𝑅𝑚-valued cadlag semimartingale, 𝐻 is a 

given 𝑅𝑑-valued adapted cadlag process, and 𝑋 is the unknown 

𝑅𝑑-valued process. The coefficient 𝐹 is a 𝑑 × 𝑚-matrix valued 

function of its arguments. For the coefficient 𝐹, we make these 

assumptions.  

𝒊. 𝐹 is a map from the space 𝑅+ ×  𝛺 × DRd[0, ∞) into the 

space 𝑅𝑑×𝑚 of  𝑑 × 𝑚-matrices. 𝐹 satisfies a spatial 

Lipschitz condition uniformly in the other variables: for each 

0 < 𝑇 < ∞ there exists a finite constant 𝐿(𝑇) such that this 

holds for (𝑡, ω) ∈ [0, 𝑇] ×  𝛺 and all 𝜂, 𝜉 ∈ DRd[0, ∞):   

|𝐹(𝑡, ω, 𝜂) − 𝐹(𝑡, ω, 𝜉)| ≤ 𝐿(𝑇) ∙  sup
𝑠∈(0,𝑡]

|𝜂(𝑠) − 𝜉(𝑠)|.    

ii. Given any adapted 𝑅𝑑-valued cadlag process 𝑋 on  𝛺, the 

function (𝑡, ω) → 𝐹(𝑡, ω, 𝑋(ω)) is a predictable process, and 

there exist stopping times 𝑣𝑘 → ∞ such that 1(0,𝑣𝑘)(𝑡)𝐹(𝑡, 𝑋) 

is bounded for each integer 𝑘. 

Definition 2.1.[13]If X is the unknown 𝑅𝑑-valued process on a 

probability space (𝛺, 𝐹, 𝑃) which is finite with probability one,  

w.p.1, then its distribution function is 𝐹(𝑡) = 𝑃(ω: 𝑋(ω) ≤ t). 
This gives us the convenient expressions 𝑓(ω: 𝑋(ω) ∈ ℎ) =

∫ 𝑑𝐹(𝑡)
ℎ

, for any Borel set ℎ of 𝐹. 

Definition 2.2.[1] A cadlag process 𝑌 is a semimartingale if it can 

be written as 𝑌𝑡 = 𝑌0 + 𝑀𝑡 + 𝑉𝑡 where 𝑀 is a cadlag local 

martingale, 𝑉 is a cadlag 𝐹𝑉 process, and 𝑀0 = 𝑉0 = 0. 

Lemma 2.3.[2] Assume 𝐹 satisfies assumptions (i),(ii). Suppose 

there exists a path 𝜉̅ ∈ DRd[0, ∞) such that for all 𝑇 < ∞,  

𝑐(𝑇) =  sup
𝑡∈(0,𝑇],ω∈𝛺

|𝐹(𝑡, ω, 𝜉̅)| < ∞. Then for any adapted 𝑅𝑑-

valued cadlag process, 𝑋 there exists stopping times 𝑣𝑘 → ∞ 

such that 1(0,𝑣𝑘)(𝑡)𝐹(𝑡, 𝑋) is bounded for each integer 𝑘.  

Definition 2.4.[4] For predictable processes 𝑋, we define 𝐿2 norm 

over the set [0, 𝑇] × 𝛺 under the measure 𝜇𝑀 by  

= ‖𝑋‖𝜇𝑀,𝑇 (∫ |𝑋|2𝑑𝜇𝑀
[0,𝑇]×𝛺

)

1
2⁄

 

                                                             =

(𝐸 ∫ |𝑋(𝑡, ω)|2𝑑[𝑀]𝑡(ω)
[0,𝑇]×𝛺

)
1

2⁄

 

Let ℒ2 = ℒ2(𝑀, 𝑃) denote the collection of predictable processes 

𝑋 such that ‖𝑋‖𝜇𝑀,𝑇 < ∞ for all 𝑇 < ∞. A metric on ℒ2 is 

defined by 𝑑ℒ2
(𝑋, 𝑌) = ‖𝑋 − 𝑌‖ℒ2

 where ‖𝑋‖ℒ2
=

∑ 2−𝑘(1⋀‖𝑋‖𝜇𝑀,𝑇)∞
𝑘=1 . ℒ2 is not an 𝐿2 space, but instead a local 

𝐿2 space of sorts. 

Theorem 2.5. "Existence and uniqueness" [1,4] Let 𝑋 ∈ ℒ2. 

There exists a sequence 𝑋𝑛 ∈ 𝑆2, where 𝑆2 is the space of 

predictable simple processes, such that ‖𝑋 − 𝑋𝑛‖ℒ2
→ 0. From 

the triangle inequality, it then follows that {𝑋𝑛} is a Cauchy 

sequence in ℒ2, given 𝜀 > 0, choose η0 so that ‖𝑋 − 𝑋𝑛‖ℒ2
≤

𝜀
2⁄  for n ≥ η0. Then if 𝑚, 𝑛 ≥ η0, ‖𝑋𝑚 − 𝑋𝑛‖ℒ2

≤ ‖𝑋𝑚 −

𝑋‖ℒ2
+ ‖𝑋 − 𝑋𝑛‖ℒ2

≤ 𝜀. For the stochastic integral 𝑋𝑛 ∙ 𝑀, 

where 𝑀 is a square-integrable cadlag martingale on a probability 

space (𝛺, 𝐹, 𝑃), the additivity of the integral, ‖𝑋𝑚 ∙ 𝑀 − 𝑋𝑛 ∙
𝑀‖ℳ2

≤ ‖(𝑋𝑚 − 𝑋𝑛) ∙ 𝑀‖ℳ2
= ‖𝑋𝑚 − 𝑋𝑛‖ℒ2

. Consequently, 

{𝑋𝑛 ∙ 𝑀} is a Cauchy sequence in the space ℳ2 of martingales. 

Then there exists a limit process 𝑌 = lim
𝑛→∞

𝑋𝑛 ∙ 𝑀. This process is 

called 𝐼(𝑋) = 𝑋 ∙ 𝑀. Let 𝑍𝑛 be another sequence in 𝑆2 that 

converges to 𝑋 in ℒ2. Then 𝑍𝑛 ∙ 𝑀 → 𝑌, in ℳ2 same as 𝑋 ∙ 𝑀. 

The uniqueness of the stochastic integral hold is in a sense 

stronger than indistinguish ability. If 𝑊 is a process that is 

indistinguishable from 𝑋 ∙ 𝑀, which means that 𝑃{ω: 𝑊𝑡(ω) =
(𝑋 ∙ 𝑀)𝑡(ω) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝑅+} = 1, then 𝑊 also has to be 

regarded as the stochastic integral. This is built into the definition 

of 𝐼(𝑋) as the limit: if ‖𝑋 ∙ 𝑀 − 𝑋𝑛 ∙ 𝑀‖ℳ2
→ 0 and 𝑊 is 

indistinguishable from 𝑋 ∙ 𝑀, then also ‖𝑊 − 𝑋𝑛 ∙ 𝑀‖ℳ2
→ 0. 

Corollary 2.6.[1] Let 0 < 𝑇 < ∞. Assume {𝐹𝑡} is right continues, 

𝑌 is a cadlag semimartingale and 𝐻 is an adapted process, all 

defined for 0 ≤ 𝑡 ≤ 𝑇. Let 𝐹 satisfy assumption (i),(ii) for 
(𝑡, ω) ∈ [0, 𝑇] ×  𝛺. In particular, part (ii) take this form: if 𝑋 is 

a predictable process defined on [0, 𝑇] ×  𝛺, then so is 𝐹(𝑡, 𝑋), 

and there is a non-decreasing sequence of stopping times {𝑣𝑘} 

such that 1(0,𝑣𝑘)(𝑡)𝐹(𝑡, 𝑋) is is bounded for each integer 𝑘, and 

for almost every ω, 𝑣𝑘 = 𝑇 for all large enough 𝑘. Then there 

exists a unique solution 𝑋to equation (2.1).   

3. MAIN RESULTS 

Theorem 3.1. Assume {𝐹𝑡} is complete and right-continuous. 𝐻 

is an adapted Rd-valued cadlag process and 𝑌 is an 𝑅𝑚-

valued cadlag semimartingale. Assume 𝐹 satisfies assumptions 

(i),(ii). Then there exists a unique cadlag process 

{𝑋(𝑡, ω): 0 ≤ 𝑡 < ∞} adapted to {𝐹𝑡} that satisfies equation 

(2.1).  

Proof: For 𝑘 ∈ 𝑁 ⊂ [0, ∞), the function  1{0≤𝑡≤𝑘}(𝑡)𝐹(𝑡, ω, 𝜂) 

satisfies the original hypotheses. There exists a process 𝑋𝑘 that 

satisfies the equation  

𝑋𝑘(𝑡, ω)

= 𝐻𝑘(𝑡, ω) + ∫ 1[0,𝑘](𝑠)𝐹(𝑠, ω, 𝑋𝑘(ω))𝑑𝑌𝑘(𝑠, ω)
(0,𝑡]

        (3.1) 
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We have  𝐻𝑘(𝑡, ω) = 𝐻(𝑘⋀𝑡, ω) for a stopped process. Let 𝑘 <
𝑚. Stopping the equation  

𝑋𝑚(𝑡, ω) = 𝐻𝑚(𝑡, ω)

+ ∫ 1[0,𝑚](𝑠)𝐹(𝑠, ω, 𝑋𝑚(ω))𝑑𝑌𝑚(𝑠, ω)
(0,𝑡]

 

At time 𝑘 gives the equation 

𝑋𝑚
𝑘 (𝑡, ω)

= 𝐻𝑘(𝑡, ω) + ∫ 1[0,𝑚](𝑠)𝐹(𝑠, ω, 𝑋𝑚(ω))𝑑𝑌𝑚(𝑠, ω)
(0,𝑡⋀𝑘]

 

Valid for 𝑡. By proposition stopping a stochastic integral can be 

achieved by stopping the integrator or by cutting off the 

integrator with an indicator function. If we do both, we get the 

equation  

 𝑋𝑚
𝑘 (𝑡, ω) = 𝐻𝑘(𝑡, ω) +

∫ 1[0,𝑘](𝑠)𝐹 (𝑠, ω, 𝑋𝑚
𝑘 (ω)) 𝑑𝑌𝑘(𝑠, ω)

(0,𝑡]
 

Thus 𝑋𝑘 and 𝑋𝑚
𝑘  satisfy the same equation, so by the Existence 

and Uniqueness Theorem, 𝑋𝑘 = 𝑋𝑚
𝑘  for 𝑘 < 𝑚. Thus we can 

unambiguously define a process 𝑋 by setting 𝑋 = 𝑋𝑘on [0, 𝑘]. 

then for 0 ≤ 𝑡 ≤ 𝑘 we can substitute 𝑋 for 𝑋𝑘 in equation (3.1) 

and get the equation   

𝑋(𝑡, ω) = 𝐻𝑘(𝑡, ω) + ∫ 𝐹(𝑠, ω, 𝑋(ω))𝑑𝑌(𝑠, ω)
(0,𝑘⋀𝑡]

, 0 ≤ 𝑡

≤ 𝑘.  

Since this holds for all 𝑘, 𝑋 is a solution to the original equation 

(2.1). 

Uniqueness similarly, if  𝑋 and �̃� solutions of equation (2.1) 

then 𝑋(𝑘⋀𝑡) and �̃� (𝑘⋀𝑡) solve equation (2.1). By the 

uniqueness theorem 𝑋(𝑘⋀𝑡) = �̃� (𝑘⋀𝑡) for all 𝑡, and since 𝑘 can 

be taken arbitrary, 𝑋 = �̃�. 

4. CONCLUSION 

The paper concluded that the solution of a semimartingale 

stochastic equation has been found by using Existence and 

Uniqueness Theorem on a martingale, by using some important 

assumptions on a probability space (Ω, F, P). 
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