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ABSTRACT 

This study investigates new optical and chirped optical solitons for the space-time fractional cubic nonlinear 

Schrödinger equation using the Sardar sub-equation technique in the presence of Kerr law nonlinearity. The solutions are 

expressed in terms of hyperbolic and trigonometric functions, revealing a diverse range of behaviors within the system. The 

identified optical and chirped optical soliton types include dark, bright, kink, and periodic, showcasing a rich spectrum of 

phenomena. Representing soliton solutions using 2D and 3D graphs with varying parameters leads to a better 

understanding of their formation and characteristics. The findings contribute to the comprehension of nonlinear dynamics, 

offering insights into phenomena relevant to nonlinear optics, quantum mechanics, and condensed matter physics. 

KEYWORDS: Cubic nonlinear Schrödinger equation, Kerr law nonlinearity, beta derivative, optical solitons, Sardar sub, 

equation technique. 

 

1. INTRODUCTION 

Nonlinear models have been used to explain a variety 

of real-world occurrences, revealing significant 

information in the process. Advanced classes of 

differential equations that produce better outcomes are 

represented by fractional nonlinear evolution equations. 

Due to their important uses, these equations aid in the 

illustration of complex physical events and draw a large 

number of researchers to work in this subject. The 

nonlinear Schrödinger equation is an essential component 

of fractional nonlinear evolution equations and is applied 

in quantum mechanics, biology, optical fiber, plasma 

physics, fluid mechanics, electricity, shallow water wave 

phenomena, heat flow, finance, and fractal dynamics. 

The intricate interplay between the nonlinear and 

dispersive components of solitons within a medium has 

revealed that their wave-like structure remains preserved 

during propagation. The soliton solutions originating 

from Fractional Nonlinear Evolution Equations 

(FNLEEs) offer a wide array of practical and commercial 

advantages across numerous industries. In the realm of 

fiber optic technology [1-3], these soliton solutions 

contribute to enhancing data transmission speeds and 

reliability, crucial for meeting the growing demands of 

high-speed communication networks. 

 

Within the telecommunications sector [4], FNLEE 

solitons play a pivotal role in ensuring seamless 

connectivity and efficient signal transmission. In signal 

processing applications [5], these solutions aid in the 

precise analysis and manipulation of data signals, 

facilitating advancements in fields such as digital 

communications and information processing. Moreover, 

in image processing [6], FNLEE solitons are utilized for 

advanced image enhancement techniques, enabling 

clearer and more detailed visual representation. System 

identification benefits from the application of soliton 

solutions by providing accurate modeling tools for 

complex systems, aiding in predictive analysis and 

control. Water treatment processes leverage FNLEE 

solitons for optimized purification methods, enhancing 

the efficiency of wastewater treatment and desalination 

processes. In the realm of plasma physics, these solutions 

assist in understanding and controlling plasma behavior, 

essential for various applications ranging from fusion 

research to materials processing. Medical device 

sterilization procedures benefit from the use of soliton 

solutions, ensuring effective and reliable sterilization 

processes in healthcare settings. Furthermore, in the field 

of chemistry, FNLEE solitons offer valuable insights into 

intricate chemical reactions and phenomena, aiding in the 

development of novel materials and pharmaceuticals. 

These diverse applications underscore the versatility and 

impact of soliton solutions derived from FNLEEs in 
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addressing challenges and driving innovation across a 

broad spectrum of industries and disciplines. 

Various dynamic approaches have been introduced 

and implemented in the literature to solve nonlinear 

fractional differential equations (NFDES) and obtain 

analytical traveling wave solutions, for example, the 

fractional differential transform method [7], the fractional 

modified Kudryashov method [8], the generalized 

differential transform method [9], the fractional finite 

difference method [10-12], the fractional finite element 

method [13-15], the fractional boundary element method [16-

18], the fractional radial basis function method [19-21], the 

fractional homotopy analysis method [22,23], the fractional 

homotopy perturbation transform method [24,25]. 

In this paper, we will utilize for the first time the 

fractional cubic NLFSE with Kerr law nonlinearity by 

using Sardar sub-equation technique. The fractional cubic 

NLFSE with the Kerr law nonlinearity is stated as [26, 27]. 

𝑖𝐷𝑡
𝛼𝑢 + 𝑎1𝐷𝑡

𝛼𝐷𝑥
𝛼𝑢 + 𝑎2𝐷𝑥

2𝛼𝑢 + 𝑎3|𝑢|2𝑢 = 0.  (1) 
 

The wave profile with complex values is represented 

by u(x,t). Here a_1, a_2, a_3 are real coefficients, and 

(0≤α≤1). The cubic fractional nonlinear Schrödinger 

equation, which includes beta derivatives in both space 

and time, is utilized to represent various nonlinear optical 

phenomena. For instance, it can be applied to model the 

behavior of solitons in optical fibers, showcasing their 

unique propagation characteristics and stability in the 

presence of nonlinear effects. 

The structure of this article is outlined as follows: 

Section 2 discusses the characteristics of the beta 

derivative. The methodology of the proposed approach is 

detailed in Section 3. A mathematical analysis is 

presented in Section 4. The article is concluded in Section 

5. 

2. DEFINITION OF BETA DERIVATIVE 

AND ITS PROPERTIES 

In recent years, researchers have introduced various 

definitions of fractional derivatives, including the 

Riemann-Liouville, modified Riemann-Liouville, Caputo, 

Caputo-Fabrizio, conformable fractional derivative, and 

Atangana-Baleanu derivatives. These fractional 

derivatives often deviate from the familiar properties of 

classical calculus, such as the chain rule, the Leibniz rule, 

and the derivative of a constant being zero. To address 

this, Atangana and colleagues proposed a novel and 

significant definition known as the beta derivative. This 

beta derivative adheres to the fundamental properties of 

classical calculus, marking a crucial advancement in the 

field of fractional calculus. 

Definition 1: Given α∈R and a function h=h(x) 

defined on the interval [α,∞)→R, the beta derivative of 

order α with respect to x is formally defined as follows 
[28]: 

𝐷𝑥
𝛼(ℎ(𝑥)) = 𝐿𝑖𝑚𝜀→0 

ℎ(𝑥+𝜀(𝑥+
1

𝛤(𝛼)
)

1−𝛼
)−ℎ(𝑥)

𝜀
,       (2) 

 

whereΓ is the gamma function and D_x^α h(x)=d/dx 

h(x) for α=1.Given that h(x)and g(x) are α -order 

differentiable for x>0, and a and b are real constants, the 

beta derivative exhibits the following properties: 

1. 𝐷𝑥
𝛼(𝑎 ℎ(𝑥) + 𝑏 𝑔(𝑥)) = 𝑎 𝐷𝑥

𝛼ℎ(𝑥) +
𝑏 𝐷𝑥

𝛼𝑔(𝑥). 

2. 𝐷𝑥
𝛼(𝑘) = 0, where𝑘 is a constant. 

3. 𝐷𝑥
𝛼(ℎ(𝑥) 𝑔(𝑥)) = ℎ(𝑥)𝐷𝑥

𝛼𝑔(𝑥) +
𝑔(𝑥)𝐷𝑥

𝛼ℎ(𝑥). 

4. 𝐷𝑥
𝛼 (

ℎ(𝑥)

𝑔(𝑥)
) =

𝑔(𝑥)𝐷𝑥
𝛼(ℎ(𝑥))−ℎ(𝑥)𝐷𝑥

𝛼(𝑔(𝑥))

𝑔2(𝑥)
. 

5-𝐷𝑥
𝛼(ℎ−1(𝑥)) = −

𝐷𝑥
𝛼(ℎ(𝑥))

ℎ2(𝑥)
. 

5. 6-𝐷𝑥
𝛼ℎ(𝑥) = (𝑥 +

1

𝛤(𝛼)
)

1−𝛼 𝑑ℎ(𝑥)

𝑑𝑥
. 

Utilizing these properties of the beta derivative, 

fractional differential equations can be effectively 

reduced to ordinary differential equations. Notably, the 

beta derivative has demonstrated a comprehensive 

fulfillment of properties equivalent to those observed 

with integer-order derivatives without encountering any 

discernible limitations thus far. 

3. ALGORITHM OF THE SARDAR SUB-

EQUATION TECHNIQUE 

In this section, we introduced the Sardar sub-equation 

technique as a powerful tool. This method empowers us 

to derive new and extensive analytical solutions for the 

model (1). By leveraging this technique, we can convert 

fractional partial differential equations into ordinary 

differential equations, streamlining the computational 

procedure. The algorithm outlining this process is 

detailed below: 

Step 1: Let  

𝐻(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝐷𝑡
𝛼𝑢, 𝐷𝑥

𝛼𝑢, 𝐷𝑡𝑡
2𝛼𝑢, 𝐷𝑥𝑡

2𝛼𝑢, 𝐷𝑥𝑥
2𝛼𝑢, … ) = 0,     (3)  

Where ℱ is a polynomial of 𝑢(𝑥, 𝑡), and 𝐷𝑡
𝛼  is a 

fractional derivative of 𝛼-order. Consider the wave 

transformation 𝑢 = 𝜑(𝜉)𝑒𝑖(∅(𝜉)−𝜃𝑡), where𝜉 =
1

𝛼
(𝑥 +

1

𝛤(𝛼)
)

𝛼

−
𝑣

𝛼
(𝑡 +

1

𝛤(𝛼)
)

𝛼

 and 𝑣, 𝜔 are respectively 

velocity and wave number. According to the definition 

provided in reference [29], we have: 

𝛿𝑤 = −
𝜕(∅(𝜉) − 𝜔 𝑡)

𝜕𝑡
= ∅(𝜉)′ 
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Using the considerable transformation, Eq. (3) 

reduced to the following ordinary differential equation: 

ℋ(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, … … , ) = 0                          (4) 

Step 2: the exact solution of Eq. (4) given as 

𝑢(𝜉) = ∑  𝑁
𝑙=0 𝑏𝑙𝑀

𝑙(𝜉);  𝑏𝑙 ≠ 0,                     (5) 

Where 𝑏𝑙(0 ≤ 𝑙 ≤ 𝑁) are constant coefficients 

to be evaluated later and 𝑀(𝜉) satisfies the 

following ordinary differential equation, 

𝑀′(𝜉) = √𝜇 + 𝛾𝑀(𝜉)2 + 𝑀(𝜉)4,                 (6) 

Where 𝜇 and 𝛾are real constants. The general 

solutions of Equation (6) are given as. 

(1) If 𝛾 > 0 and 𝜇 = 0 then  

𝑀1
±(𝜉) = ±√−𝑝𝑞𝛾 𝑠𝑒𝑐ℎ𝑝𝑞  (√𝛾 𝜉)

𝑀2
±(𝜉) = ±√𝑝𝑞𝛾 𝑐𝑠𝑐ℎ𝑝𝑞  (√𝛾 𝜉)

. 

(2) If 𝛾 < 0 and 𝜇 = 0 then  

𝑀3
±(𝜉) = ±√−𝑝𝑞𝛾 𝑠𝑒𝑐𝑝𝑞  (√−𝛾 𝜉)

𝑀4
±(𝜉) = ±√−𝑝𝑞𝛾 𝑐𝑠𝑐𝑝𝑞  (√−𝛾 𝜉)

. 

(3) If 𝛾 < 0 and 𝜇 =
𝛾2

4
 then  

𝑀5
±(𝜉) = ±√

−𝛾

2
𝑡𝑎𝑛ℎ𝑝𝑞 (√

−𝛾

2
 𝜉) ,

𝑀6
±(𝜉) = ±√

−𝛾

2
𝑐𝑜𝑡ℎ𝑝𝑞 (√

−𝛾

2
 𝜉) ,

𝑀7
±(𝜉) = ±√

−𝛾

2
(𝑡𝑎𝑛ℎ𝑝𝑞 (√−2𝛾 𝜉) ± 𝑖√𝑝𝑞 𝑠𝑒𝑐ℎ𝑝𝑞 (√−2𝛾 𝜉))

𝑀8
±(𝜉) = ±√

−𝛾

2
(𝑐𝑜𝑡ℎ𝑝𝑞 (√−2𝛾 𝜉) ± √𝑝𝑞 𝑐𝑠𝑐ℎ𝑝𝑞 (√−2𝛾 𝜉))

𝑀9
±(𝜉) = ±√

−𝛾

8
(𝑡𝑎𝑛ℎ𝑝𝑞 (√

−𝛾

8
 𝜉) + 𝑜𝑡ℎ𝑝𝑞 (√

−𝛾

8
 𝜉))

. 

(4) If 𝛾 > 0 and 𝜇 =
𝛾2

4
 then  

𝑀10
± (𝜉) = ±√

𝛾

2
𝑡𝑎𝑛𝑝𝑞 (√

𝛾

2
 𝜉)

𝑀11
± (𝜉) = ±√

𝛾

2
𝑐𝑜𝑡𝑝𝑞 (√

𝛾

2
 𝜉)

𝑀12
± (𝜉) = ±√

𝛾

2
(𝑡𝑎𝑛𝑝𝑞(√2𝛾𝜉) ± √𝑝𝑞  𝑠𝑒𝑐𝑝𝑞(√2𝛾𝜉))

𝑀13
± (𝜉) = ±√

𝛾

2
(𝑐𝑜𝑡𝑝𝑞(√2𝛾𝜉) ± √𝑝𝑞 𝑐𝑠𝑐𝑝𝑞(√2𝛾𝜉))

𝑀14
± (𝜉) = ±√

𝛾

8
(𝑡𝑎𝑛𝑝𝑞 (√

𝛾

8
𝜉) + 𝑐𝑜𝑡𝑝𝑞 (√

𝛾

8
𝜉))

. 

 

Where  

𝑡𝑎𝑛𝑝𝑞 (𝜉) = −𝑖
𝑝𝑒𝑖𝜉−𝑞𝑒−𝑖𝜉

𝑝𝑒𝑖𝜉+𝑞𝑒−𝑖𝜉,𝑐𝑜𝑡𝑝𝑞 (𝜉) = 𝑖
𝑝𝑒𝑖𝜉+𝑞𝑒−𝑖𝜉

𝑝𝑒𝑖𝜉−𝑞𝑒−𝑖𝜉 

𝑡𝑎𝑛ℎ𝑝𝑞 (𝜉) =
𝑝𝑒𝜉−𝑞𝑒−𝜉

𝑝𝑒𝜉+𝑞𝑒−𝜉         ,       𝑐𝑜𝑡ℎ𝑝𝑞 (𝜉) =

𝑝𝑒𝜉+𝑞𝑒−𝜉

𝑝𝑒𝜉−𝑞𝑒−𝜉 

𝑠𝑒𝑐𝑝𝑞 (𝜉) =
2

𝑝𝑒𝑖𝜉+𝑞𝑒−𝑖𝜉         ,       𝑐𝑠𝑐𝑝𝑞 (𝜉) =

2𝑖

𝑝𝑒𝑖𝜉−𝑞𝑒−𝑖𝜉 

𝑠𝑒𝑐ℎ𝑝𝑞 (𝜉) =
2

𝑝𝑒𝜉+𝑞𝑒−𝜉        ,        𝑐𝑠𝑐ℎ𝑝𝑞 (𝜉) =
2

𝑝𝑒𝜉−𝑞𝑒−𝜉 

Step 3: The integer 𝑁 calculated by balancing the 

capitals. Substituting Eq. (5) into Eq. (4) we obtain a 

system of algebraic equations in terms of 𝑀𝑙(𝜉)where 

(𝑙 = 0,1,2, … , 𝑁). 

Step 4: Solving these algebraic equations, we 

determine the values of the unknown parameters.  

4. Mathematical Analysis 

In this section, we delved into the study of the space-

time fractional cubic Nonlinear Fractional Schrödinger 

Equations (NLFSEs) with the aim of obtaining broader 

and more conventional exact wave solutions. To achieve 

this, we applied the Sardar sub-equation technique, a 

method that simplifies the solution process for fractional 

partial differential equations by transforming them into 

ordinary differential equations.  

Furthermore, we conducted a comprehensive 

mathematical analysis of these wave solutions to gain a 

deeper understanding of their behavior and properties. By 

utilizing a fractional transformation, we converted the 

original Equation (1) into an ordinary differential 

equation that accounts for both the real and imaginary 

components of the solution. This transformation 

facilitated the derivation of analytical solutions that 

provide insights into the dynamics and characteristics of 

the system under study. 

(𝑣 + 𝑎1 𝜃)𝜑∅′ + 𝜃𝜑 + (𝑎1𝑣 − 𝑎2)𝜑(∅′)2 + (𝑎2 − 𝑎1𝑣 =)𝜑′′ + 𝑎3𝜑30,

 (7) 

(𝑣 − 𝑎1 𝜃)𝜑′ + 2(𝑎2 − 𝑎1𝑣)𝜑′∅′ + (𝑎2 − 𝑎1𝑣)𝜑𝜑′′ =
0.                                                                                  (8) 

 

Integrating Eq.(8) yields 

 

∅′ =
𝑎1𝜃−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 𝜑−2.                                                  (9) 

 

Concurrently, the chirp is shown by 

 

𝛿𝜔 = − [
𝑎1𝜃−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 𝜑−2].                                           (10) 
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Substituting into the real part we get  

 
𝐴0𝜑4 + 𝐴1𝜑2 + 𝐴2 + 𝐴3𝜑3𝜑′′ + 𝑎3𝜑6 = 0.             (11) 

Where 𝐴0 =
(𝑣+𝑎1 𝜃)2−2𝑣

4(𝑎2−𝑎1𝑣)
+ 𝜃, 𝐴1 = 2𝐶𝑣, 𝐴2 =

𝐶2(𝑎1𝑣 − 𝑎2), 𝐴3 = (𝑎2 − 𝑎1𝑣), and𝐶 is the integration 

constant. 

Now balancing between𝜑3𝜑′′and 𝜑6the highest order 

derivatives and highest power of the nonlinear term in 

Eq. (11), we obtain 𝑁 = 1. Therefore, the solution of Eq. 

(11) is of the form 

𝜑(𝜉) = 𝑏0 + 𝑏1 𝑀(𝜉).                                              (12) 

Upon substituting Eq. (11) together with Eq. (6), we 

derive a polynomial expression in 𝑀𝑙(𝜉). Setting this 

polynomial to zero, representing the coefficient power of 

𝑀𝑙(𝜉), we formulate a system of algebraic equations that 

incorporate the variables 𝑏0, 𝑏1, 𝜇, and 𝛾. Solving this 

system of algebraic equations using Matlab provides the 

parameter values as follows: 

𝑏0 = 𝑏0,     𝑏1 = 𝑏1,    𝜇 = 𝜇,   𝛾 = 𝛾,   𝑣 =
𝑎2𝐶 − 𝑎3𝑏0

6

2𝑏0
2 + 𝑎1𝐶

,
 

𝜃 = −
𝑎2

𝑎1
2 +

𝑎2𝐶 − 𝑎3𝑏0
6

4𝑎1𝑏0
2 + 2𝑎1

2𝐶
± 2√

𝑎2

𝑎1

(
𝑎2

𝑎1
3 −

𝑎2𝐶 − 𝑎3𝑏0
6

2𝑏0
2 + 𝑎1𝐶

), 

Where 𝜔  is real if and only if 𝐶 ≥ −
𝑎1

3𝑎3𝑏0
6+2𝑎2𝑏0

2

𝑎1𝑎2−𝑎1
3𝑎2

. 

Substituting into (12) and the hypothesis of the auxiliary 

equation for different conditions, we establish the 

travelling wave solutions of (1) which are given as: 

Case 1: When𝛾 > 0and 𝜇 = 0,  then the solutions are 

as follows: 

𝑢1 = {𝑏0 ±

𝑏1√−𝑝𝑞𝛾  sech𝑝𝑞  (√𝛾𝜉)}𝑒
𝑖(∅(𝜉)−(− 

𝑎2
𝑎1

2+
𝑎2𝐶−𝑎3𝑏0

6

4𝑎1𝑏0
2+2𝑎1

2𝐶
 ± 2√

𝑎2
𝑎1

(
𝑎2
𝑎1

3−
𝑎2𝐶−𝑎3𝑏0

6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,                       

(13) 

 

 
Figure 1: 3D, 2D and 3D chirped Bright soliton solutions of Equation (13) for𝐚𝟏 = 𝟎. 𝟏𝟓, 𝐚𝟐 = 𝟎. 𝟓, 

𝐚𝟑 = 𝟐, 𝐛𝟎 = 𝟎. 𝟐𝟓, 𝛄 = 𝟎. 𝟓, 𝐛𝟏 = 𝟏, 𝐂 = 𝟎. 𝟓,and𝛂 = 𝟏, with 𝐱 ∈ [−𝟒, 𝟒] and 𝐱 ∈ [𝟎, 𝟐]. 
 

𝛿𝜔1 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√−𝑝𝑞𝛾  sech𝑝𝑞 (√𝛾𝜉))
−2

],                                                       

(14) 

𝑢2 = {𝑏0 ±

𝑏1√−𝑝𝑞𝛾  csch𝑝𝑞  (√𝛾𝜉)}𝑒
𝑖(∅(𝜉)−(− 

𝑎2
𝑎1

2+
𝑎2𝐶−𝑎3𝑏0

6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2
𝑎1

3−
𝑎2𝐶−𝑎3𝑏0

6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,            

(15) 

 

𝛿𝜔2 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√−𝑝𝑞𝛾  csch𝑝𝑞 (√𝛾𝜉))
−2

].                                                       

(16)      

 

Case 2: When 𝛾 < 0and 𝜇 = 0,  we obtain   
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𝑢3 = {𝑏0 ±

𝑏1√−𝑝𝑞𝛾  sec𝑝𝑞 (√−𝛾𝜉)}𝑒
𝑖(∅(𝜉)−(

𝑎2
𝑎1

2+
𝑎2𝐶−𝑎3𝑏0

6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2
𝑎1

3−
𝑎2𝐶−𝑎3𝑏0

6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,             

(17) 

 

 

 

 

Figure 2: 3D, 2D and 3D chirped Dark soliton solutions of Equation (17) for 𝐚𝟏 = 𝟎. 𝟏𝟓, 𝐚𝟐 = 𝟎. 𝟎𝟓, 

𝐚𝟑 = 𝟎. 𝟐, 𝐛𝟎 = 𝟎. 𝟐𝟓, 𝛄 = −𝟎. 𝟎𝟓, 𝐛𝟏 = 𝟎. 𝟎𝟐, 𝐂 = 𝟓,and𝛂 = 𝟏, with 𝐱 ∈ [−𝟒, 𝟒] and 𝐱 ∈ [𝟎, 𝟐]. 

 

= 𝟏, with 𝐱 ∈ [−𝟒, 𝟒] and 𝐱 ∈ [𝟎, 𝟐]. 

 

𝛿𝜔3 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√−𝑝𝑞𝛾  sec𝑝𝑞 (√−𝛾𝜉))
−2

],                                 (18)       

𝑢4 = {𝑏0 ±

𝑏1√−𝑝𝑞𝛾  csc𝑝𝑞 (√−𝛾𝜉)}𝑒
𝑖(∅(𝜉)−(

𝑎2
𝑎1

2+
𝑎2𝐶−𝑎3𝑏0

6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2
𝑎1

3−
𝑎2𝐶−𝑎3𝑏0

6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,             

(19) 

𝛿𝜔4 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√−𝑝𝑞𝛾  csc𝑝𝑞 (√−𝛾𝜉))
−2

].                                                      

(20) 

Case 3: When 𝛾 < 0and 𝜇 =
𝛾2

4
,  we obtain    

𝑢5 = {𝑏0 ±

𝑏1√
−𝛾

2
tanh𝑝𝑞  (√

−𝛾

2
𝜉)} 𝑒

𝑖(∅(𝜉)−(
𝑎2
𝑎1

2+
𝑎2𝐶−𝑎3𝑏0

6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2
𝑎1

3−
𝑎2𝐶−𝑎3𝑏0

6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,               

(21) 
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Figure 3: 3D, 2D and 3D chirped Kink soliton solutions of Equation (21) for 𝐚𝟏 = 𝟎. 𝟏𝟓, 𝐚𝟐 = 𝟎. 𝟎𝟓, 
𝐚𝟑 = 𝟎. 𝟐, 𝐛𝟎 = 𝟎. 𝟐𝟓, 𝛄 = −𝟐, 𝐛𝟏 = 𝟎. 𝟎𝟐, 𝐂 = 𝟓,and𝛂 = 𝟏, with 𝐱 ∈ [−𝟒, 𝟒] and 𝐱 ∈ [𝟎, 𝟐]. 

𝛿𝜔5 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√
−𝛾

2
tanh𝑝𝑞 (√

−𝛾

2
𝜉))

−2

],                                 (22) 

𝑢6 = {𝑏0 ±

𝑏1√
−𝛾

2
coth𝑝𝑞 (√

−𝛾

2
𝜉)} 𝑒

𝑖(∅(𝜉)−(
𝑎2
𝑎1

2+
𝑎2𝐶−𝑎3𝑏0

6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2
𝑎1

3−
𝑎2𝐶−𝑎3𝑏0

6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,            

(23) 

𝛿𝜔6 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√
−𝛾

2
coth𝑝𝑞 (√

−𝛾

2
𝜉))

−2

],                                 (24) 

𝑢7 = {𝑏0 ± 𝑏1√
−𝛾

2
(tanh𝑝𝑞  (√−2𝛾𝜉) ±

𝑖√𝑝𝑞sech𝑝𝑞  (√−2𝛾𝜉))} 𝑒

𝑖(∅(𝜉)−(
𝑎2

𝑎1
2+

𝑎2𝐶−𝑎3𝑏0
6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2

𝑎1
3−

𝑎2𝐶−𝑎3𝑏0
6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,(25) 

𝛿𝜔7 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√
−𝛾

2
(tanh𝑝𝑞 (√−2𝛾𝜉) ± 𝑖√𝑝𝑞sech𝑝𝑞 (√−2𝛾𝜉)))

−2

],                                   

(26) 

𝑢8 = {𝑏0 ± 𝑏1√
−𝛾

2
(coth𝑝𝑞 (√−2𝛾𝜉) ±

√𝑝𝑞csch𝑝𝑞 (√−2𝛾𝜉))} 𝑒
𝑖(∅(𝜉)−(

𝑎2
𝑎1

2+
𝑎2𝐶−𝑎3𝑏0

6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2
𝑎1

3−
𝑎2𝐶−𝑎3𝑏0

6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,        

(27) 

𝛿𝜔8 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ± 𝑏1√

−𝛾

2
(coth𝑝𝑞  (√−2𝛾𝜉) ±

√𝑝𝑞csch𝑝𝑞  (√−2𝛾𝜉)))

−2

],                                              (28) 

𝑢9 = {𝑏0 ± 𝑏1√
−𝛾

8
(tanh𝑝𝑞 (√

−𝛾

8
𝜉) +

coth𝑝𝑞  (√
−𝛾

8
𝜉))} 𝑒

𝑖(∅(𝜉)−(
𝑎2

𝑎1
2+

𝑎2𝐶−𝑎3𝑏0
6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2

𝑎1
3−

𝑎2𝐶−𝑎3𝑏0
6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,                                

(29) 

𝛿𝜔9 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ± 𝑏1√

−𝛾

8
(tanh𝑝𝑞 (√

−𝛾

8
𝜉) +

coth𝑝𝑞  (√
−𝛾

8
𝜉)))

−2

].                                                      (30) 

Case 4: When 𝛾 > 0and 𝜇 =
𝛾2

4
,  we obtain 

𝑢10 = {𝑏0 ±

𝑏1√
𝛾

2
tan𝑝𝑞 (√

𝛾

2
𝜉)} 𝑒

𝑖(∅(𝜉)−(
𝑎2

𝑎1
2+

𝑎2𝐶−𝑎3𝑏0
6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2

𝑎1
3−

𝑎2𝐶−𝑎3𝑏0
6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,                                                          

                  

   (31) 
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𝛿𝜔10 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√
𝛾

2
tan𝑝𝑞 (√

𝛾

2
𝜉))

−2

],                                           (32) 

𝑢11 = {𝑏0 ±

𝑏1√
𝛾

2
cot𝑝𝑞  (√

𝛾

2
𝜉)} 𝑒

𝑖(∅(𝜉)−(
𝑎2

𝑎1
2+

𝑎2𝐶−𝑎3𝑏0
6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2

𝑎1
3−

𝑎2𝐶−𝑎3𝑏0
6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,                            

     (33) 

𝛿𝜔11 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ±

𝑏1√
𝛾

2
cot𝑝𝑞 (√

𝛾

2
𝜉))

−2

],                                            (34) 

𝑢12 = {𝑏0 ± 𝑏1√
𝛾

2
(tan𝑝𝑞 (√2𝛾𝜉) ±

√𝑝𝑞 sec𝑝𝑞 (√2𝛾𝜉))} 𝑒

𝑖(∅(𝜉)−(
𝑎2

𝑎1
2+

𝑎2𝐶−𝑎3𝑏0
6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2

𝑎1
3−

𝑎2𝐶−𝑎3𝑏0
6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,

              (35) 

 

Figure 4: 3D, 2D and 3D chirped Periodic soliton solutions of Equation (35) for 𝐚𝟏 = 𝟎. 𝟏𝟓, 𝐚𝟐 = 𝟏. 𝟓, 

𝐚𝟑 = 𝟎. 𝟏𝟐, 𝐛𝟎 = 𝟎. 𝟐𝟓, 𝛄 = 𝟎. 𝟏𝟐, 𝐛𝟏 = 𝟎. 𝟓, 𝐂 = −𝟏. 𝟓,and𝛂 = 𝟏, with 𝐱 ∈ [−𝟒, 𝟒] and 𝐱 ∈ [𝟎, 𝟐]. 

 

𝛿𝜔12 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ± 𝑏1√

𝛾

2
(tan𝑝𝑞 (√2𝛾𝜉) ±

√𝑝𝑞 sec𝑝𝑞 (√2𝛾𝜉)))

−2

],                                         (36) 

 

𝑢13 = {𝑏0 ± 𝑏1√
𝛾

2
(cot𝑝𝑞 (√2𝛾𝜉) ±

√𝑝𝑞 csc𝑝𝑞 (√2𝛾𝜉))} 𝑒

𝑖(∅(𝜉)−(
𝑎2

𝑎1
2+

𝑎2𝐶−𝑎3𝑏0
6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2

𝑎1
3−

𝑎2𝐶−𝑎3𝑏0
6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,

                                  (37) 

𝛿𝜔13 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ± 𝑏1√

𝛾

2
(cot𝑝𝑞 (√2𝛾𝜉) ±

√𝑝𝑞 csc𝑝𝑞 (√2𝛾𝜉)))

−2

],                                           (38) 

𝑢14 = {𝑏0 ± 𝑏1√
𝛾

8
(tan𝑝𝑞 (√

𝛾

8
𝜉) +

cot𝑝𝑞 (√
𝛾

8
𝜉))} 𝑒

𝑖(∅(𝜉)−(
𝑎2

𝑎1
2+

𝑎2𝐶−𝑎3𝑏0
6

4𝑎1𝑏0
2+2𝑎1

2𝐶
±2√

𝑎2
𝑎1

(
𝑎2

𝑎1
3−

𝑎2𝐶−𝑎3𝑏0
6

2𝑏0
2+𝑎1𝐶

)) 𝑡)

,                                                

(39) 
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𝛿𝜔14 = − [
𝑎1𝜔−𝑣

𝑎2−𝑎1𝑣
+ 𝐶 (𝑏0 ± 𝑏1√

𝛾

8
(tan𝑝𝑞 (√

𝛾

8
𝜉) +

cot𝑝𝑞 (√
𝛾

8
𝜉)))

−2

].                                                 (40) 

The soliton solutions obtained in this study are 

diverse and novel, originating from the general solutions. 

4. CONCLUSION  

This article discusses the use of the Sardar sub-

equation approach to produce novel optical and chirped 

optical solitons from the space-time fractional cubic 

nonlinear Schrödinger equation with Kerr law 

nonlinearity. The solutions show a wide range of 

behaviors within the system and are stated in terms of 

trigonometric and hyperbolic functions. A wide range of 

phenomena are displayed by the several varieties of 

optical and chirped optical solitons that have been found, 

including dark, bright, kink, and periodic. These solutions 

are shown in two and three-dimensional graphics. The 

results provide a thorough understanding of nonlinear 

dynamics and shed some light on phenomena related to 

condensed matter physics, quantum mechanics, and 

nonlinear optics. 
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