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ABSTRACT 

This study explains the concept of soft topological spaces in the view soft filters, studying the properties of soft filters in 

soft topological spaces. The study aims to contribute to the development of soft mathematical concepts and structures, 

building on the foundations of soft set theory. During the study, we found a relation between the concepts 𝜏-convergence 

and 𝜏-Hausdorff soft topological spaces. 
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1. INTRODUCTION 

Classical tools of Mathematics 19 cannot solve the 

problems, which are vague rather than precise. To 

overcome these difficulties Molodtsov 16 initiated the 

concept of soft set theory which doesn’t require the 

specification of parameters. He applied soft set theory 

successfully in smoothness of functions, game theory, 

and operation research and so on. Thereafter so many 

research works 5 have been done on this concept in 

different disciplines of Mathematics.                                                                                                  

Research on soft sets-based decision-making has 

received much attention in recent years. Later, in 2003, 

Maji et al. 14,15 made a theoretical study on soft set theory. 

They introduced several operations on soft sets and 

applied soft sets to decision-making problems.                               

Kharal and Ahmed 8 defined soft mappings. In 2011, 

Shabir and Naz 17 came up with an idea of soft 

topological spaces. 

Later some researchers 2, 19, 4 and 18 studied on soft 

topological spaces. The definition of filter and ultrafilter 

given here are those of Sharma 7.   

In our present work, we have introduced the concept 

of soft topological spaces in the view of soft filters. We 

also discuss some of the properties of soft filters in soft 

topological spaces. 

 

 

 

 

 

 

The researcher in this study adopted a theoretical 

approach, building on the foundations of soft set theory 

and its applications in topology. The research involves a 

comprehensive review of existing literature on soft sets, 

soft topology, and their applications, where he explained 

the concept of soft filters is defined as a collection of soft 

sets that satisfy certain properties, including being closed 

under finite intersections and the superset operation. Soft 

topology is a extension of classical topology, where soft 

sets are used to define soft open sets. The study of soft 

filters and soft topology has many applications, including 

decision-making and data analysis, the study aims to 

contribute to the development of soft mathematical 

concepts and structures, which can have applications in 

various fields, including fuzzy mathematics, also aims to:  

1. Investigate the concept of soft topological spaces in 

the context of soft filters. 

2. Examine the properties of soft filters in soft 

topological spaces. 

3. Study the relationship between soft filters and 𝜏-
convergent and 𝜏-Hausdorff soft topological spaces. 

4. Contribute to the development of soft mathematical 

concepts and structures based on soft set theory. 

2. PRELIMINARIES 

Definition 2.1 6 A soft set 𝐹𝐴 over 𝑋 is a set defined 

by the function 𝑓𝐴 representing a mapping 𝑓𝐴: 𝐴 ⟶ 𝑃(𝑋) 
such that 𝑓𝐴 = ∅ if 𝑥 ∉ 𝐴. Here, 𝑓𝐴 is called the 

approximate function of the soft set 𝐹𝐴. A soft set over 𝑋 

can be represented by the set of ordered pairs 

𝐹𝐴 = {(𝑥, 𝑓𝐴): 𝑥 ∈ 𝐴, 𝑓𝐴(𝑥) ∈ 𝑃(𝑋)}.    

Definition 2.2 2  Let 𝐹𝐴 and 𝐺𝐴 be two soft sets over 

𝑋. The parallel product of 𝐹𝐴 and 𝐺𝐴 is defined as 

𝐹𝐴 ×̃ 𝐺𝐴 = (𝐹 ×̃ 𝐺)𝐴, where (𝐹 ×̃ 𝐺)(𝛼) =
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𝐹(𝛼) ×̃ 𝐺(𝛼), ∀𝑎 ∈ 𝐴 ⊆ 𝐸. It is clear that (𝐹 ×̃ 𝐺)𝐴 is a 

soft set over 𝑋 ×̃ 𝑋. 

Definition 2.317 Let 𝜏 be the collection of soft sets 

over 𝑋, then 𝜏 is said to be a soft topology on 𝑋 if: 

1. ∅, 𝑋 are belong to 𝜏. 

2. The union of any number of soft sets in 𝜏 belong to 𝜏. 

3. The intersection of any two soft sets in 𝜏 belong to 𝜏. 

In this case, the triplet (𝑋, 𝜏, 𝐴) is called soft 

topological space over 𝑋, and any member of 𝜏 is known 

as soft open set in 𝑋. The complement of a soft open set 

is called soft closed set over 𝑋.   

Definition 2.4 9 A crisp element 𝑥 ∈ 𝑋 is said to be in 

the soft set 𝐹𝐴 over 𝑋, denoted by      𝑥 ∈ 𝑋 iff  𝑥 ∈
𝐹(𝛼), ∀𝛼 ∈ 𝐴. 

Definition 2.5 9 A soft set 𝐹𝐴 is said to be 𝜏-soft 

neighborhood of an element 𝑥 ∈ 𝑋 if there exist 𝐺𝐴 ∈ 𝜏 
such that  𝑥 ∈ 𝐺𝐴 ⊆ 𝐹𝐴. 

Definition 2.6 10,11 Let (𝑋, 𝜏, 𝐴) and (𝑌, 𝜎, 𝐴) be two 

soft topological spaces. The mapping 𝑓: (𝑋, 𝜏, 𝐴) ⟶
(𝑌, 𝜎, 𝐴) is said to be:                                

1. Soft continuous if 𝑓−1(𝐹𝐴) ∈ 𝜏 , ∀ 𝐹𝐴 ∈ 𝜎. 

2. Soft home morphism if 𝑓 is bijective and 𝑓, 𝑓−1 are 

soft continuous. 

3. Soft open if 𝐹𝐴 ∈ 𝜏 ⟹ 𝑓[𝐹𝐴] ∈ 𝜎. 

4. Soft closed if  𝐹𝐴 is soft closed in (𝑋, 𝜏, 𝐴) ⟹ 𝑓[𝐹𝐴] is 

soft closed in (𝑌, 𝜎, 𝐴). 

Definition 2.7 3 Let(𝑋, 𝜏, 𝐴), (𝑌, 𝜎, 𝐴) and (𝑍, 𝜔, 𝐴) 
be two soft topological spaces. If 𝑓: (𝑋, 𝜏, 𝐴) ⟶
(𝑌, 𝜎, 𝐴) & 𝑔: (𝑌, 𝜎, 𝐴) ⟶ (𝑍,𝜔, 𝐴) are soft continuous 

and 𝑓(𝑋) ⊆ 𝑌, then the mapping 𝑔𝑓: (𝑋, 𝜏, 𝐴) ⟶
(𝑍,𝜔, 𝐴) is soft. 

Definition 2.8 10 Let 𝜏 be a soft topology on 𝑋. Then a 
soft set 𝐹𝐴 is said to be 𝜏-soft neighborhood (shortly soft 

nbh) of the element 𝐸𝛼
𝑋  if there exist a soft set 𝐺𝐴 ∈ 𝜏 

such that   𝐸𝛼
𝑋 ∈ 𝐺𝐴 ⊆ 𝐹𝐴. The soft nbh system of a soft 

element 𝐸𝛼
𝑋 in (𝑋, 𝜏, 𝐴) is denoted by 𝑁𝜏(𝐸𝛼

𝑋).  

Definition 2.9 9 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space. A subcollection 𝛽 of 𝜏 is said to be an open base of 

𝜏 if every member of 𝜏 can be expressed as the union of 

some member of 𝛽. 

Definition 2.10 10 The soft topology in 𝑋 × 𝑌 induced 

by the open base    𝛽 = {𝐹𝐴 × 𝐺𝐴: 𝐹𝐴 ∈ 𝜏 , 𝐺𝐴 ∈ 𝜎} is said 

to be the product soft topology of the soft topologies 

𝜏 & 𝜎 it is denoted by 𝜏 × 𝜎. The soft topological space 
(𝑋 × 𝑌, 𝜏 × 𝜎, 𝐴) is said to be the soft topological product 

of soft topological space (𝑋, 𝜏, 𝐴) and (𝑌, 𝜎, 𝐴).  

Definition 2.11 3 A collection 𝔅 of soft 

neighborhoods of a soft element 𝐸𝛼
𝑋, ∀ 𝛼 ∈ 𝐴 is said to be 

fundamental soft neighborhood system or soft 

neighborhood base of 𝐸𝛼
𝑋 if for any soft nei- ghborhood  

𝑁𝐴 of 𝐸𝛼
𝑋, ∃ 𝐻𝐴 ∈ 𝐵 such that 𝐻𝐴 ⊆ 𝑁𝐴. 

Definition 2.12 13 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space. Then ℱ is called a soft filter on 𝑋 if ℱsatisfies the 

following properties: 

1. ∅ ∉ ℱ. 

2. ∀ 𝐹𝐴, 𝐺𝐵 ∈ ℱ, 𝐹𝐴 ∩ 𝐺𝐵 ∈ ℱ. 

3. ∀ 𝐹𝐴 ∈ ℱ & 𝐹𝐴 ⊆ 𝐺𝐵, 𝐺𝐵 ∈ ℱ. 

 Definition 2.13 13 A soft filter ℱ in a toplogical space 

𝑋 is said to converges to a soft point   𝑥𝜆 ∈ 𝑋 if every soft 

neighborhood of 𝑥𝜆 belongs to ℱ for each 𝜆 ∈ 𝐴. 

Theorem 2.1 13 Let (𝑋, 𝜏, 𝐴) be a soft filter of a soft 

topological Hausdorff space 𝑋, if ℱ converges to  𝑥(𝜆) ∈
𝑋 also to 𝑦(𝜆) ∈ 𝑋, for each 𝜆 ∈ 𝐴 then 𝑥 = 𝑦.   

Theorem 2.2 13 Let ℱ be a soft filter of a soft 

topological space and let 𝐹𝐴 ⊆ 𝑋. Then 𝑥𝜆 ∈ 𝐹𝐴 iff there 

exist a soft filter ℱ of subsets of 𝑋 such that 𝐹𝐴 ∈ ℱ and 

ℱ converges to 𝑥𝜆, ∀ 𝜆 ∈ 𝐴. 

Definition 2.14 12 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space. A filter ℱ on 𝑋 is said to be                    𝜏-
convergent to a point 𝑥 ∈ 𝑋 if every 𝜏-neighborhood 𝑁𝐴 

of 𝑥 is a subset of ℱ. We say that 𝑥 is a 𝜏-limit point of ℱ.   

Example 2.1 Let (𝑋, 𝜏, 𝐴) be a soft topological space, 

𝑋 = {1,2,3} & 𝐴 = {{1}, {1,2}, {1,2,3}}, and let ℱ =

{∅, {1}, {1,2}, {1,2,3}} be a filter on 𝑋, then the 𝜏-nbh are 

as follows: 𝜏-cl({2}) = {1,2} ∈ ℱ, 𝜏-cl({1,2}) = {1,2} ∈
ℱ & 𝜏-cl({2,3}) = {1,2,3} ∈ ℱ ⟹ since all                    

 𝜏-closure of 𝜏-nbh of 𝑥 = 2 belong to ℱ, then every 𝜏-
nbh 𝑁𝐴 of 𝑥 = 2 has a 𝜏-closure (𝜏-cl(𝑁𝐴)) belong to 

ℱ,⟹ 𝑥 = 2 is a 𝜏-limit point of the filter  ℱ, and ℱ 

converges to 𝑥 = 2.  

Definition 2.15 12 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space. A filter base 𝒢 on 𝑋 is said to be  𝜏-converges to a 

point  𝑥 ∈ 𝑋, if the filter whose base is 𝛽∗ to a point 𝑥, we 

say that 𝑥 is a 𝜏-limit point of 𝒢. 

3. SOFT FILTERS IN SOFT TOPOLOGICAL 

SPACES       

Proposition 3.1 1 Let (X, τ, A) be a soft topological 

space and ℱ be a filter on 𝑋 then the following statement 

are equivalent:  

1. ℱ is 𝜏-converges to a point  𝑥 ∈ 𝑋. 

2. ℱ is finer than the collection Ω = {𝜏 −
𝑐𝑙(𝑁𝐴):𝑁𝐴 𝑖𝑠 𝜏 − 𝑛𝑏ℎ 𝑜𝑓 𝑥}. 
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3. For every 𝜏-nab 𝑁𝐴 of 𝑥, there is 𝐹 ∈ ℱ such that  

𝐹 ⊂ 𝜏 − 𝑐𝑙(𝑁𝐴). 

Corollary 3.1 Let (𝑋, 𝜏, 𝐴) be a soft topological space. 

Then the 𝜏-nbh filter of a point 𝑥 ∈ 𝑋 is 𝜏-converges to 𝑥. 

Proof  Let 𝑁𝐴 be a 𝜏-nbh of 𝑥. By definition of a 𝜏-
nbh, there exists a set 𝑉 in 𝐴 such that         𝑥 ∈ 𝑉 & 𝑉 ⊆
𝑁𝐴. Now, consider the 𝜏-nbh filter of 𝑥, denoted by 𝐹𝜏(𝑥). 
Since  𝑉 ∈ 𝐴 & 𝑥 ∈ 𝑉, we have 𝑉 ∈ 𝐹𝜏(𝑥). Since 𝑉 ⊆ 𝑁𝐴, 
we conclude that 𝐹𝜏(𝑥) is 𝜏-converges to 𝑥. 

Proposition 3.2 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space, let 𝜏 be an indiscrete topology on 𝑋. Then every 

filter on 𝑋 is 𝜏-converges to a point 𝑥 ∈ 𝑋.    

Proof  Suppose that ℱ is an arbitrary filter on 𝑋. Since 

the only open sets in 𝜏 are 𝑋 and the empty set. So, we 

have two cases: 

1. If ℱ contains the empty set, then the filter ℱ is trivial 

and we can say that it 𝜏-converges to every point in 𝑋.  

2. If ℱ does not contains the empty set, then ℱ 

contains 𝑋. Since 𝑋 is the only non-empty open set in 

𝜏, every subset of 𝑋 is a 𝜏-nbh of every point in 𝑋. 
Therefore, ℱ is 𝜏-converges to every point 𝑥 in 𝑋. 

Proposition 3.3 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space. If a filter ℱ on 𝑋 is 𝜏-converges to a point 𝑥 in 𝑋, 
then every filter 𝒢 is finer than ℱ also 𝜏-converges to a 

point 𝑥. 

Proof  To prove this, assume that ℱ is 𝜏-converges to 

𝑥 in 𝑋, this means that for every 𝜏-nbh 𝑁𝐴 of 𝑥, there 

exists a set 𝐴 in ℱ such that 𝐴 ⊆ 𝑁𝐴. Now, consider a 

filter 𝒢 that is finer than ℱ, this means that every set in 𝒢 

is also a set in ℱ. Let take a 𝜏-nbh 𝑁𝐴 of 𝑥. Since ℱ is 𝜏-
converges to 𝑥, there exist a set 𝐴 in ℱ such that 𝐴 ⊆ 𝑁𝐴. 
Since 𝒢 is finer than ℱ, 𝐴 is also in 𝒢. Therefore, we have 

𝐴 ⊆ 𝑁𝐴 for every 𝜏-nbh 𝑁𝐴 of 𝑥, and every set 𝐴 in 𝒢 . 
This implies that 𝒢 is 𝜏-converges to  𝑥 in 𝑋. 

Proposition 3.4 Let Ω be the collection of all filters on 

a soft topological space (𝑋, 𝜏, 𝐴) which is 𝜏-converges to 

the same point 𝑥 in 𝑋. Then the intersection of all filters 

in Ω also 𝜏-converges to a point 𝑥. 

Proof  Assume that Ω is the collection of all filters on 

a soft topological space (𝑋, 𝜏, 𝐴) which    𝜏-converges to 

the same point 𝑥 in 𝑋. Now, let ℱ be the intersection of 

all filters in Ω. By the definition of 𝜏-converges, a filter ℱ 

is converges to 𝑥 if for every 𝜏-open set 𝑈 containing 𝑥, 
there exists a set 𝐴 in ℱ such that for every element 𝑦 in 

𝐴, (𝑥, 𝑦) is in 𝜏(𝑈). Let 𝑈 be a 𝜏-open set containing 𝑥, 
and since ℱ is the intersection of all filters in Ω, it means 

that for every filter 𝒢 in Ω, U is in 𝒢. Therefore, 𝑈 is also 

in ℱ. Now 𝑦  any element in ℱ, and since ℱ is a filter, it 

means that it contains the intersection of any two sets in  

ℱ. Thus, if 𝐴 is any set in ℱ, then 𝑦 is also in 𝐴. This 

implies that (𝑥, 𝑦) is in 𝜏(𝑈), as 𝑈 is a 𝜏-open set 

containing 𝑥. Therefore, for any 𝜏-open set 𝑈 containing 

𝑥, there exists a set 𝐴 in ℱ such that for every element 𝑦 

in 𝐴, (𝑥, 𝑦) is in 𝜏(𝑈). This fulfills the definition of 𝜏-
converges, Then the intersection of all filters in Ω also        

𝜏-converges to a point 𝑥. 

 Proposition 3.5 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space. A filter ℱ on 𝑋 is 𝜏-converges to a point 𝑥 in 𝑋 if 

and only if every ultrafilter containing ℱ is 𝜏-converges 

to a point 𝑥.  

Proof  Suppose that ℱ does not 𝜏-converges to 𝑥. This 

means that there exists a 𝜏-open set 𝑈 containing 𝑥 such 

that for every set 𝐴 in ℱ, there exists an element 𝑦 in 𝐴 

such that (𝑥, 𝑦) is not in 𝜏(𝑈). Now, consider the 

collection Ω of all ultrafilters containing ℱ, and since 

every ultrafilter containing ℱ is 𝜏-converges to 𝑥, it 

follows that for every 𝜏-open set 𝑈 containing 𝑥, there 

exist a set 𝐴 in every ultrafilter ℋ in Ω such that for 

every element 𝑦 in 𝐴, (𝑥, 𝑦) is in 𝜏(𝑈). However, we have 

found a 𝜏-open set 𝑈 containing 𝑥 such that for every set 

𝐴 in ℱ, there exists an element 𝑦 in 𝐴 such that(𝑥, 𝑦) is 

not in 𝜏(𝑈). This implies that there exists at least one 

ultrafilter in Ω (specifically, the one containing the sets 

that do not satisfy the 𝜏-convergence condition) that does 

not 𝜏-converge to 𝑥. This contradicts our assumption that 

every ultrafilter containing ℱ is  𝜏-converges to 𝑥. 
Therefore, if every ultrafilter containing ℱ is 𝜏-converges 

to 𝑥, then ℱ must indeed 𝜏-converge to 𝑥. 

Example 3.1 Let (𝑋, 𝜏, 𝐴) be a soft topological space 

where 𝑋 = {1,2,3} &                              𝐴 =

{{1}, {1,2}, {1,2,3}}, and let ℱ = {∅, {1}, {1,2}, {1,2,3}} be 

a filter on 𝑋, if 𝑥 = 2 ⟹ the    𝜏-nbh are as follows: for 
{2} ⟹ {2} ∈ ℱ, for {1,2} ⟹ {1,2} ∈ ℱ, for {2,3} ⟹
{1,2,3} ∈ ℱ. Since all 𝜏-nbh of 𝑥 = 2 belong to ℱ ⟹ ℱ 

is 𝜏-converges to 𝑥 = 2. Suppose that ℋis an ultrafilter 

containing ℱ ⟹  ℋ = {∅, {1,2,3}}. For the ultrafilter ℋ 

is 𝜏-converges to a point 𝑥, for the same point 𝑥 = 2 ⟹  

for {2} ⟹ {2} ∈ ℋ, for {1,2} ⟹ {1,2} ∉ ℋ, for 
{2,3} ⟹ {1,2,3} ∈ ℋ. Since there exist a 𝜏-nbh {1,2} ∉
ℋ ⟹  ℋ does not 𝜏-converge to 𝑥 = 2. 

Definition 3.1 A soft topological space (𝑋, 𝜏, 𝐴) is 

said to be 𝜏-Hausdorff if for every two distinct points 

𝑥 & 𝑦 in 𝑋, there exist two 𝜏-open sets 𝑈 & 𝑉 such that 𝜏-
𝑐𝑙(𝑈) ∩ 𝜏-𝑐𝑙(𝑉) = ∅. 

Proposition 3.6 If a soft topological space (𝑋, 𝜏, 𝐴) is 

𝜏-Hausdorff, then every 𝜏-converges filter on 𝑋 has a 

unique 𝜏-limit point. 

Proof  Suppose that (𝑋, 𝜏, 𝐴) is a 𝜏-Hausdorff soft 

topological space, and let ℱ be a 𝜏-convergent filter on 𝑋. 
Assume, for contradiction, that ℱ has more than one 𝜏-
limit point and let 𝑥 , 𝑦 be two distinct 𝜏-limit point in ℱ, 
then by definition of a 𝜏-Hausdorff space, there exist two 
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𝜏-open sets 𝑈 & 𝑉 such that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 &  𝜏-𝑐𝑙(𝑈) ∩ 𝜏-
𝑐𝑙(𝑉) = ∅. Since ℱ is a 𝜏-convergent filter, for any 𝜏-
open set containing 𝑥,(in this case 𝑈), there exists an 

element 𝑧 in ℱ such that 𝑧 ∈ 𝑈. Similarly, there exists an 

element 𝑠 in ℱ such that 𝑠 ∈ 𝑉. Now, consider the set 

𝑊 = 𝑈 ∩ 𝑉. Since             𝜏-𝑐𝑙(𝑈) ∩ 𝜏-𝑐𝑙(𝑉) = ∅, it 

follows that the  𝜏-𝑐𝑙(𝑊) ∩ ℱ = ∅. However, this 

contradicts the assumption that  𝑥 & 𝑦 are 𝜏-limit points 

in ℱ, as 𝑊 is a 𝜏-open set containing both 𝑥 & 𝑦, and 

there is no element in ℱ contained in 𝑊. Therefor, our 

assumption that ℱ has more than one      𝜏-limit point is 

false. This implies that ℱ has a unique 𝜏-limit point.    

Definition 3.2 Let (𝑋, 𝜏, 𝐴) a soft topological space, A 

filter (filter base) 𝒢 on a set 𝑋 is said to be 𝜏-accumulates 

at a point 𝑥 ∈ 𝑋 if every 𝜏- nbh𝑁𝐴 of 𝑥, and every 𝐹 ∈ ℱ, 
the intersection            𝜏-𝑐𝑙(𝑁𝐴) ∩ 𝐹 ≠ ∅. We say that 𝑥 

is a 𝜏-cluster point of ℱ.   

 Proposition 3.7 Let  (𝑋, 𝜏, 𝐴) be a soft topological 

space and let ℱ be a filter on 𝑋. If a point  𝑥 ∈ 𝑋 is 𝜏-
limit point of ℱ, then it is 𝜏-cluster point of ℱ.   

Proof  Suppose that a point 𝑥 is a 𝜏-limit point of ℱ, 
i.e., for every 𝜏-nbh 𝑁𝐴 of 𝑥, 𝑁𝐴 ∩ ℱ ≠ ∅.  Let 𝑊 be any 

𝜏-nbh of 𝑥, then by definition of 𝜏-cluster point, for every 

𝜏-nbh 𝑁𝐴 of 𝑥, 

𝑁𝐴 ∩ ℱ ≠ ∅. Since 𝜏- nbh 𝑁𝐴 of 𝑥, and since 𝑥 is a 𝜏-
limit point of ℱ. Then 𝑁𝐴 ∩ ℱ ≠ ∅. Now, consider the 

intersection (𝑁𝐴 ∩𝑊) ∩ ℱ ≠ ∅. Since 𝑁𝐴 ∩ ℱ ≠ ∅,𝑁𝐴 ∩
𝑊 ≠ ∅, we have (𝑁𝐴 ∩𝑊) ∩ ℱ ≠ ∅. Thus, 𝑋 is a 𝜏-
cluster point of ℱ.  

Proposition 3.8 Let  (𝑋, 𝜏, 𝐴) be a soft topological 

space. If a filter base 𝒢 on 𝑋 is 𝜏-converges to 𝑥 ∈ 𝑋, then 

it is 𝜏-accumulates at 𝑥 ∈ 𝑋 and in a 𝜏-Hausdorff space, 

at no point other that 𝑥.  

Proof  Assume a filter 𝒢 on 𝑋 𝜏-converges to 𝑥. This 

means that every 𝜏-nbh 𝑁𝐴 of 𝑥, 𝑁𝐴 ∈ 𝒢. Since 𝒢 is 𝜏-
converges to 𝑥, we have 𝑁𝐴 ∈ 𝒢 for every 𝜏-nbh 𝑁𝐴 of 𝑥. 
Therefore, 𝑁𝐴 ∩ 𝒢 ≠ ∅, as 𝑁𝐴 it self is in 𝒢. Now, let 𝑦 be 

a point in 𝑋 other than 𝑥.We need to show that 𝒢 does not 

𝜏-accumulate at 𝑦. Since 𝑋 is a 𝜏-Hausdorff space, then 

there exists disjoint 𝜏-nbh 𝑁𝐴& 𝑀𝐴 of 𝑥&𝑦, respectively. 

Since 𝒢 𝜏-converges to 𝑥, we know that 𝑁𝐴 ∈ 𝒢. 
However, since 𝑁𝐴 & 𝑀𝐴 are disjoint, 𝑁𝐴 ∩𝑀𝐴 = ∅, 
which implies that  𝑁𝐴 ∩ (𝑀𝐴 ∩ 𝒢) = ∅. Therefore, 𝒢 

dose not                 𝜏-accumulate at 𝑦 in a 𝜏-Hausdorff 

space.  

Proposition 3.9 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space and let ℱ is subordinate to 𝒢, if 𝒢 is        𝜏-
converges to 𝑥 ∈ 𝑋, then ℱ is 𝜏-converges to 𝑥.  

Proof  By definition of 𝜏-convergence, we know that 

for any nbh 𝑁𝐴 of 𝑥 in 𝐴, 𝒢 eventually enters 𝑁𝐴 with 

respect to 𝜏. That is, there exist some index 𝑛 such that 

for all 𝑘 ≥ 𝑛, 𝒢(𝑘) ∈ 𝑁𝐴. Now, since ℱ is subordinate to 

𝒢, it follows that for every all 𝑘 ≥ 𝑛, ℱ (𝑘) ⊆  𝒢(𝑘). 
Therefore,  ℱ (𝑘) is also in 𝑁𝐴 for all 𝑘 ≥ 𝑛. Thus, we 

have shown that for every nbh 𝑁𝐴 of 𝑥, ℱ eventually 

enters 𝑁𝐴with respect to 𝜏. Therefore, ℱ is 𝜏-converges to 

𝑥 in the soft topological space (𝑋, 𝜏, 𝐴). 

Proposition 3.10 Let (𝑋, 𝜏, 𝐴) be a soft topological 

space and let ℱ is subordinate to 𝒢, if ℱ is     𝜏-
accumulates at 𝑥 ∈ 𝑋, then 𝒢 is 𝜏-accumulates at 𝑥. 

Proof  By definition of 𝜏-accumulation, we know that 

for any nbh 𝑁𝐴 of 𝑥 in 𝐴, 𝒢 intersects 𝑁𝐴 with respect to 𝜏 
at infinitely many indices. That is, there exist infinitely 

many indices 𝑘 such that 𝒢(𝑘) ∈ 𝑁𝐴. Now, since ℱ is 

subordinate to 𝒢, it follows that for every 𝑘, ℱ(𝑘) ⊆
𝒢(𝑘) ∈ 𝑁𝐴 for those same indices. Thus, we have show 

that for every nbh 𝑁𝐴 of 𝑥, ℱ intersects 𝑁𝐴 with respect to 

𝜏 at infinitely many indices. Therefore, ℱ is 𝜏-
accumulates at 𝑥 in the soft topological space (𝑋, 𝜏, 𝐴).  

Definition 3.3 Let ℱ & 𝒢 be two soft filters in soft 

topological space (𝑋, 𝜏, 𝐴), we say that ℱ is finer than 𝒢 

or 𝒢 is coarser than ℱ if 𝒢 ⊂ ℱ .                                                                                             
If ℱ ≠ 𝒢, then we say that ℱ is strictly finer than 𝒢 or 𝒢 is 

strictly coarser than ℱ. 

Proposition 3.11 Let (ℱ𝑖)𝑖∈𝐼 be any non-empty family 

of soft filters on 𝑋. Then ℱ = ⋂ ℱ𝑖𝑖∈𝐼  is a soft filter on 𝑋. 

Proof  Let (ℱ𝑖)𝑖∈𝐼 be any non-empty collection of soft 

filters on 𝑋. Let ℱ be the intersection of all elements in ℱ𝑖 
i.e., ℱ = ⋂{𝐴:𝐴 ∈ ℱ𝑖} = ⋂ ℱ𝑖𝑖∈𝐼 . Since ℱ𝑖 is non-

empty, ℱ is guaranteed to exist. To do this, we need to 

verify the following properties:                                                                                                                                                       

1- ℱ is non-empty: since ℱ𝑖 is non-empty, each element 

in ℱ𝑖 is non-empty. So, the intersection ℱ will also be 

non-empty.                                                                                                                          

2- ℱ is upward closed: let 𝐴 ∈ ℱ & 𝐴 ⊆ 𝐵, since each 

element in ℱ𝑖 is upward closed we have 𝐵 ∈ 𝐴 for all  

𝐴 ∈  ℱ𝑖 . So, 𝐵 ∈ ℱ.                                                                                                             
3- ℱ is closed under finite intersection: Let  𝐴, 𝐵 ∈ ℱ. 
Then 𝐴, 𝐵 ∈ ℱ𝑖. Since each element in  ℱ𝑖 is closed under 

finite intersection, we have 𝐴 ∩ 𝐵 ∈ ℱ𝑖. Therefore, 𝐴 ∩
𝐵 ∈ ℱ.                                       4- As ℱ satisfies all the 

properties of soft filter, ℱ is indeed a soft filter on 𝑋.    

Remark 3.1 The soft filter induced by the single set 

𝑋 , is the smallest element of the order set of all soft 

filters on 𝑋.    

Theorem 3.1 Let 𝐴 be a set in 𝑋. Then there exists a 

soft filter on 𝑋 containing 𝐴 if for any given finite subset 
{𝑆1, 𝑆2, … , 𝑆𝑛} of 𝐴, the intersection  ⋂ 𝑆𝑖𝑖∈𝐼 ≠ ∅. In fact  

ℱ𝐴 is the coarsest soft filter containing 𝐴. 

 Proof  Suppose that there exists a soft filter ℱ𝐴 on 𝑋 

containing 𝐴. Let 𝐵 be the set of all finite intersections of 

members of 𝐴. Then by conditions of soft filter we have 
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𝐵 ⊆ ℱ𝐴 & ℱ𝐴 ≠ ∅. Suppose that ℱ𝐴 = {𝐴 ∈
ℱ𝑋: 𝐴 contains a member of 𝐵}, where 𝐵 is the family 

of finite intersections of 𝐴. Then ℱ(𝐴) 
satisfies the conditions, ⟹ℱ(𝐴) is generated by 𝐴. 

Corollary 3.2 Let ℱ be a soft filter in a set 𝑋, and 𝐴 ⊆
𝑋. Then, there is a soft filter ℱ́ which is finer than ℱ, and 

such that 𝐴 ∈ ℱ́ iff 𝐴 ∪ 𝑈 = ∅ for each 𝑈 ∈ ℱ. 

Proof ⟹ Assume that 𝐴 ⊆ ℱ́, where ℱ́ is a soft filter 

finer than ℱ. i.e. that ℱ́ satisfies the three conditions for 

being a soft filter, we can consider an arbitrary 𝑈 in ℱ. 
Since ℱ́ is finer than ℱ, we know that 𝑈 is a subset of ℱ́. 

Therefore, the intersection of 𝐴 & 𝑈 is non-empty, as 𝐴 is 

a subset of ℱ́.⟸ Conversely, 𝐴 ∩ 𝑈 ≠ ∅ is non-empty 

for every 𝑈 in ℱ. We want to show that there exists a soft 

filter ℱ́ that finer than ℱ, and such that 𝐴 is a subset of ℱ́.                                                          
To construct such an ℱ́, we define the family of subsets ℛ 

of 𝑋 as follows:  

ℛ = {𝑉 ⊆ 𝑋, 𝑉 ∩ 𝐴 ≠ ∅ for every 𝑈 in ℱ} we will 

show that ℛ is a soft filter finer than ℱ, and 𝐴 is a subset 

of ℛ.  

∗ ℛ ≠ ∅, since 𝐴 ∩ 𝑈 ≠ ∅, ∀ 𝑈 ∈ ℱ, we have that 𝑋 is 

in ℛ.  

∗  ℛ closed, let 𝑉 ⊆ 𝑋, such that 𝑉 in ℛ, and let 𝑊 be 

a subset of 𝑋 such that 𝑉 is a subset of 𝑊.          We want 

to show that 𝑊 is in ℛ. For every 𝑈 in ℱ 𝐴 ∩ 𝑈 ≠ ∅. 
Since 𝑉 ⊆ 𝑊,𝐴 ∩ 𝑉 ⊆ 𝐴 ∩𝑊. Thus, 𝐴 ∩𝑊 ≠ ∅, ∀ 𝑈 ∈

ℱ
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑊 ∈ ℛ.  

∗ Let 𝑉1 & 𝑉2 ⊆ 𝑋 ∋ 𝑉1 & 𝑉2 ∈ ℛ. We want to show 

that 𝑉1 ∩ 𝑉2 ≠ ∅. Since 𝑉1 & 𝑉2 ∈ ℛ
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝐴 ∩ 𝑉1 ≠

∅ & 𝐴 ∩ 𝑉2 ≠ ∅. Therefore, the 𝐴 ∩ (𝑉1 ∩ 𝑉2) ≠
∅, ∀ 𝑈 in ℱ, which means that 𝑉1 ∩ 𝑉2 ∈ ℛ                       

Corollary 3.3 a set 𝐹 of a soft filter on a non-empty 

set 𝑋, has a least upper bound in the set of all soft filters 

on 𝑋, if for all finite sequence (ℱ𝑖)𝑖∈𝐼 , 0 ≤ 𝑖 ≤ 𝑛 of 

elements of 𝐹 and all                𝐴𝑖 ∈ ℱ𝑖 , 1 ≤ 𝑖 ≤
𝑛,⋂ 𝐴𝑖 ≠ ∅.𝑖=1                                                                                                            

Note that the above corollary is not true in general case. 

Example 3.2 Let 𝑋 ≠ ∅ & ℱ be a soft filter such that 

ℱ = {𝐴, 𝐵}, where 𝐴 & 𝐵 ⊆ 𝑋. Suppose that 𝐴 ∩ 𝐵 ≠ ∅. 
In this case, we can see that there is no soft filter ℱ́in ℱ 

that is a subset of every upper bound of 𝒬. Then any 

upper bound of 𝒬 moust be contain both 𝐴 & 𝐵 but there 

is no soft filter contain 𝐴 & 𝐵.  

Theorem 3.2 Let 𝛽 be a set of 𝑋. Then the set of 𝑋 

containing an element of 𝛽 is a soft filter on 𝑋 if 𝛽 

possesses the following conditions:                                                                                                    

1- 𝛽1: The intersection of two members of 𝛽 contain a 

member of 𝛽.                                                         2- 𝛽2:  

𝛽 ≠ ∅, ∅ ∉ 𝛽. 

Proof  Let 𝑋, be a non-empty and 𝒢 ⊆ 𝑋. We need to 

show that 𝒢 satisfies the properties of a soft filter: 

1. 𝒢 is non-empty: since 𝛽 is non-empty, there exists at 

least one subset 𝐴 in 𝛽. Since 𝐴 is a non-empty subset 

of 𝑋, it must contain at least one element. Therefore, 

𝒢 is non-empty.   

2. Any subset of 𝑋 that contains an element of 𝒢 is also 

an element of 𝒢: let 𝐵 be a subset of 𝑋 that contains 

an element of 𝒢. This means that there exists an 

element 𝐺 in 𝛽 such that 𝐺 is a subset of 𝐵. Since 𝐺 is 

a member of  𝛽, it satisfies the conditions of 𝛽. 
Therefore, 𝐵 also contains at least one element of 𝛽, 
making it a member of 𝒢.   

3. The intersection of any two members of 𝒢 is also a 

member of  𝒢: let 𝐷 & 𝐸 be two members of 𝒢. This 

means that there exist elements 𝑁 & 𝑀 in 𝛽 such that 

𝑁ℱ𝐷 & 𝑀 ⊆ 𝐸. Since 𝛽 satisfies the condition that 

the intersection of any two members contains a 

member of 𝛽, the intersection of 𝑁 & 𝑀 is a non-

empty subset of 𝑋. Let us call this intersection 𝐻. 
Since 𝐻 is a non-empty subset of 𝑋, & 𝐻 is contained 

in both 𝐷 & 𝐸, then 𝐻 is an element of 𝒢. Therefore, 𝒢 

satisfies all the properties of a soft filter on 𝑋. 

Definition 3.4 Let 𝐴 & 𝐵 be two sets on 𝑋 satisfying 

conditions 𝛽1 & 𝛽2. We call them base of soft filters they 

generate. We consider two bases equivalent, if they 

generate the same soft filter.  

Remark 3.2 Let 𝐴 be a subset of soft filter ℱ. Then 

the set 𝛽 of finite intersections of members of 𝐴 is a base 

of soft filter ℱ. 

Proposition 3.12 A subset 𝛽 of a soft filter ℱon 𝑋 is a 

base of ℱ if every member of ℱ contains a member of 𝛽. 

Proof  Let ℱ be a soft filter on a set 𝑋, and let 𝛽 be a 

subset of ℱ. To prove this, we need to show two 

conditions: 

1. Every member of 𝛽 is also a member of 𝛽: since 𝛽 is 

a subset of ℱ, every member of 𝛽 is also a member of 

ℱ. This ensures that the members of 𝛽 are contained 

in ℱ.       

2. For every element 𝐴 in ℱ, there exists an element 𝐵 in 

𝛽 such that 𝐵 is contained in 𝐴: given any element 𝐴 

in ℱ. We know that 𝐴 is a member of ℱ and thus, by 

the given condition, 𝐴 contains a member of 𝛽. Let 

denote this member as 𝐵. Since 𝐵 is a member of 𝛽 

and 𝛽 is a subset of ℱ, 𝐵 is also a member of ℱ. 
Moreover, since 𝐴 contains 𝐵, it follows that 𝐵 is 

contained in 𝐴. Therefore, for every element 𝐴 in ℱ, 
there exists an element 𝐵 in 𝛽 such that 𝐵 is contained 

in 𝐴. By satisfying both conditions, we can conclude 

that 𝛽 is indeed a base of the soft filter ℱ. 
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Proposition 3.14 On a set 𝑋, a soft filter ℱ́ with base 

�́� is a finer than a soft filter with base 𝛽 if every member 

of 𝛽 contains a member of �́�. 

Proof  Let us consider an element 𝑥 in ℱ́. By 

definition of a soft filter with base �́�, there exists a 

member 𝑦 in 𝛽 such that 𝑦 is a subset of 𝑥. Now, since 

every member of 𝛽 contains a member of �́�, there exists a 

member 𝑧 in �́� such that 𝑧 is a subset of 𝑦. Since 𝑦 is a 

subset of 𝑥 and 𝑧 is a subset of 𝑦, it follows that 𝑧 is a 

subset of 𝑥. Hence, every element in ℱ́ is also in ℱ, 

which implies that ℱ́ with base �́� is finer than ℱ with 

base 𝛽.  

Proposition 3.15 Two soft filter bases 𝛽 and �́� on a 

set 𝑋 are equivalent if every member of 𝛽 contains a 

member of �́� and every member of �́� contains a member 

of 𝛽.  

Proof  Let us consider an element 𝑥 in the soft filter ℱ́ 

with base �́�. By definition of a soft filter with base �́�, 
there exists a member 𝑦 in 𝛽 such that 𝑦 is a subset of 𝑥. 
Since every member of 𝛽 contains a member of with base 

�́�, there exists a member 𝑧 in 𝛽 such that 𝑧 is a subset of 

𝑦. Now, let us consider an element �́� in the soft filter ℱ 

with base 𝛽. By definition of a soft filter with base 𝛽, 
there exists a member �́� in 𝛽 such that �́� is a subset of 𝑥. 

Since every member of 𝛽 contains a member of 𝛽,́  there 

exists a member �́� in �́� such that �́� is a subset of 𝑦. From 

the above, we can conclude that for every element in ℱ́ 

there exists an element in ℱ that is a subset of it, and for 

every element in ℱ, there exists an element in ℱ́ that is a 

subset of it. Therefore, the soft filters with bases 𝛽 and �́� 

are equivalent. 

4. SOFT ULTRAFILTER  

Definition 4.1 A soft ultrafilter on a set 𝑋, is a soft 

filter ℱsuch that for any soft filter ℱ́ on 𝑋, if ℱ́ is strictly 

finer than ℱ, then  ℱ́ = ℱ. 

Definition 4.2 A soft ultrafilter on a set 𝑋, is a soft 

filter ℱsuch that there is no soft filter on 𝑋 which is 

strictly finer than ℱ. 

Theorem 4.1 Let ℱ be any soft ultrafilter on a set 𝑋, 
then there exists a soft ultrafilter other than ℱ.  

Proof  Assume that ℱis a soft ultrafilter on 𝑋. Let ℱ́ 

be the all subsets 𝐴 of 𝑋 such that 𝐴𝐶 is in ℱ, then there 

exists a non-empty set 𝐺, which is a complement of the 

empty set, i.e., 𝑋 ∈ ℱ́. Now, we will show that ℱ́ satisfies 

the three conditions required for a soft filter to an 

ultrafilter: finiteness, upward closure and downward 

closure.                                                                                                                           

Condition 1: Since, ℱ is a soft ultrafilter, ℱ does not 

contain the empty set, and it is closed under finite 

intersections and supersets. Let us assume that there 

exists a finite collection Ω of subsets of 𝑋 such that each 

element in Ω or their complements is not in ℱ. We can 

consider the intersection of all sets in Ω, denoted as 𝐴 =
⋂(Ω ). Since Ω is a finite collection, 𝐴 is a finite 

intersection of subsets of 𝑋. If 𝐴 is in ℱ, then 𝐴𝐶 is also in 

ℱ (as ℱ is an ultrafilter). Since each set in Ω or their 

complements is not in ℱ, 𝐴 or𝐴𝐶 is not in ℱ, leading to a 

contradiction. Therefore, the assumption that such a finite 

collection Ω exists is false, and ℱ́ satisfies the finiteness 

condition.  

Condition 2: Let 𝐴 be a subset of 𝑋 such that 𝐴 is in 

ℱ́ and 𝐵 is a subset of 𝑋 such that 𝐵 is a superset of 𝐴. 
Since 𝐴 is in ℱ́, 𝐴𝐶 is in ℱ (by definition of ℱ́). Since 𝐵 

is a superset of 𝐴, 𝐵𝐶  is a subset of 𝐴𝐶 , by the upward 

closure property of ℱ (as it is an ultrafilter), if  𝐴𝐶 is in ℱ, 
then 𝐵𝐶  is also in ℱ. Therefore, 𝐵 is in ℱ́, satisfying the 

upward closure condition. 

Condition 3: Let 𝐴 be a subset of 𝑋 such that 𝐴 is in 

ℱ́ and 𝐵 is a subset of 𝑋 such that 𝐵 is a subset of 𝐴. 
Since 𝐴 is in ℱ́, 𝐴𝐶 is in ℱ (by definition of ℱ́). By the 

downward closure property of ℱ (asit is ultrafilter) if 𝐴𝐶 

is in ℱ, then 𝐵𝐶  is also in ℱ. Therefore, 𝐵 is in ℱ́, 
satisfying the downward closure condition. From 

conditions 1, 2&3, we conclude that ℱ́ is a soft filter on 

𝑋.         

Now, let us verify that  ℱ́ is an ultrafilter. ℱ́ does not 

contain the empty set because 𝑋 is not in ℱ, ℱ́ is proper 

because it contains all complements of sets in ℱ. Snice ℱ 

satisfies the definition of a soft ultrafilter, it is an 

ultrafilter. As we have constructed a soft ultrafilter  ℱ́ 

other than ℱ.    

 Example 4.1 Let 𝑋 = {1,2,3,4} and the soft filters 

ℱ = {∅, 𝑋, {1,2}, {1,3}, {2,4}, {3,4}}, and               ℱ́ =

{∅, 𝑋, {1,2}, {3,4}}, we note that every element of ℱ́ is 

also an element of ℱ, but ℱ́ strictly contains a subset of 

ℱ. Therefore, ℱ́ is a soft filter that is finer than ℱ.                               

Proposition 4.1 Let ℱ be a soft ultrafilter on a set 𝑋. 
If 𝐴 & 𝐵 are two soft subsets, such           𝐴 ∪ 𝐵 ∈ ℱ, then 

𝐴 ∈ ℱ or 𝐵 ∈ ℱ. 

Proof  Suppose ℱ is a soft ultrafilter on 𝑋, and let 

𝐴 & 𝐵 be two soft subsets of 𝑋 such            𝐴 ∪ 𝐵 ∈ ℱ, 
we will show that either 𝐴 ∈ ℱ or 𝐵 ∈ ℱ.  

Case 1: 𝐴 ∪ 𝐵 ∈ ℱ & neither 𝐴 nor 𝐵 ∈ ℱ leads to a 

contradiction because ℱ is a soft ultrafilter, and by 

definition it is closed under finite intersections. Let us 

consider that the intersection of the complements of 

𝐴 & 𝐵 denoted as 𝐴𝐶  & 𝐵𝐶 , respectively. Since neither 𝐴 

nor 𝐵 ∈ ℱ, it follows that 𝐴𝐶  & 𝐵𝐶  are not in ℱ. 
According to the definition of a soft ultrafilter, if ℱ is 

closed under finite intersections, that the intersection of 

𝐴𝐶  & 𝐵𝐶  denoted as 𝐴𝐶 ∩ 𝐵𝐶 = (𝐴 ∪ 𝐵)𝐶 , must also be 
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in ℱ. Since the empty set does not belong to ℱ (as ℱ is 

proper), this leads to a contradiction. Therefore, our 

assumption that neither 𝐴 ∈ ℱ nor 𝐵 ∈ ℱ must be 

incorrect.  

Case 2: Either 𝐴 ∈ ℱ nor 𝐵 ∈ ℱ. Assuming 𝐴 ∪ 𝐵 ∈
ℱ and either 𝐴 ∈ ℱ nor 𝐵 ∈ ℱ holds true based on the 

logical negation of case 1. In other words, if neither 𝐴 ∈
ℱ nor 𝐵 ∈ ℱ, so 𝐴𝐶 ∩ 𝐵𝐶   would belong to ℱ, leading to 

a contradiction. Hence, 𝐴 ∈ ℱ or 𝐵 ∈ ℱ. 

Corollary 4.1 Let ℱ be a soft ultrafilter on a set 𝑋, and 

let (𝐹𝑖)𝑖∈𝐼 be a finite sequence of soft sets in 𝑋, if 

⋃ 𝐹𝑖𝑖∈𝐼 ∈ ℱ, then at least one of the 𝐹𝑖 ∈ ℱ. 

 Proof  Suppose that ℱ is a soft ultrafilter on 𝑋, let 𝐹𝑖 
be a finite sequence of soft sets in 𝑋. Suppose that 

⋃ 𝐹𝑖𝑖∈𝐼 ∈ ℱ. Suppose that none of the sets in 𝐹𝑖 belong to 

ℱ. Since none of the sets in 𝐹𝑖 ∈ ℱ, their complements 

(𝐹𝑖)
𝐶 must be belong to ℱ. By the definition of soft 

ultrafilter, if ℱ is closed under finite intersections, then 

the intersection of the complements of the sets in 𝐹𝑖, 
denoted by ⋂(𝐹𝑖)

𝐶  must also belong to ℱ. 
However, ⋂(𝐹𝑖)

𝐶 = (⋃𝐹𝑖)
𝐶 which is the complement of 

the union of all the sets in 𝐹𝑖. Since we assumed that 

⋃𝐹𝑖 ∈ ℱ, it follows that (⋃ 𝐹𝑖𝑖∈𝐼 )𝐶 does not belong to ℱ. 
This contradicts the fact that ⋂(𝐹𝑖)

𝐶  must also belong to 

ℱ. Therefore, our assumption that none of the sets in 𝐹𝑖 
belong to ℱ must be incorrect, Hence at least one of the 

sets in 𝐹𝑖 belong to ℱ, as stated in the theorem.   

Definition 4.3 Let 𝐴 be a soft set in a set 𝑋. If 𝑈 is 

any soft set in 𝑋, then the soft set 𝐴 ∩ 𝑈 is called trace of 

𝑈 on 𝐴, and it is denoted by 𝑈𝐴. For all soft sets 𝑈 & 𝑉 in 

𝑋, we have     (𝑈 ∩ 𝑉) = 𝑈𝐴 ∩ 𝑉𝐴.  

Definition 4.4 Let 𝐴 be a soft set in a set 𝑋. Then the 

set 𝛬𝐴 of traces 𝐴 ∈ ℱ𝑋 of member of Λ is called the 

trace of Λ on 𝐴.  

Definition 4.5 Let 𝐴 be a soft set in a set 𝑋, and let Λ 

be any soft set in 𝑋. The set of traces denoted by 𝛬𝐴, 
consists of all members of Λ for which the intersection 

with 𝐴 is non-empty. In other words, 𝛬𝐴 is the set of all 

elements in Λ that have a non-empty intersection with 𝐴.    

Definition 4.6 Let ℱ be a soft filter on a set 𝑋, and 

𝐴 ∈ ℱ𝑋 . If ℱ𝐴 is trace of ℱ on 𝐴, then ℱ𝐴 is said to be 

induced by ℱ & 𝐴.                                                                                                                                   
Note that: the trace of a soft filter ℱ on 𝐴 is the set of all 

elements 𝑥 ∈ 𝑋 such that every soft set 𝑈 ∈ ℱ contains 𝑥 

whenever it contains 𝐴. Mathematically, it can be written 

as    ℱ𝐴 = {𝑥 ∈ 𝑋: ∀ 𝑈 ∈ ℱ, 𝐴 ⊆ 𝑈
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑥 ∈ 𝑈}.  

Proposition 4.2 Let ℱ be a soft filter on a set 𝑋 

inducing a soft filter 𝒢𝐴 on 𝐴 ∈ ℱ𝑋 , then the trace 𝛽𝐴 on 

𝐴 of a base 𝛽 of ℱ is a base of 𝒢𝐴. 

Example 4.2 Let 𝑋 = {1,2,3}, ℱ =

{∅, 𝑋, {1,2}, {1,3}, {2,3}}, & 𝐴 = {1,2}, then the soft filter 

induced on 𝐴 by ℱ is 𝒢𝐴 = {∅, 𝑋, {1,2}}. Now take a base 

for ℱ as 𝛽 = {{1,2}, {2,3}} and the trace of 𝛽 is 𝛽𝐴 =

{{1,2} ∩ 𝐴, {2,3} ∩ 𝐴} = {{1,2}, {2}}. If we examine 𝒢𝐴 

the soft filter induced on 𝐴,the trace 𝛽𝐴 = {{1,2}} is not a 

base for 𝒢𝐴 under 𝐴 since it does not satisfy the properties 

of being non-empty sets, and closed under finite 

intersection.  

5. CONCLUSION 

The study highlights the significance of soft 

topological spaces in dealing with uncertainty and their 

potential applications in various fields. The results of this 

research demonstrate the importance of soft filters in soft 

topological spaces and their research demonstrates the 

relationship with 𝜏-convergent and 𝜏-Hausdorff soft 

topological spaces. The findings of this study open up 

avenues for further research on soft topological spaces 

and their connections with other topological spaces. The 

most important expected outcomes of this study are the 

following:  

1. A deeper understanding of soft topological spaces and 

their properties. 

2. Insights into the relationship between soft filters and 

𝜏-convergent and 𝜏-Hausdorff soft topological spaces. 

3. Contributions to the development of soft 

mathematical concepts and structures. 

4. Identification of potential applications of soft 

topological spaces in various fields.  
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