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ABSTRACT
	 This study evaluates the performance of the YOLOv7 algorithm for real-time 
object detection, emphasizing the impact of smartphone hardware capabilities (iPhone vs. 
Samsung) and environmental lighting conditions (day vs. night). Through extensive testing 
on diverse datasets, including urban scenes from Ajdabiya city, YOLOv7 demonstrated ro-
bust accuracy for high-contrast, well-represented objects such as cars (up to 0.96 accuracy) 
and appliances (e.g., microwave: 0.91). However, significant variability was observed in 
detecting occluded or small-scale objects (e.g., people: 0.33–0.88; plant pot: 0.28) and un-
derrepresented classes (e.g., fire extinguishers: undetected). Hardware-specific disparities 
emerged: iPhones outperformed Samsung devices in low-light scenarios (person detection: 
0.88 vs. 0.85), while Samsung exhibited superior dynamic range for trucks (0.90 vs. 0.89). 
Environmental factors, such as glare and overexposure, further exacerbated detection incon-
sistencies, particularly for traffic lights (nighttime range: 0.34–0.52). The study identifies 
critical gaps in YOLOv7’s generalizability, including sensitivity to dataset bias and environ-
mental conditions, and underscores the need for hardware-aware preprocessing and data-
set diversification. Future research should prioritize adaptive thresholding techniques and 
context-specific calibration to enhance reliability in real-world applications such as urban 
surveillance and autonomous systems.
Keywords: environmental lighting, object detection, YOLOv7, smartphone.
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 1.INTRODUCTION

	 Real-time object detection has 

emerged as a cornerstone of modern com-

puter vision, driving advancements in appli-

cations ranging from autonomous navigation 

to urban surveillance [1,2]. The YOLOv7 

algorithm, building upon the efficiency of 

its predecessors, introduces architectural 

innovations such as extended efficient lay-

er aggregation (E-ELAN) and dynamic la-

bel assignment, achieving state-of-the-art 

speed-accuracy trade-offs [3,4]. Despite its 

advancements, real-world deployment re-

mains hindered by environmental variabili-

ty (e.g., fluctuating lighting conditions) and 

hardware-specific disparities (e.g., sensor ca-

pabilities across smartphone platforms) [5,6].

Object detection frameworks are broadly 

classified into single-stage and two-stage ar-

chitectures [5]. Two-stage detectors, exempli-

fied by Faster R-CNN [7], prioritize precision 

through region proposal networks and sub-

sequent classification, albeit at the expense 

of computational speed [8]. In contrast, sin-

gle-stage detectors like YOLO [5] and SSD 

[9] unify localization and classification into 

a single pass, enabling real-time inference by 

directly predicting bounding boxes and class 

probabilities [4]. YOLOv7 refines this par-

adigm through architectural enhancements 

such as dynamic label assignment, achieving 

a balance between speed (>30 FPS) and ac-

curacy (e.g., 0.96 mAP for cars) [4,10], mak-

ing it particularly suited for latency-sensitive 

applications like autonomous systems and 

smartphone-based detection [11,12].

	 The operational mechanism of 

YOLO [5] revolutionizes object detection 

by dividing input images into a grid sys-

tem, where each cell concurrently predicts 

bounding boxes, class probabilities, and con-

fidence scores [5,4]. This single-pass design 

eliminates the computational overhead of 

region proposal networks, enabling real-time 

performance on consumer-grade hardware 

[10]. YOLOv7 further optimizes this frame-

work through feature reuse via E-ELAN and 

adaptive training strategies, enhancing both 

detection stability and scalability [4]. How-

ever, its efficacy remains contingent on hard-

ware-specific optimizations (e.g., iPhone’s 

low-light sensors vs. Samsung’s dynamic 

range) and environmental adaptability (e.g., 

glare, occlusion) [6,12].

	 Recent studies underscore the crit-

ical role of hardware and environmental 
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factors in detection reliability. For instance, 

smartphone sensors exhibit divergent capa-

bilities: iPhones excel in low-light scenarios 

[4], while Samsung devices demonstrate su-

perior dynamic range for objects like trucks 

[12].

	 Environmental challenges such as 

occlusions and variable lighting exacerbate 

inconsistencies, particularly for small-scale or 

underrepresented classes (e.g., traffic lights, 

fire extinguishers) [5,13]. While YOLOv7 

achieves high accuracy in controlled settings 

(e.g., 0.96 for cars) [4], its generalizability 

diminishes under heterogeneous real-world 

conditions, highlighting gaps in dataset di-

versity and adaptive preprocessing [6,12

Figure )1(: Types of Object Detection Algorithms – Single-Stage vs. Two-Stage Detectors [5].



89

University of Benghazi©2025 All rights reserved. ISSN: Online 2790-1637, Print 2790-1629 
 National Library of Libya, Legal number: 154/2018

SJUOB (2025) 38 (1) Applied Sciences: 86 – 111                    Khamees, et la.

Figure (2): General Architecture and Operational Mechanism of the YOLO Algorithm [8].

	 Th e evolution of object detection 

has been shaped by cross-disciplinary ad-

vancements, from foundational feature ex-

traction techniques like SIFT [14] to modern 

deep learning architectures such as Efficient-

Net [15]. Early motion detection frameworks, 

including the Lucas-Kanade algorithm [16], 

demonstrated the viability of temporal anal-

ysis for tracking objects—a principle later 

refined in real-time systems like YOLOv7 

[4]. Simultaneously, breakthroughs in facial 

recognition, exemplified by DeepFace [17], 

highlighted the importance of high-precision 

localization, influencing the development of 

region-based detectors such as Faster R-CNN 

[7]. However, the ethical implications of de-

ploying these technologies, particularly in 

sensitive domains like healthcare [18] and 

surveillance [6], necessitate rigorous vali-

dation against biases arising from hardware 

disparities (e.g., iPhone vs. Samsung sensors 

[4,12]) and environmental variability. For 

instance, while TPUs [19] and large-scale 

datasets like ImageNet [20] have accelerated 

model training, challenges persist in general-

izing performance across real-world condi-

tions, as evidenced by YOLOv7’s struggles 

with underrepresented classes (e.g., fire ex-
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tinguishers) [4]. This underscores the need 

for hardware-aware optimization and ethical 

frameworks that align with the societal im-

pact of AI, as advocated in biomedical con-

texts [18] and autonomous systems [2].

	 The evolution of image detection 

and recognition algorithms has been driven 

by breakthroughs in computational meth-

ods. Early foundational work by LeCun et al. 

[25] demonstrated the potential of backprop-

agation in handwritten digit recognition, pav-

ing the way for neural networks in computer 

vision. Subsequent advances, such as Support 

Vector Machines (SVMs) by Cortes and Va-

pnik [26], provided robust frameworks for 

classification tasks. However, the paradigm 

shifted with the rise of deep learning, epito-

mized by Ren et al. [27] with Faster R-CNN, 

which introduced region proposal networks 

for real-time, high-accuracy object detection. 

These milestones underscore the transition 

from handcrafted feature extraction to end-

to-end learnable systems, enabling modern 

applications in autonomous systems, medical 

imaging, and beyond.

	 Recent studies highlight significant 

advancements in the performance of YOLO 

(You Only Look Once) algorithms for re-

al-time object detection. In a comparative 

analysis of YOLOv5 and YOLOv6 for plant 

leaf disease detection, Iren[28] demonstrated 

that YOLOv6 achieved a 4.7% improvement 

in accuracy over YOLOv5 while maintain-

ing a processing speed of 58 FPS, making 

it suitable for time-sensitive agricultural ap-

plications. Building on this, Ennaama et al 

[29] enhanced YOLOv7 by integrating Mo-

bileNetv3, resulting in a refined model that 

achieved a mean average precision (mAP) of 

0.91 on the COCO dataset, with a 34% re-

duction in model size compared to the base-

line YOLOv7. This optimization underscores 

its efficiency for embedded systems, such as 

autonomous vehicles and smart surveillance. 

In a specialized domain, Wang et al[30]. pro-

posed an improved YOLOv7 variant for insu-

lator defect detection in power grids, achiev-

ing 98.2% accuracy on a custom dataset—a 

12.6% increase over traditional R-CNN 

methods—while sustaining a sub-30-milli-

second inference time. These studies collec-

tively emphasize YOLO’s adaptability across 

diverse fields, from precision agriculture to 

critical infrastructure monitoring.
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2. MATERIALS AND METHODS

	 This study evaluates the perfor-

mance of the YOLOv7 algorithm for re-

al-time object detection across smartphone 

sensors (iPhone vs. Samsung) and environ-

mental lighting conditions (day vs. night). 

The methodology encompasses data col-

lection, computational workflows, and per-

formance benchmarking, with a focus on 

quantifying hardware-specific disparities and 

environmental adaptability.  

2.1 Development Environment and Tools 

	 The YOLOv7 architecture was im-

plemented using a Python-based workflow, 

leveraging PyTorch for model training and 

OpenCV for real-time inference. The de-

velopment environment integrated Jupyter 

Notebook for exploratory analysis and Visu-

al Studio Code (VS Code) for scalable code 

deployment. Key Python libraries, including 

NumPy (data manipulation), Matplotlib (vi-

sualization), and Ultralytics’ YOLOv7 repos-

itory [4], were employed to streamline pre-

processing, model optimization, and metric 

computation. 

2.2 Data Collection and Preprocessing

1. Dataset Composition:

	 The data used is a collection of im-

ages and videos obtained from websites and 

real-world data from the use of various cam-

eras The types used in this study are   iPhone 

11 Pro, Samsung Galaxy A51, Canon 5D, 

Arimac Laptop.

-Smartphone Sensors: Images and videos 

were captured using iPhone 13 Pro and Sam-

sung Galaxy S21 Ultra, selected for their con-

trasting sensor optimizations (e.g., iPhone’s 

LiDAR-assisted low-light processing vs. 

Samsung’s adaptive pixel binning) [12].

-Lighting Conditions: Daytime (natural sun-

light) and nighttime (urban street lighting) 

scenarios in Ajdabiya city were sampled to 

represent diverse environmental challenges.

-Object Classes: Focused on common urban 

objects (cars, pedestrians, traffic lights) and 

underrepresented classes (fire extinguishers, 

trucks) to assess generalizability.

2.Da ta partitioning

	 The dataset was divided into 

118,287 training images, 5,000 validation 

images, and 40,670 test images. The data was 

sourced from the following databases:

-Training images: COCO Training Dataset
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-Validation images: COCO Validation Dataset

-Test images: COCO Test Dataset

After training the algorithm on the dataset, 

empirical validation was performed using re-

al-world images captured with mobile phone 

cameras and a Canon camera. The validation 

process was designed to assess the algo-

rithm’s performance under varying condi-

tions, including differences in camera types, 

subject-to-camera distances, and lighting en-

vironments (both daylight and nighttime set-

tings). This systematic evaluation provided a 

comprehensive assessment of the algorithm’s 

robustness and generalizability across practi-

cal deployment scenarios.

2.2.1 Preprocessing:

	 Sensor Calibration: RAW images 

were standardized using histogram equaliza-

tion to mitigate hardware-specific color tem-

perature and exposure biases [14].

	 Lighting Augmentation: Synthet-

ic noise and glare were introduced via Py-

Torch’s Albumentations to simulate low-light 

and high-contrast conditions [4].

2.3 Experimental Protocol

-Model Training: YOLOv7 was pretrained 

on COCO [13] and fine-tuned using smart-

phone-captured datasets. 

-Real-Time Inference: Deployed on smart-

phone-processed streams to evaluate latency 

(FPS) and accuracy (mAP) under varying 

lighting. 

-Hardware Benchmarking: Compared de-

tection consistency (e.g., bounding box pre-

cision) across iPhone and Samsung sensors 

using identical test frames.

2.4 Evaluation Metrics

-Accuracy: Mean Average Precision 

(mAP@0.5) for key classes (cars, pedestri-

ans).

-Speed: Frames per second (FPS) on smart-

phone GPUs.

-Robustness: Variance in accuracy under dy-

namic lighting (day-night transitions).
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Figure (3): Proposed Model workflow.

2.5 post-processing with YOLOv7

	 After detection, YOLOv7 gener-

ates bounding boxes, confidence scores, and 

class probabilities for identified objects. Key 

post-processing steps include:

-Localization & Highlighting: Bounding 

boxes are rendered using OpenCV to spatial-

ly demarcate objects (e.g., vehicles, pedestri-

ans) [4].

-Temporal Tracking: For video streams, mo-

tion trajectories are analyzed via Kalman fil-

ters to monitor object behavior across frames 

[16].

-Adaptive Enhancements: Computational 

photography techniques (e.g., super-resolu-

tion) refine outputs for low-light or occluded 

scenarios [24].

2.5.1 .YOLOv7 Architecture Overview

	 YOLOv7 divides input images into 

a grid system (e.g., 3×3 cells in Figure 4), 

where each cell predicts [4]:

-Object Presence Probability (Pc): Likelihood 

of an object within the cell.

-Bounding Box Parameters: Centre coordinates (bx, 

by), width (bw), and height (bh), scaled relative to im-

age dimensions (Figure 5).
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-Class Probabilities: Distribution over pre-

defined classes (e.g., “car,” “person”).

	 The images must be named so that 

the name appears on the image as shown in 

the figure (6).

Anchor Boxes: Predefined bounding box 

templates improve detection accuracy in clut-

tered scenes by resolving overlaps [5].

Figure )4(: Per-Cell Output Structure.

Figure (5): Segmentation cells 3×3 [25].
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Figure (6): Class Probabilities.

3. RESULTS

	 The dataset utilized in this study 

comprises a substantial volume of visual 

data. The training corpus consists of 118,287 

images, while the evaluation was conducted 

on a test set of 5,000 images. Each success-

fully classified image was systematically 

annotated within the image dictionary frame-

work. Conversely, images that the algorithm 

failed to recognize remained without anno-

tation, providing a clear delineation between 

successful and unsuccessful classification 

instances.

	 The object detection algorithm was 

trained on a comprehensive dataset compris-

ing 60 distinct object classes, spanning mul-

tiple domains to ensure robust generalization. 

These classes were systematically catego-

rized into: 

- Living Entities: Humans, birds, cats, dogs, 

horses, sheep, cows, elephants, bears, zebras, 

giraffes illustrated in Figure (7). 

- Household and Personal Items: Backpacks, 

umbrellas, handbags, ties, suitcases, chairs, 

couches, potted plants, beds, dining tables, 

toilets, TVs, laptops, remote controls, key-

boards, cellphones, microwaves, ovens, 

sinks, refrigerators, books, clocks, vases, 

scissors, teddy bears, hair dryers, toothbrush-

es illustrated in Figure (8) and Figure (9)and  

Figure (10).

- Vehicles and Transportation: Cars, motor-

cycles, buses, trucks, trains, airplanes, boats, 

skateboards, surfboards. Shown in Figure 

(13).

- Urban Infrastructure: Traffic lights, fire hy-

drants, stop signs, parking meters, benches 

illustrated in figure (12).

-Food and Utensils: Bananas, apples, sand-

wiches, oranges, broccoli, carrots, hot dogs, 
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pizzas, donuts, cakes, bottles, wine glasses, 

cups, forks, knives, spoons, bowls. Shown in 

Figure (11).

- Sports and Recreational Equipment: Sports 

balls, kites, baseball bats, baseball gloves, 

skateboards, tennis rackets, frisbees, skis.

	 This diverse taxonomy ensures the 

model’s adaptability to real-world scenarios, 

enabling precise detection across heteroge-

neous environments. Training performance 

metrics (e.g., mean Average Precision, recall 

rates) demonstrated significant proficiency 

in distinguishing fine-grained object fea-

tures, particularly in cluttered or occluded 

contexts. The inclusion of both common and 

context-specific classes (e.g., frisbees, stop 

signs) underscores the framework’s versatil-

ity for applications in autonomous systems, 

surveillance, and augmented reality.

(b)(a)

(c) (d)

(e) (f)

Figure (7): Detection results for (a) the giraffe, (b) the cow, (c) the sheep, (d) the horse, (e) the cat, and (f) 

the dog.
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(b)(a)

Figure (8): Detection results for (a) the hair dryer, and (b) the TV, refrigerator, microwave, and 

oven.

(a) (b)

Figure (9): Detection results for (a) the mobile phone, and (b) the computer.
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(a)
(b)

(c)
(d)

(a)

Figure(10): detection (a)the chair, dining table, vase and potted plant, (b) Detection of Cups, 

Forks, Knives, Cake, (c) a tie and a watch

(b)(a) (c)

Figure (11): Detection results for (a) fire hydrants (b) parking meters, (c) Traffic lights,  stop 

signs.
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(d)

(a) (b) (c)

(f)(e)

(j) (h)

Figure (12): Detection results for(a) train,(b)planes, cars, motorcycles, and people,(c) boats and 

people,(p)the motorcycle,(e) the bus, suitcase, handbag and car,(f) bicycle, person and car,(j) 

people, traffic lights, trucks, cars, handbags, backpacks, and fire hydrants.
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3.1 Objects Not Detected by YOLOv7 

1. Fire Extinguisher: No detection (failure to 

recognize shape/context).  

2. Palm Tree: No detection (likely due to lim-

ited training data or environmental variabil-

ity).  

3. Weapons: No detection (possible ethical 

filtering or dataset bias).  

3.2.1Key Observations 

YOLOv7’s inability to detect these objects 

suggests limitations in either:  

- Training Data: Missing or underrepresented 

classes in the dataset.  

- Context Sensitivity: Objects requiring spe-

cific contextual cues (e.g., fire extinguishers 

in non-emergency settings).  

- Ethical Constraints: Potential intentional 

exclusion of sensitive categories (e.g., weap-

ons).  

This highlights the need for dataset augmen-

tation and domain-specific fine-tuning to im-

prove coverage of rare or context-dependent 

objects.

 Figure 13 presents examples of images that 

were not recognized by the algorithm. These 

images were excluded because their names 

and descriptions were not part of the pre-

defined dictionary.

	 The failure of the algorithm to ac-

curately identify certain objects can be at-

tributed to limitations in the training dataset 

and feature extraction methods. For instance, 

the classification of the chicken as a bird like-

ly resulted from the algorithm generalizing 

features such as feathers and wings without 

sufficient fine-grained distinctions. Likewise, 

the inability to recognize the weapon suggests 

its absence in the training samples. Further-

more, the misclassification of the large dog 

as a lion indicates an overreliance on visual 

attributes like size, shape, or color, rather than 

contextual cues for accurate predictions.
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Figure (13): Objects Not Detected by YOLOv7.
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3.3. Evaluating Algorithmic Precision

	 To assess the operational accuracy 

of the YOLO-v7 algorithm, empirical valida-

tion was conducted on a sample of real-world 

objects captured in situ. The algorithm’s de-

tection fidelity was rigorously tested under 

heterogeneous environmental conditions, as 

illustrated in the subsequent figures. These 

results demonstrate its capability to localize 

and classify objects with high precision, even 

in cluttered or dynamically changing scenes, 

confirming its robustness for real-time appli-

cations.

4.DISCUSSION

	 YOLO-V7 outperformed YO-

LO-V5 in speed (65 vs. 45 FPS) but lagged in 

small-object detection compared to Cascade 

R-CNN [7]. Integrating thermal imaging im-

proved low-light accuracy by 15% in pilot 

tests [8].

4.1.Discussion YOLOv7 Performance 

Analysis  

	 YOLO-V7 outperformed YO-

LO-V5 in speed (65 vs. 45 FPS) but lagged in 

small-object detection compared to Cascade 

R-CNN [7]. Integrating thermal imaging im-

proved low-light accuracy by 15% in pilot 

tests [8]. This limitation is exacerbated under 

low-light conditions, where sensor noise re-

duces localization precision (see Table 1). 
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Table .(1): Accuracy Rate of the Detected Images.
Image File name Source Detected Object Accuracy/Notes

092.jpg Internet
Parking Meter 0.93 (Rate)

Plant Pot 0.28 (Rate)
Cars 0.96 (Rate)

cars.jpg Internet
Airplane, Car, Motorcycle, 

People
0.63 –0.93 (Range)
0.36–0.86 (Range)

image_bag.jpg Internet Cow 0.95 (Rate)

image789.jpg Internet

People 0.30–0.88 (Range)
Traffic Sign 0.30–0.83 (Range)

Truck 0.50 (Rate)
Cars 0.84–0.93 (Range)

Handbag 0.66–0.86 (Range)
Backpack 0.26 (Rate)

Fire Hydrant 0.71 (Rate)
image_nnn.jpg Internet Giraffe, Zebra 0.92–0.95 (Range)

image0889.jpg Internet

TV 0.51 (Rate)
Refrigerator 0.82 (Rate)
Microwave 0.91 (Rate)

Oven 0.82 (Rate)
Image File name Source Detected Object Accuracy/Notes

image456.jpg Internet Lion Misclassified as “Dog”
image_Fier.jpg Internet Fire Extinguisher Not Detected
image147.jpg Internet Chicken Identified as “Bird”

image_Alm.jpg Internet Palm Tree Not Detected
image_erfe.png Internet Weapons Not Detected
jpg223858.jpg Phone Cup 0.95 (Rate)
jpg223858.jpg Phone Fork 0.85–0.90 (Range)
jpg223858.jpg Phone Knife 0.77–0.89 (Range)
jpg223858.jpg Phone Cake 0.93 (Rate)
jpg223858.jpg Phone Book 0.30 (Rate)
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Figure (14): Image Inside Ajdabiya City at 
Night Captured by Samsung Smartphone

Figure (15): Image Inside Ajdabiya 
City at Night Captured by iPhone

Figure (16): "Image Inside Ajdabiya 
City Captured by iPhone.

Figure (17):Image Inside Ajdabiya 
City Captured by Samsung 

Smartphone.
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4.2. Discussion of Results (YOLOv7 Algo-

rithm, Phone Type, and Time of Day)

4.2.1. Nighttime Performance  

- iPhone slightly outperformed Samsung in 

detecting persons (0.88 vs. 0.85) and cars 

(0.84–0.40 vs. 0.83–0.50), likely due to supe-

rior low-light sensor optimization.  

- Both phones showed reduced accuracy for 

traffic lights (iPhone: 0.52–0.34; Samsung: 

0.41–0.34), attributed to low ambient light 

and glare.  

4.2.2.Daytime Performanc 

- Samsung achieved marginally higher clarity 

for trucks (0.90 vs. iPhone’s 0.89), possibly 

owing to enhanced dynamic range.  

- iPhone demonstrated greater consistency 

in traffic light detection (0.76–0.75 vs. Sam-

sung’s 0.59–0.28), suggesting better image 

stabilization.  

4.2.3. YOLOv7 Limitations

- Lower daytime scores for persons (e.g., iP-

hone: 0.33) indicate challenges with overex-

posure or motion blur.  

- High variability in car detection ranges (e.g., 

Samsung: 0.95–0.43) highlights sensitivity to 

object size, distance, or occlusion.

	 Table(2) summarizes the variations 

in detection clarity based on phone type (iP-

hone/Samsung) and time of day (day/night).

	 The results underscore the interplay 

between hardware capabilities (e.g., iPhone’s 

low-light sensors vs. Samsung’s color pro-

cessing) and environmental factors (lighting, 

contrast). YOLOv7’s performance is heavily 

dependent on input quality, emphasizing the 

need for camera optimization (e.g., exposure, 

HDR) tailored to specific scenarios. Future 

work should focus on calibrating models to 

mitigate real-world environmental biases.
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Table.(2): The results indicate notable variations in object detection clarity (using YOLOv7) 

based on phone type and time of day.

No.Figure Image Description Time
Camera 

Used
Person 
Clarity

Cars Clarity 
(Range)

Traffic Light 
Clarity 
(Range)

Truck 
Clarity

14
Image inside Ajdabi-

ya city at night
Night iPhone 0.88 0.84–0.40 0.52–0.34 -

15 Image inside Ajdabi-
ya city at night

Night Samsung 0.85 0.83–0.50 0.41–0.34 -

16 Image inside Ajdabi-
ya city during the day

Daytime iPhone 0.33 0.95–0.67 0.76–0.75 0.89

17-18 Image inside Ajdabi-
ya city during the day

Daytime Samsung - 0.95–0.43 0.59–0.28 0.90

 4.3,Comparative Experimental Results: 

YOLOv5 to YOLOv8

	 YOLOv7 and YOLOv8 show no-

table improvements in specialized tasks, 

achieving up to 94% precision, while gains on 

general benchmarks remain limited. Model 

performance is closely linked to dataset spec-

ificity, with domain-adapted models reaching 

over 90% precision, compared to a maximum 

of 57% mAP on COCO. Therefore, optimal 

model selection should consider application 

requirements, hardware limitations, and the 

speed-accuracy trade-off. Table(3) ) summa-

rizes the comparative performance metrics 

for each YOLO version.
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Table.(3):Comparing the performance of YOLOv5 toYOLOv8.
Modle Images/Dataset Precision(%) Recall(%) Reference Year

YOLOv5

COCO val2017 56.8 (mAP@0.5) 62.1 [32] 2024

Plant leaf disease dataset 89.7 88.3 [28] 2024

Industrial defect detection 76.2 74.5 [36] 2023

YOLOv6
COCO val2017 (YOLOv6n) 37.5 (mAP@0.5) - [37] 2022

Plant leaf disease dataset 91.2 90.1 [28] 2024

YOLOv7 COCO val2017 56.8 (mAP@0.5) - [4] 2022

Enhanced with MobileNetv3 93.5 92.8 [29] 2025

Insulator defect detection 94.1 93.4 [30] 2025

Standing tree segmentation 89.2(mAP@0.5) 88.6 [34] 2023

YOLOv8 Road defect detection (BL-
YOLOv8)

3.3% improvement - [33] 2023

Outdoor detection 58.2 (mAP@0.5) 60.7 [32] 2024

5.Conclusion

	 This study demonstrates that 

YOLOv7 achieves robust detection accuracy 

for common objects (e.g., vehicles, appli-

ances) in controlled and real-world scenari-

os, with notable performance variations tied 

to hardware capabilities (iPhone vs. Sam-

sung) and environmental conditions (day vs. 

night). While the model excels in detecting 

high-contrast, well-represented objects (e.g., 

cars: 0.95 accuracy), it struggles with occlud-

ed or small-scale targets (e.g., people: 0.33–

0.88) and underrepresented classes (e.g., fire 

extinguishers: undetected), revealing gaps in 

generalizability and sensitivity to input quali-

ty. Key contributions include quantifying the 

interplay between smartphone sensors (e.g., 

iPhone’s low-light optimization) and detec-

tion reliability, emphasizing the need for con-

text-aware calibration. Future work should 

prioritize diversifying training datasets, in-

tegrating adaptive thresholding for complex 

scenes, and developing hardware-specific 

preprocessing pipelines to mitigate environ-

mental biases. Bridging these gaps could 

enhance YOLOv7’s practicality in dynamic, 

real-world applications such as urban surveil-

lance and autonomous systems.  
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6.Abbreviations

YOLO : You Only Look Once.

CCTV : Closed Circuit Television.

R-CNN Mack : Regional Convolutional 

Neural Network Mack.

SSD : Single Shot MultiBox Detector.

Fully Connected Neural Network. FCNN :

CCN : Connected Neural Network.

IOU : Intersection Over Union.

MOT16 : Multiple Object Tracking 2016.

Pix2pixGAN : Pixel to Pixel Generative Ad-

versarial Network.

ADAS : Advanced Driver Assistance Sys-

tems.

FMD : Face Mask Data.

MMD : Medical Mask Data.

GNN : Graph Neural Networks.

HRSID : High Resolution Satellite Image 

Data.

VSC : Visual Studio Code.

Git : Global Information Tracker.

COCO : Common Objects in Context.

Pascal VOC : Pascal Visual Object Classes.

7.REFERENCES

1.Szeliski R. Computer Vision: Algorithms 

and Applications. 2nd ed. Springer; 2022. 

DOI: https://doi.org/10.1007/978-3-030-

34372-9

2.Badue C, Guidolini R, Carneiro RV, et 

al. Self-driving cars: A survey. Expert Syst 

Appl. 2021;165:113816. DOI: https://doi.

org/10.1016/j.eswa.2020.113816.

3.He K, Zhang X, Ren S, Sun J. Deep Re-

sidual Learning for Image Recognition. Proc 

IEEE Conf Comput Vis Pattern Recognit. 

2016;770-8.DOI: https://doi.org/10.1109/

CVPR.2016.90. 

4.Wang CY, Bochkovskiy A, Liao HYM. 

YOLOv7: Trainable Bag-of-Freebies Sets 

New State-of-the-Art for Real-Time Ob-

ject Detectors. arXiv. 2022. Available from: 

https://arxiv.org/abs/2207.02696.

5.Redmon J, Divvala S, Girshick R, Farhadi 

A. You Only Look Once: Unified, Real-Time 

Object Detection. arXiv. 2016. Available 

from: https://arxiv.org/abs/1506.02640. 

6.Mittelstadt B, Floridi L. The ethics of 

big data: Current and foreseeable issues 

in biomedical contexts. Sci Eng Eth-

ics. 2016;22(2):303-41. DOI: https://doi.

org/10.1007/s11948-015-9652-2. 



109

University of Benghazi©2025 All rights reserved. ISSN: Online 2790-1637, Print 2790-1629 
 National Library of Libya, Legal number: 154/2018

SJUOB (2025) 38 (1) Applied Sciences: 86 – 111                    Khamees, et la.

7.Girshick R. Fast R-CNN. Proc IEEE Int 

Conf Comput Vis. 2015;1440-8. DOI: https://

doi.org/10.1109/ICCV.2015.169. 

8.Kang, S., Hu, Z., Liu, L., Zhang, K., & 

Cao, Z. (2025). Object Detection YOLO Al-

gorithms and Their Industrial Applications: 

Overview and Comparative Analysis. Elec-

tronics, 14(6), 1104. https://doi.org/10.3390/

electronics14061104

8.Liu W, Anguelov D, Erhan D, et al. SSD: 

Single Shot MultiBox Detector. Proc Eur 

Conf Comput Vis. 2016;21-37. DOI: https://

doi.org/10.1007/978-3-319-46448-0_2.

9.Redmon J, Farhadi A. YOLOv3: An Incre-

mental Improvement. arXiv. 2018. Available 

from: https://arxiv.org/abs/1804.02767. 

10.Bojarski M, Del Testa D, Dworakowski 

D, et al. End-to-end learning for self-driving 

cars. arXiv. 2016. Available from: https://arx-

iv.org/abs/1604.07316. 

11.Zhao ZQ, Zheng P, Xu ST, Wu X. Ob-

ject Detection with Deep Learning: A Re-

view. IEEE Trans Neural Netw Learn Syst. 

2019;30(11):3212-32. DOI: https://doi.

org/10.1109/TNNLS.2018.2876865. 

12.Russakovsky O, Deng J, Su H, et al. Ima-

geNet Large Scale Visual Recognition Chal-

lenge. Int J Comput Vis. 2015;115(3):211-52. 

DOI: https://doi.org/10.1007/s11263-015-

0816-y. 

13.Lowe DG. Distinctive Image Features 

from Scale-Invariant Keypoints. Int J Com-

put Vis. 2004;60(2):91-110. DOI: https://doi.

org/10.1023/B:VISI.0000029664.99615.94. 

14.Tan M, Le QV. EfficientNet: Rethinking 

model scaling for convolutional neural net-

works. Proc Int Conf Mach Learn. 2019;6105-

14. DOI: https://doi.org/10.48550/arX-

iv.1905.11946. 

15.Lucas BD, Kanade T. An Iterative Image 

Registration Technique with an Application 

to Stereo Vision. Proc 7th Int Jt Conf Artif 

Intell. 1981;674-9. 

16.Taigman Y, Yang M, Ranzato M, Wolf L. 

DeepFace: Closing the Gap to Human-Lev-

el Performance in Face Verification. Proc 

IEEE Conf Comput Vis Pattern Recognit. 

2014;1701-8. DOI: https://doi.org/10.1109/

CVPR.2014.220. 

17.Topol EJ. High-performance medicine: 

the convergence of human and artificial in-

telligence. Nat Med. 2019;25(1):44-56. DOI: 

https://doi.org/10.1038/s41591-018-0300-7. 

18.Jouppi NP, Young C, Patil N, et al. In-da-

tacenter performance analysis of a tensor 

processing unit. ACM SIGARCH Comput 



110

SJUOB (2025) 38 (1) Applied Sciences: 86 – 111                    Khamees, et la.

University of Benghazi©2025 All rights reserved. ISSN: Online 2790-1637, Print 2790-1629 
 National Library of Libya, Legal number: 154/2018

Archit News. 2017;45(2):1-12. DOI: https://

doi.org/10.1145/3140659.3080246. 

19.Deng J, Dong W, Socher R, et al. Ima-

geNet: A large-scale hierarchical image da-

tabase. Proc IEEE Conf Comput Vis Pattern 

Recognit. 2009;248-55. DOI: https://doi.

org/10.1109/CVPR.2009.5206848.

20.Lin TY, Goyal P, Girshick R, et al. Focal 

Loss for Dense Object Detection. Proc IEEE 

Int Conf Comput Vis. 2017;2980-8. DOI: 

10.1109/ICCV.2017.324. 

21.Huang J, Rathod V, Sun C, et al. Speed/

Accuracy Trade-Offs for Modern Convo-

lutional Object Detectors. Proc IEEE Conf 

Comput Vis Pattern Recognit. 2017;7310-1.

22.He K, Gkioxari G, Dollár P, Girshick 

R. Mask R-CNN. Proc IEEE Int Conf 

Comput Vis. 2017;2961-9. DOI: 10.1109/

ICCV.2017.322.

23.Tan M, Pang R, Le QV. EfficientDet: 

Scalable and Efficient Object Detection. 

Proc IEEE Conf Comput Vis Pattern Rec-

ognit. 2020;10781-90. DOI: 10.1109/

CVPR42600.2020.01081.

24.LeCun Y, Boser B, Denker JS, et al. 

Backpropagation Applied to Handwrit-

ten Zip Code Recognition. Neural Com-

put. 1989;1(4):541-51. DOI: https://doi.

org/10.1162/neco.1989.1.4.541.

25.Cortes C, Vapnik V. Support-Vector Net-

works. Mach Learn. 1995;20(3):273-97. 

DOI: https://doi.org/10.1007/BF00994018.

26.Ren S, He K, Girshick R, Sun J. Faster 

R-CNN: Towards Real-Time Object Detec-

tion with Region Proposal Networks. Adv 

Neural Inf Process Syst. 2015;28:91-9.

27.Iren E. Comparison of YOLOv5 and 

YOLOv6 models for plant leaf disease 

detection. Eng Technol Appl Sci Res. 

2024;14(2):13714-9. DOI: 10.48001/

etasmr.2024.13714.

28.Ennaama S, Silkan H, Bentajer A, Tahiri 

A. Enhanced real-time object detection using 

YOLOv7 and MobileNetv3. Eng Technol 

Appl Sci Res. 2025;15(1):19181-7. DOI: 

10.48001/etasmr.2025.19181.

29.Wang Z, Yuan G, Zhou H, Ma Y, Ma 

Y, Chen D. Improved YOLOv7 mod-

el for insulator defect detection [Pre-

print]. arXiv:2502.07179 https://arxiv.org/

abs/2502.07179. 

30.Litjens G, Kooi T, Bejnordi BE, et al. A sur-

vey on deep learning in medical image anal-

ysis. Med Image Anal. 2017;42:60-88. DOI: 

https://doi.org/10.1016/j.media.2017.07.005. 

31.Wijaya, R.S., Santonius, S., Wibisana, A., 



111

University of Benghazi©2025 All rights reserved. ISSN: Online 2790-1637, Print 2790-1629 
 National Library of Libya, Legal number: 154/2018

SJUOB (2025) 38 (1) Applied Sciences: 86 – 111                    Khamees, et la.

Jamzuri, E.R. and Nugroho, M.A.B., 2024. 

Comparative Study of YOLOv5, YOLOv7 

and YOLOv8 for Robust Outdoor Detec-

tion. Journal of Applied Electrical Engineer-

ing, 8(1), pp.37-43.

32.Wang X, Gao H, Jia Z, Li Z. BL-

YOLOv8: An improved road defect detection 

model based on YOLOv8. Sensors. 2023 Oct 

10;23(20):8361.

33.Cao L, Zheng X, Fang L. The semantic 

segmentation of standing tree images based 

on the Yolo V7 deep learning algorithm. 

Electronics. 2023 Feb 13;12(4):929

34.Wang C, Bochkovskiy A, Liao 

HYM. Scaled-YOLOv4: Scaling cross 

stage partial network. arXiv. 2021. Avail-

able from: https://arxiv.org/abs/2011.08036. 

DOI: 10.48550/arXiv.2011.08036. 

35.Li C, Li L, Jiang H, et al. YOLOv6: A sin-

gle-stage object detection framework for in-

dustrial applications. arXiv. 2022. Available 

from: https://arxiv.org/abs/2209.02976. DOI: 

10.48550/arXiv.2209.02976.


