== )
RS GSURN Vol No 1,2 Year 28(h MERE R
ROSNGSSY

Plasma Electromagnetic Diagnostics On Tokamak Systems

(Part 1)
A.S. Alhasi & .A. Mohamed"

Abstract

In this work, we try to bridge the gaps between electromagnetic
theory and the experimental work. In this study, the magnetic field (B),
the plasma current (I), the Ohmic power (P) and finally the plasma
electron temperature (T,) are covered. To simplify the approach,
we adhere to plasmas, with circular cross-section. Thus we use the
geometry of the torus, where () is in the toroidal direction and (0) is in

the poloidal direction.

INTRODUCTION

Great deal of research has been carried out in plasma physics
during the past few decades. Comparable to any other subdiscipline of
physics, the field of plasma includes a very substantial body of
knowledge covering a wide variety of branches, ranging from the most
theoretical to the most practical. In plasma, major quantities confrontation
between theory and experiment is possible. This confrontation places
strong demands upon theory to do calculations in realistic configuration.
But it also requires that the properties of plasmas be measured
experimentally as accurately as possible. For this reason much of

the effort in experimental plasma physics is devoted to devising,
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developing and proving techniques for diagnosing the properties of

plasma-well known as plasma diagnostics [2,6].

The prospect of generating economically significant amounts of
power from controlled thermonuclear fusion is the driving major force
behind the research on plasma. The overall objective of plasma diagnostic
Is to deduce information about the state of the plasma from practical
observation of physical processes and their effects. The high temperatures
sought for fusion frequently eliminate the possibility of internal

diagnosing by material probes [5,7].

The aim of this work is to smooth the way for researchers and
engineers in this field by casting the theoretical physical laws into a
simple quantitive mathematical formulas. To this end the coordinate
system is that of toroidal geometry, which is suitable to most promising
fusion reactors mainly tokomaks. A simple torus shown in figure (1)
depicts the toroidal geometry of a tokomak reactor. Here, the toroidal axis
(vertical by convention) is encircled by the magnetic axes. It is a single
toroidal field line that generally locates the peak of the plasma current
and plasma density profiles. The magnetic axis also identified with the
toroidal direction parameter (¢). Similarly closed poloidal curves
encircling the magnetic axis, indicate the local poloidal direction (0). To

carry the measurement two coils (loops) are used [12,7].
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Figure (1): Primitive toroidal coordinates
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Figure (2): Rogowski coil loop that encircle the magnetic axis. A loop voltage that

encircles the toroidal axis as shown in figure (1).
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Figure 3: Typical magnetic coil and integrated circuit.

THEORY AND DERIVATIONS
1-Magnetic field Measurement:
We start from the differential form of Maxwell's equation

(Faraday's law)

VXE = —— (1)

Integrating both sides of equation (1) over the surface(S) with the
differential area vector da = fida where A is the unit vector normal to

the surface (S), we get

f(ﬁxﬁ)-d&:— —.dd (2)

S N
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Using Stokes theorem we change the surface integral on the left side of

equation (2) to a line integral to obtain ([1,8]):

fﬁ dl = 9B da 3

line S

Here, dljs a segment of length vector along the perimeter of the surface

area.

The simplest way to measure the magnetic field in the vicinity of a point
in space is to use the so called magnetic coil as shown in figure (2). We
assume the magnetic field in the pinch as uniform with cylindrical cross-
section. A coil with cross-sectional area (A) and (N) number of turns with
an integrator and/or oscilloscope (with some non trivial impedance)
senses the voltage cross the coil ends. If the coil is good conductor or if
the impedance of the electronics is large (o) the electric field (En) inside

the coil itself is zero and the left side of equation (3) can be written as:

jﬁm-d7+ jﬁ-di=— — - dd (4)

coil end

Since the electric field inside the coil is zero, thus equation (4) reduces to:

jﬁ dl = 0B da 5

end

The magnetic flux (¢m) is related to the magnetic field (Bg) in the -
direction and the electric field (EO) in the 6 — direction is related to the

emf (\VO) cross the coil ends respectively [3,10]:
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S

end

If the magnetic field is uniform in space and varying in time, we can
relate the emf (\VO) to the magnetic field flux (¢m) in the z-direction.
Thus:

Vo=——" (8)
Using equations (5), (6), (7) and (8) we get:

d dB,
Vg=—% qu)da =—¥fda (9)
S

N

If we have a loop with an area A and N number of turns, equation (9)

reduces to:

NAdB,,
dt

Vo = Vol = ‘— (10)

Using an analog integrating circuit with resistance(R) and capacitance (C)

, We obtain the time constant T = R C. Therefore, equation (10) becomes:

Vp=—T=—=2 (11)
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Since the quantity (RC/NA) is known and VO is measured:

B, = (%) v, (12)

The above calculation gives the component of B normal to the plane of
the coil. If dB/dt is non-uniform then it is the mean value over the
surface that we measure. The surface integral strictly spans the space
between the leads to the coil as well. The leads are usually twisted to

make this contribution negligible, [8,4].

The most general case is when we allow a current to flow in the
measuring coil. This will change the magnetic field Bo in its vicinity and
thereby changes the measured voltage by induction. The magnetic coil
with total resistance Rc is connected to an integrated circuit whose
resistance is Re. If the inductance (L) of the coil, the resistance of the
measurement electronics Re and the resistance of the coil Rc are included
in equation (10) we will have the general form as:

dB,,

Rc
1+ —) Vg = NA—2 (13)

R, dt

R, dt
Here, L is defined as the self- inductance of magnetic coil.

2- Current measurement in the cross-sectional area of the torus:

The so called Rogowski coil is used to measure the total plasma
current (I) flowing through the cross-section. This solenoid coil with ends
brought around together to form a torus is illustrated in figure (4). If this
coil has uniform cross-sectional area (A) with constant turns (n) per unit

length (provided the magnetic field varies little over one turn spacing that
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is if VB/B<<n) implies that 1/l <<n, where lis the length of the torus.

Thus, we can work out the flux linkage per turn as [7,6]:

$; = f B, da (14)

N

where i =1, 2...We can sum this over all turns to get the total flux linkage

as

qb:nfdafB(pdl (15)

S l

The last integral in equation (15) is just Ampere's law

f B,dl = ol (16)
l

where | is the total current enclosed by the loop (1) as shown in figure

(4). The area of cross-section of the coil isA= j da, thus the total flux
linkage is

¢ = nAul (17)
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Figure 4: Equivalent geometry of the integral form of flux through a Rodowski coil.

Here n is number of turns of the coil and x is the magnetic permeability

of the medium in the solenoid. Hence the voltage out of the loop may be
measured as

do dl

= —— = nAu—
V=-ge=Me g

(18)

Which is usually integrated electronically to give a signal proportional to
I. This provides a direct measurement of the total current through the

centre of the plasma cross-section.
3- Ohmic Power and Conductivity Measurement:

Assuming that the plasma current to be constant during the time of
plasma confinement inside the fusion experiment reactor (tokomak), the

plasma resistance (Rp) is defined as [12, 8 |:

=~

R, =-"% (19)
@

56



N NN PN DN W N AN — Lo N W™ 3 3 T 7 i
e te e M an AT . 3T The Scientific Journal of the University of Benghazi (lL

where V,, and I, are the loop voltage, and the plasma current along the
toroidal ¢-axis of the reactor torus respectively. The plasma resistance is
Important because it determines the Ohmic heating input to the plasma
and also because it may be used to estimate the electron temperature.
However, before moving on to these matters we must consider the more
general situation in which the currents are not constant and the inductance

makes a significant contribution [9].

Starting from the Poynting vector as applied to a volume bounded
by a surface (S) outside the plasma on which the measuring voltage loop

lies, see figure (1), we can write:

fEXB nda—f(E de+ j(laaB:

N

0E?
+ &Eo ? dv (20)

Here J and fida are the current density vector and the outward pointing

surface element bounding the volume element dv respectively [6].

The first term on the right hand side is the total Ohmic heat dissipated
within the volume. The second term is the rate of change of the stored

electromagnetic energy within the plasma.

However, the left hand side is known as the Poynting flux or the rate of

input of electromagnetic energy from the external circuits. The factor

: : 1 11
~€iS proportional to Z—,uogoz——<<1 Therefore, according to

Ho 2, C

[12,6] the energy density of the electric field can be dropped from the
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second term of equation (20). In geometrical description of the torus

cross-section, equation (20) can be written as:

-

. B
—f <Ex—>-d&
J Ho
dB; 0B}
f(E J)dv + > uof<at af) (21)

The input in the left hand side can be written as:

. B
—f <E X ‘u—) . d(_i = V(pl(p + Vg[g (21)
0
S

where (Vq,, I(p) are the loop voltage and the current around the torus major

axis respectively and (Vp, I5) are the loop voltage and the current around
the torus minor axis of the torus respectively. Using equation (21) and

equation (22) the Ohmic power (P) can be obtained:

= j(ﬁ J)dv = V1, + Vel
v

1 f 0B, 689 y 23
7Moo )\ ¢ T3¢ )% (23)

v

The last two integrals can be put in the following forms:

(24 —a)

1 (%)dv _ 19(Lyl3)

21U, Jt 2 Ot
v
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1 dBZ 10(Lgl3)
2_[,1() <7> dv = E ot (24 - b)
v

These are the energy inductances in the (¢) and (0) directions of the

cross-section of the torus respectively. The inductances can be defined as:

L, = f B2 dv 25 —a
¢ .Uolé ¢ ( )
v
L ! f BZd (25 — b)
= —_— v —_
o Holg o

v

Substituting the above noted terms in equation (23) we obtain the Ohmic

power (P):

10(L,I2 + Lgl§)
P =Voly +Voly — 5 ———

(23)

The first term on the right hand side represents the resistance contribution
of the plasma if it is steady. The second term on the right hand side

represents the inductance contribution of the plasma if it is time varying.

The plasma current (l,) can be found from the magnetic flux (¢m)

measurement:

do,, dl,
V(p = —7 = NA‘U()E (27)

The voltage (1,) can be measured as:

dB dB
? = Nma?2 -2 (28)

i’ P dt dt

» =NA
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where A, is the area of the plasma cross section, which approximately
equal za® with (a) defined as the minor radius of the torus cross-section.
The voltage V,, can be measured by the linear loop voltage [3,5]. The

current (l,) can be written as:

B B
= 2nr — = 2ma —= (29)
Ho Ho

I

The plasma radius is approximately equal to (r ~a). Therefore if the
plasma is steady the inductance contribution is irrelevant. Thus the

Ohmic power can be estimated:
P = (Vglg +V,I,) + small inductive term (30)

Substituting equations (28) and (29) into equation (20), we obtain

dB B
P=V,l,+ <N7Ta2 d—f) <2na —"’)

1\ (dB2
=V,l, + (Nn2a3 #—0) (Tf) (31)

All terms on the right hand side of the above equation can be measured

experimentally.

Using Ohm's law E = J /o on the left hand side of the above equation, the
plasma conductivity can be estimated if the anisotropy of the conductivity

(o) 1s ignored, thus:

2

p=[ B jav=> [ ] jav=r5(22) G@rmad)
=yazle
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where (o) is the average conductivity, | and za® are the length and the
area of the torus section respectively. We use equations (31) and (32) to

obtain:

12

@
() 2wl P Nm2a3dBj (33)
Vol + = —at

If B, is steady, then we can estimate (o) to be:

oml 12 211
(0) ===+

Taz Vply B aZE

(34)

4-ElectronTemperature Measurement:

We can make an estimate of the electron temperature if we use the

so-called Spitzer conductivity for(c)usually used for fully ionized
plasmas [1,11] which is given by:
(0) = 1.9 X 104L/2 Q 1m™? (35)
ZsInA

Here T, is the electron temperature in (eV), Z; is the resistance anomaly
determined by the ion charge, and InA is the Coulomb logarithm. Using

equations (34) and (35) we get:

2l ZylnA (I
=0 (L 36
¢ T a?19x 10%\V, (36)

where Z,=Z =1 for hydrogen plasmas.
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