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Abstract 

In this work, we try to bridge the gaps between electromagnetic 

theory and the experimental work. In this study, the magnetic field ( B


), 

the plasma current (I), the Ohmic power (P) and finally the plasma 

electron temperature (Te) are covered. To simplify the approach,                    

we adhere to plasmas, with circular cross-section. Thus we use the 

geometry of the torus, where (φ) is in the toroidal direction and () is in 

the poloidal direction. 

INTRODUCTION 

Great deal of research has been carried out in plasma physics 

during the past few decades. Comparable to any other subdiscipline of 

physics, the field of plasma includes a very substantial body of 

knowledge covering a wide variety of branches, ranging from the most 

theoretical to the most practical. In plasma, major quantities confrontation 

between theory and experiment is possible. This confrontation places 

strong demands upon theory to do calculations in realistic configuration. 

But it also requires that the properties of plasmas be measured 

experimentally as accurately as possible. For this reason much of                    

the effort in experimental plasma physics is devoted to devising, 
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developing and proving techniques for diagnosing the properties of 

plasma-well known as plasma diagnostics [2,6]. 

The prospect of generating economically significant amounts of 

power from controlled thermonuclear fusion is the driving major force 

behind the research on plasma. The overall objective of plasma diagnostic 

is to deduce information about the state of the plasma from practical 

observation of physical processes and their effects. The high temperatures 

sought for fusion frequently eliminate the possibility of internal 

diagnosing by material probes [5,7]. 

The aim of this work is to smooth the way for researchers and 

engineers in this field by casting the theoretical physical laws into a 

simple quantitive mathematical formulas. To this end the coordinate 

system is that of toroidal geometry, which is suitable to most promising 

fusion reactors mainly tokomaks. A simple torus shown in figure (1) 

depicts the toroidal geometry of a tokomak reactor. Here, the toroidal axis 

(vertical by convention) is encircled by the magnetic axes. It is a single 

toroidal field line that generally locates the peak of the plasma current 

and plasma density profiles. The magnetic axis also identified with the 

toroidal direction parameter (φ). Similarly closed poloidal curves 

encircling the magnetic axis, indicate the local poloidal direction (θ). To 

carry the measurement two coils (loops) are used [12,7].  
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Figure (1): Primitive toroidal coordinates 

 

 

 

Figure (2): Rogowski coil loop that encircle the magnetic axis. A loop voltage that 

encircles the toroidal axis as shown in figure (1). 
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Figure 3: Typical magnetic coil and integrated circuit. 

THEORY AND DERIVATIONS 

1-Magnetic field Measurement: 

We start from the differential form of Maxwell's equation 

(Faraday's law)  

 ⃗⃗   ⃗   
  ⃗ 

  
                                                                     

Integrating both sides of equation (1) over the surface(S) with the 

differential area vector       ̂    where  ̂ is the unit vector normal to 

the surface (S), we get 

∫( ⃗⃗   ⃗ )     

 

  ∫
  ⃗ 
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Using Stokes theorem we change the surface integral on the left side of 

equation (2) to a line integral to obtain ([1,8]): 

∫  ⃗     

    

  ∫
  ⃗ 

  
    

 

                                                          

Here, ld


is a segment of length vector along the perimeter of the surface 

area. 

The simplest way to measure the magnetic field in the vicinity of a point 

in space is to use the so called magnetic coil as shown in figure (2). We 

assume the magnetic field in the pinch as uniform with cylindrical cross-

section. A coil with cross-sectional area (A) and (N) number of turns with 

an integrator and/or oscilloscope (with some non trivial impedance) 

senses the voltage cross the coil ends. If the coil is good conductor or if 

the impedance of the electronics is large (∞) the electric field ( ⃗⃗   ) inside 

the coil itself is zero and the left side of equation (3) can be written as: 

∫  ⃗       

    

 ∫  ⃗     

   

  ∫
  ⃗ 

  
                                                 

Since the electric field inside the coil is zero, thus equation (4) reduces to: 

∫  ⃗     

   

  ∫
  ⃗ 

  
                                                            

The magnetic flux (ϕm) is related to the magnetic field (Bφ) in the φ-

direction and the electric field (E) in the  – direction is related to the 

emf (V) cross the coil ends respectively [3,10]: 
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   ∫  ⃗    

 

                                                              

   ∫  ⃗     

   

                                                                   

If the magnetic field is uniform in space and varying in time, we can 

relate the emf (V) to the magnetic field flux (ϕm) in the z-direction. 

Thus: 

    
   

  
                                                                     

Using equations (5), (6), (7) and (8) we get: 

    
 

  
(∫   

 

  )   
   

  
∫   

 

                                         

If we have a loop with an area A and N number of turns, equation (9) 

reduces to: 

   | |  | 
     

  
|                                                       

Using an analog integrating circuit with resistance(R) and capacitance (C) 

, we obtain the time constant  = R C. Therefore, equation (10) becomes: 
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Since the quantity (RC/NA) is known and V0 is measured: 

   (
  

  
)                                                                   

The above calculation gives the component of B


 normal to the plane of 

the coil. If     ̅    is non-uniform then it is the mean value over the 

surface that we measure. The surface integral strictly spans the space 

between the leads to the coil as well. The leads are usually twisted to 

make this contribution negligible, [8,4].  

The most general case is when we allow a current to flow in the 

measuring coil. This will change the magnetic field Bφ in its vicinity and 

thereby changes the measured voltage by induction. The magnetic coil 

with total resistance Rc is connected to an integrated circuit whose 

resistance is Re. If the inductance (L) of the coil, the resistance of the 

measurement electronics Re and the resistance of the coil Rc are included 

in equation (10) we will have the general form as: 

 

  

   

  
 (  

  

  
)     

   

  
                                            

Here, L is defined as the self- inductance of magnetic coil. 

2- Current measurement in the cross-sectional area of the torus: 

The so called Rogowski coil is used to measure the total plasma 

current (I) flowing through the cross-section. This solenoid coil with ends 

brought around together to form a torus is illustrated in figure (4). If  this 

coil has uniform cross-sectional area (A) with constant turns (n) per unit 

length (provided the magnetic field varies little over one turn spacing that 
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is if nBB 


) implies that nl 1 , where l is the length of the torus. 

Thus, we can work out the flux linkage per turn as [7,6]: 

   ∫   

 

                                                                

where i =1, 2…We can sum this over all turns to get the total flux linkage 

as 

   ∫   

 

∫   

 

                                                          

The last integral in equation (15) is just Ampere's law 

∫     

 

                                                                    

where I is the total current enclosed by the loop ( l ) as shown in figure 

(4). The area of cross-section of the coil is 
s

daA , thus the total flux 

linkage is 
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Figure 4: Equivalent geometry of the integral form of flux through a Rodowski coil. 

 

Here n is number of turns of the coil and   is the magnetic permeability 

of the medium in the solenoid. Hence the voltage out of the loop may be 

measured as 

   
  

  
    

  

  
                                                          

Which is usually integrated electronically to give a signal proportional to 

I. This provides a direct measurement of the total current through the 

centre of the plasma cross-section.  

3- Ohmic Power and Conductivity Measurement: 

Assuming that the plasma current to be constant during the time of 

plasma confinement inside the fusion experiment reactor (tokomak), the 

plasma resistance (RP) is defined as [12, 8 ]: 
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where    and    are the loop voltage, and the plasma current along the 

toroidal φ-axis of the reactor torus respectively. The plasma resistance is 

important because it determines the Ohmic heating input to the plasma 

and also because it may be used to estimate the electron temperature. 

However, before moving on to these matters we must consider the more 

general situation in which the currents are not constant and the inductance 

makes a significant contribution [9]. 

Starting from the Poynting vector as applied to a volume bounded 

by a surface (S) outside the plasma on which the measuring voltage loop 

lies, see figure (1), we can write: 

 ∫
 ⃗   ⃗ 

  
  ̂   ∫( ⃗    )   

 

 
  

∫ (
 

  

   

  
 

   
   

  
)                        

Here    and  ̂   are the current density vector and the outward pointing 

surface element bounding the volume element    respectively [6]. 

The first term on the right hand side is the total Ohmic heat dissipated 

within the volume. The second term is the rate of change of the stored 

electromagnetic energy within the plasma. 

However, the left hand side is known as the Poynting flux or the rate of 

input of electromagnetic energy from the external circuits. The factor 
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. Therefore, according to 

[12,6] the energy density of the electric field can be dropped from the 
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second term of equation (20). In geometrical description of the torus 

cross-section, equation (20) can be written as: 

 ∫ ( ⃗  
 ⃗ 

  
)

 

    

 ∫( ⃗    )   
 

 
  

 

∫ (
   

 

  
 

   
 

  
)

 

                                 

The input in the left hand side can be written as: 

 ∫ ( ⃗  
 ⃗ 

  
)

 

                                                                 

where (     ) are the loop voltage and the current around the torus major 

axis respectively and         are the loop voltage and the current around 

the torus minor axis of the torus respectively. Using equation (21) and 

equation (22) the Ohmic power (P) can be obtained: 

  ∫( ⃗    )             

 

 
 

 
  ∫ (

   
 

  
 

   
 

  
)

 

                        

The last two integrals can be put in the following forms: 

 

   
∫ (

   
 

  
)  

 

 
 

 

 (    
 )
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∫ (

   
 

  
)  

 

 
 

 

 (    
 )

  
                                         

These are the energy inductances in the (φ) and () directions of the 

cross-section of the torus respectively. The inductances can be defined as: 

   
 

    
 
∫   

 

 

                                                         

   
 

    
 ∫   

 

 

                                                         

Substituting the above noted terms in equation (23) we obtain the Ohmic 

power (P): 

            
 

 

 (    
      

 )

  
                                            

The first term on the right hand side represents the resistance contribution 

of the plasma if it is steady. The second term on the right hand side 

represents the inductance contribution of the plasma if it is time varying. 

The plasma current (Iφ) can be found from the magnetic flux (ϕm) 

measurement: 

    
   

  
     

   

  
                                                           

The voltage (  ) can be measured as: 
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where Ap is the area of the plasma cross section, which approximately 

equal πa
2
  with (a) defined as the minor radius of the torus cross-section. 

The voltage Vφ can be measured by the linear loop voltage [3,5]. The 

current (Iφ) can be written as: 

      
  

  
    

  

  
                                                      

The plasma radius is approximately equal to (r ~ a). Therefore if the 

plasma is steady the inductance contribution is irrelevant. Thus the 

Ohmic power can be estimated:  

                                                                 

Substituting equations (28) and (29) into equation (20), we obtain 

       (    
   

  
) (   

  

  
)

      (     
 

  
) (

   
 

  
)                       

All terms on the right hand side of the above equation can be measured 

experimentally. 

Using Ohm's law  ⃗       on the left hand side of the above equation, the 

plasma conductivity can be estimated if the anisotropy of the conductivity 

(σ) is ignored, thus: 

  ∫  ⃗  

 

     
 

 
∫         

 

〈 〉
 

(
  

   
)
 

          

 
 

〈 〉
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where 〈 〉 is the average conductivity, l  and πa
2
 are the length and the 

area of the torus section respectively. We use equations (31) and (32) to 

obtain: 

〈 〉
   

   
 

  
 

 
 

  
 

     
     

  

   
 

  

                                              

If Bφ  is steady, then we can estimate 〈 〉 to be: 

〈 〉
   

    
 

  
 

    
 

  

  

  

  
                                                  

 

4-ElectronTemperature Measurement:    

We can make an estimate of the electron temperature if we use the 

so-called Spitzer conductivity for  usually used for fully ionized 

plasmas [1,11] which is given by:  

    〈 〉         
  

  ⁄

     
                                                         

Here Te is the electron temperature in (eV), Zσ is the resistance anomaly 

determined by the ion charge, and ln  is the Coulomb logarithm. Using 

equations (34) and (35) we get: 

  
  ⁄  

  

  

     

       
(
  

  
)                                                         

where Zσ = Z = 1  for hydrogen plasmas. 
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                                      الطرق الكهروهغناطيسيت لتشخيص الحالت الرابعت هن الوادة )البلازها( 

 ث الانذهاجيت )تىكواك(في هنظىهت الوفاعلا

 هلخص

ُزٍ الْستَ ُٖ ه وّلَ لْ ل٘ط ّّ شٗي الوسوفَ ً٘ي هو ّْوّلِ إلَ٘ الٌظشٗوُ الكِشّهتٌوغ٘سَ٘ 

                      ّالْٚدددوسى الوصدددو ٌَ لِدددو فدددٖ هٚدددو، الاًدددذهوٗ ّالو دددودلاُ الاًذهوٙ٘دددَ. فدددٖ ُدددزا الٌ دددٔ،

الوؤدٗدَ للاًدذهوٗ،  (Te)الٌلاصهدو، غوتدَ الْسدخ٘ي  (I)، الْ٘دوس الكِشًدٖ ( ⃗⃗ )الوٚو، الوتٌوغ٘سٖ 

ّأا٘شا دسَٙ  شاسٍ الإلكْشًّوُ فٖ ُزا الْسدػ تدذ ّدن الْعوهدل هعِدو. ّلٌْسد٘ػ دول٘دَ الْودْ، 

لِددزٍ الٌْددوئ٘ ادْوددذًو أى ٗوددْى ه طددع الٌلاصهددو دائشٗددو هددع ال  ددوظ دلددٔ الشددكل الٌِذسددٖ للو ودددل 

 .(φ, )ًضّاٗوٍ الو ْسَٗ الوعشّفَ 
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