Mineral contents in fruiting bodies of edible wild mushroom from Al-Jabal Alakhdar province / Libya

المؤلفون

  • Ramadan E Abdolgader Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya
  • Ateea Ali Bellail Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya
  • Ramadan E Abdolgader Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya
  • Mabruka Milad Mousa Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya
  • Mohammed F Abraheem Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

DOI:

https://doi.org/10.37376/1571-000-023-004

الكلمات المفتاحية:

Wild edible mushrooms، , Heavy metals، Proximate composition، , Libya

الملخص

Abstract

In order to promote the use of wild edible mushrooms as source of nutrients and environmental marker, several experiments were performed in fruiting bodies (cap and stipe) of wild edible mushrooms which were collected from different regions of Al-Jabal Alakhdar province / Libya, including Alabraq, Alosita, Asalpiea, Ashnishen, Balanaje, Faidiyah, Marawah, Omar Mukhtar, Salantah, Sidihamri, and Werdama regions. The collections were done from September to November during 2012/2013. The analysis of mineral included determination of macro- (K, Na, Ca) and microelement (Fe, Zn, Cu, Cd, Pb) trace metal levels were determined by flame photometer and atomic absorption spectrometry. In fruiting bodies, the highest mean concentration of macroelements (dry weight basis) was found for K (26612.4), followed by Ca (3049.80) and Na (2836.85). K and Na were preferably trans located into the cap rather than the stipes. Ca, however, was often found in higher concentration in stipes than in caps. The mean microelement concentrations, across all tested fungi, were in the following order: Fe > Zn > Cu > Pb > Cd. Microelements showed different distributions, depending on the part of the fruiting body. Some were more concentrated in the caps and some in stipes and distributions varied among regions. This study proves that wild edible fungi which consumed traditionally in Al-Jabal Alakhdar province be used in well-balanced diets due to their high contents of functional minerals. Also, their low contents of heavy metals (Pb and Cd) shows that collection areas are not polluted, therefore all collected edible mushroom species can be unreservedly consumed without any health risk.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

السير الشخصية للمؤلفين

Ramadan E Abdolgader، Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Ateea Ali Bellail، Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Ramadan E Abdolgader، Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Mabruka Milad Mousa، Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Mohammed F Abraheem، Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

Food Science Department, College of Agriculture Omar Al-Mukhtar University, Albeida, Libya

المراجع

REFERENCES

Abou-Arab, A. A. K. (2001). Heavy metal contents in Egyptian meat and the role of detergent washing on their levels. Food and Chemical Toxicology, 39(6), 593-599.

Agrahar-Murugkar, D., & Subbulakshmi, G. (2005). Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry, 89(4), 599-603.

Aletor, V. A. (1995). Compositional studies on edible tropical species of mushrooms. Food Chemistry, 54(3), 265-268.

Aloupi, M., Koutrotsios, G., Koulousaris, M., & Kalogeropoulos, N. (2012). Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicology and Environmental Safety, 78(0), 184-194.

AOAC. (2003). Official methods of analysis of AOAC international (17th ed.). Gaithersburg, MD, USA: Association of the Official Analytical Chemists (AOAC) International.

Bahemuka, T. E., & Mubofu, E. B. (1999). Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chemistry, 66(1), 63-66.

Barros, L., Cruz, T., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 46(8), 2742-2747.

Bauer Petrovska, B. (2001). Protein Fraction in Edible Macedonian Mushrooms. European Food Research and Technology, 212(4), 469-472.

Breene, W. M. (1990). Nutritional and medicinal value of specialty mushrooms. Journal of Food Protection, 53(10), 883-899.

Colak, A., Faiz, Ö., & Sesli, E. (2009). Nutritional composition of some wild edible mushrooms. Türk Biyokimya Dergisi (Turkish Journal of Biochemistry), 34(1), 25-31.

Communities, C. o. t. E. Commission of the European Communities. (2001). Commission Regulation (EC) No 466/2001 of 8 March 2001 setting maximum levels of certain contaminants in foodstuffs. Official Journal of the European Communities, L77/1-13.

Dikeman, C. L., Bauer, L. L., Flickinger, E. A., & Fahey, G. C. (2005). Effects of Stage of Maturity and Cooking on the Chemical Composition of Select Mushroom Varieties. Journal of Agricultural and Food Chemistry, 53(4), 1130-1138.

Flegg, P. B., & Maw, G. (1997). Mushrooms and their possible contribution to world proteins needs. Mushrooms Journal, 48, 395-403.

Gast, C. H., Jansen, E., Bierling, J., & Haanstra, L. (1988). Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere, 17(4), 789-799.

Işıloğlu, M., Yılmaz, F., & Merdivan, M. (2001). Concentrations of trace elements in wild edible mushrooms. Food Chemistry, 73(2), 169-175.

Johnsy, G., Sargunam, S. D., Dinesh, M. G., & Kaviyarasan, V. (2011). Nutritive Value of Edible Wild Mushrooms Collected from the Western Ghats of Kanyakumari District. Botany Research International, 4(4), 69-74.

Kalač, P. (2012). Chemical composition and nutritional value of European species of wild growing mushrooms. In S. Andres & N. Baumann (Eds.), Mushrooms: types, properties and nutrition, (pp. 129-152). New York: Nova Science Publishers, Inc.

Kalač, P., & Svoboda, L. r. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69(3), 273-281.

Kavishree, S., Hemavathy, J., Lokesh, B. R., Shashirekha, M. N., & Rajarathnam, S. (2008). Fat and fatty acids of Indian edible mushrooms. Food Chemistry, 106(2), 597-602.

Khatun, S., Islam, A., Cakilcioglu, U., Guler, P., & Chatterjee, N. C. (2014). Nutritional qualities and antioxidant activity of three edible oyster mushrooms (Pleurotus spp.). NJAS - Wageningen Journal of Life Sciences(0).

Kim, M.-Y., Chung, l.-M., Lee, S.-J., Ahn, J.-K., Kim, E.-H., Kim, M.-J., Kim, S.-L., Moon, H.-I., Ro, H.-M., Kang, E.-Y., Seo, S.-H., & Song, H.-K. (2009). Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chemistry, 113 (2), 386-393.

Konuk, M., Afyon, A., & Yagiz, D. (2007). Minor element and heavy metal contents of wild growing edible mushrooms from Western Black Sea Region of Turkey. Fresenius Environmental Bulletin, 16(11A), 1359–1362.

Kosanovic, M., Hasan, M. Y., Subramanian, D., Al Ahbabi, A. A. F., Al Kathiri, O. A. A., Aleassa, E. M. A. A., & Adem, A. (2007). Influence of urbanization of the western coast of the United Arab Emirates on trace metal content in muscle and liver of wild Red-spot emperor (Lethrinus lentjan). Food and Chemical Toxicology, 45(11), 2261-2266.

Koyyalamudi, S. R., Jeong, S.-C., Manavalan, S., Vysetti, B., & Pang, G. (2013). Micronutrient mineral content of the fruiting bodies of Australian cultivated Agaricus bisporus white button mushrooms. Journal of Food Composition and Analysis, 31(1), 109-114.

Li, T., Wang, Y., Zhang, J., Zhao, Y., & Liu, H. (2011). Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chemistry, 127(4), 1828-1830.

Liu, Y.-T., Sun, J., Luo, Z.-Y., Rao, S.-Q., Su, Y.-J., Xu, R.-R., & Yang, Y.-J. (2012). Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food and Chemical Toxicology, 50(5), 1238-1244.

Lynch, S. R., & Baynes, R. D. (1996). Deliberations and Evaluations of the Approaches, Endpoints and Paradigms for Iron Dietary Recommendations. The Journal of Nutrition, 126(9), 2404S-2409S.

Mallavadhani, U. V., Sudhakar, A. V. S., Satyanarayana, K. V. S., Mahapatra, A., Li, W., & vanBreemen, R. B. (2006). Chemical and analytical screening of some edible mushrooms. Food Chemistry, 95(1), 58-64.

Manzi, P., Aguzzi, A., & Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food Chemistry, 73(3), 321-325.

Mdachi, S. J. M., Nkunya, M. H. H., Nyigo, V. A., & Urasa, I. T. (2004). Amino acid composition of some Tanzanian wild mushrooms. Food Chemistry, 86(2), 179-182.

Mendil, D., Uluözlü, Ö. D., Hasdemir, E., & Çaǧlar, A. (2004). Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chemistry, 88(2), 281-285.

Mendil, D., Uluözlü, Ö. D., Tüzen, M., Hasdemir, E., & Sarı, H. (2005). Trace metal levels in mushroom samples from Ordu, Turkey. Food Chemistry, 91(3), 463-467.

Ouzouni, P. K., Veltsistas, P. G., Paleologos, E. K., & Riganakos, K. A. (2007). Determination of metal content in wild edible mushroom species from regions of Greece. Journal of Food Composition and Analysis, 20(6), 480-486.

Palozza, P., Serini, S., Di Nicuolo, F., Piccioni, E., & Calviello, G. (2003). Prooxidant effects of β-carotene in cultured cells. Molecular Aspects of Medicine, 24(6), 353-362.

Pitot, C. H., & Dragan, P. Y. (2001). Chemical Carcinogenesis. In C. D. Klaassen (Ed.), Casarett & Doull's Toxicology: The Basic Science of Poisons 6th ed., (pp. 241-320). New York: McGraw-Hill.

Ragunathan, R., & Swaminathan, K. (2003). Nutritional status of Pleurotus spp. grown on various agro-wastes. Food Chemistry, 80(3), 371-375.

Rudawska, M., & Leski, T. (2005). Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chemistry, 92(3), 499-506.

Sesli, E., & Tüzen, M. (1999). Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 65(4), 453-460.

Sesli, E., Tuzen, M., & Soylak, M. (2008). Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. Journal of Hazardous Materials, 160(2–3), 462-467.

Soylak, M., Saraçoğlu, S., Tüzen, M., & Mendil, D. (2005). Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chemistry, 92(4), 649-652.

Stihi, C., Radulescu, C., Busuioc, G., Popescu, I. V., Gheboianu, A., & Ene, A. (2011). Studies on accumulation of heavy metals from substrate to edible wild mushrooms. Romanian Journal of Physics, 56(1–2), 257–264.

Turkekul, I., Elmastas, M., & Tüzen, M. (2004). Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chemistry, 84(3), 389-392.

Tüzen, M. (2003). Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 74(3), 289-297.

Uluozlu, O. D., Tuzen, M., Mendil, D., & Soylak, M. (2009). Assessment of trace element contents of chicken products from turkey. Journal of Hazardous Materials, 163(2–3), 982-987.

Vetter, J. (2003). Chemical composition of fresh and conserved Agaricus bisporus mushroom. European Food Research and Technology, 217(1), 10-12.

Wang, X.-M., Zhang, J., Wu, L.-H., Zhao, Y.-L., Li, T., Li, J.-Q., Wang, Y.-Z., & Liu, H.-G. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151(0), 279-285.

WHO. (1982). Evaluation of Certain Food Additives and Contaminants (Twenty-sixth Report of the Joint FAO/WHO Expert Committee on on Food Additives). WHO Technical Report Series, No. 683, Geneva.

Wu, S. X., Wang, B. X., Guo, S. Y., Li, L., & Yin, J. Z. (2005). Yunnan wild edible Thelehhora ganhajun Zang nutrients analysis. Modem Preventive Medicine, 32(11), 1548–1549

Yamaç, M., Yıldız, D., Sarıkürkcü, C., Çelikkollu, M., & Solak, M. H. (2007). Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 103(2), 263-267.

Yaman, M., & Akdeniz, I. (2004). Sensitivity Enhancement in Flame Atomic Absorption Spectrometry for Determination of Copper in Human Thyroid Tissues. Analytical Sciences, 20(9), 1363-1366.

Zhang, B. Q., & Chen, J. (2011). Determination and analysis of nutrition components in Sarcodon aspratus. Food Science, 32(9 ), 299-302.

Zhu, F., Qu, L., Fan, W., Qiao, M., Hao, H., & Wang, X. (2011). Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environmental Monitoring and Assessment, 179(1-4), 191-199.

التنزيلات

منشور

2024-05-26

كيفية الاقتباس

Abdolgader, R. E., Ali Bellail, A., Abdolgader, R. E., Milad Mousa, M., & Abraheem, M. F. (2024). Mineral contents in fruiting bodies of edible wild mushroom from Al-Jabal Alakhdar province / Libya. مجلة العلوم والدراسات الإنسانية - كلية الآداب والعلوم – المرج, (23), 1–19. https://doi.org/10.37376/1571-000-023-004

إصدار

القسم

Articles