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Numerical Solutions of Non-Local Problem for fractional order differential equations

Summary:

The paper focuses on the study of problem- related to the linear second order
boundary value problem (BVP). Three generalization styles are discussed. In the first, the
second order BVP with non-local condition of the Dirichlet type is studied. In the second,
the fractional order BVP is considered. In the third, the fractional order BVP with non-local
condition is treated. The finite difference representation of the BVP is employed to reduce
the problem into a system of algebraic equations, in addition, the implicit- explicit treatment
to the nonlocal problems is introduced. In the implicit- explicit treatment the computational

work is reduced considerably.

Keywords: BVP, Nonlocal conditions, fractional order, finite difference, Implicit -Explicit

treatment.
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Abstract

The computational costs of the numerical solvability of the nonlocal two-point Dirichlet
boundary value problem (NBVP) is investigated and reduced. The finite difference treatment
of the BVP is used as implicit technique within the smallest available subdomain. A reduced
consistent system of algebraic equations corresponding to a well-behaved standard BVP is
generated within the smallest domain, [0.5§]. A reduction of the computational work is
introduced through reducing the size of the algebraic system. A marching explicit approach is
reemployed to generate the solution in (£, 1], the complement of the interval [0,£] with
respect to the overall domain. Application of the technique is illustrated through second order
BVP’s as well as a corresponding fractional order counterpart. Caputo fractional derivatives
with their Grunwald approximation is considered. Properties of the discretized algebraic
system are established for different values of the fractional order. Numerical experiments

confirming the applicability of the treatment are introduced.

1. Introduction
A typical Dirichlet second order BVP can be written in the form, [1, 2, 3, 4]
Fltu(®,u'(u" (1)) =0, a <t <b, P
u(a) = ry, u(b) = r,
We consider the category of BVP which is linear in its highest order term (such problems

sometimes are known as quasilinear BVP). Accordingly, (1.a) can be written in the form

u'’(t) + f(tu(t),u'(t),) =0,

u(a) =r,, u(b) =r,, (1.b)

The existence and uniqueness of solutions to nonlocal two-point Dirichlet boundary value
problem have been investigated by many authors, among them [5, 6]. Nonlocal boundary
value problem appeared in many fields of science and engineering have been investigated by
many authors, among them [7, 8, 9, 10]. Nonlocal conditions appear when the boundary data
are not a valuable. In nonlocal Dirichlet boundary value problems (NBVP’s), the value of the
unknown solution is given within the interval under consideration at a point & with

a < &< b, notat the end points of the interval.
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The given boundary conditions in (1.a, b) are replaced by the conditions
u(a)=r,, u(f)=r,, a< £<b (1.c)

In general, nonlocal two-point Dirichlet boundary value problem includes a classical two-
point Dirichlet boundary value problem defined on a small subdomain [a.£].
Although, the finite difference is considered as the oldest numerical technique used in the
approximation of differential equations it is still the most applicable method due its
simplicity. The philosophy of the finite difference method is the replacement of the
continuous domain by a discrete set of grid points as in figure (1) and the replacement of the
derivatives appears in the differential equation by a corresponding difference representation
at the grid points. Accordingly, a set of algebraic relations are defined at the grid points.
Finite difference treatment for linear boundary value problems requires solution of structured
large linear systems of algebraic equations.
Our main objective is to introduce the solution of (1.b) subject to the nonlocal boundary
condition (1.c) at low computational costs and moreover generalize this treatment to cover
the fractional order cases, was appeared in [11]. This objective can be achieved through
splitting the problem into two tracks. In the first track the included two-point Dirichlet
boundary value problem defined on [a,£] is solved through an implicit process by solving a
reduced algebraic system. In the second track the differential equation (1.a) is considered
over the domain [§, b] and a reformulation of the finite difference scheme is introduced in
an explicit form and the required initial data are taken from the first track.
There is no loss of generality to take the interval [a.b] as the interval [0,1].
Thus, our target can be achieved through the treatment of a simple fractional order nonlocal
Dirichlet boundary value problem (NBVP) of the form
—u @ tu®=f(t), 0<t<l l<a<=<2 (2.a)
w(0)=r,, u(f)=r, 0<E<1 (2.b)
The general outcome can be seen through the treatment of three simple problems.
The first sub problem is the nonlocal problem
—u'()+u(t)=f(t), 0<t<1 (3.9)

u(0)=r,;, u(f)=r, 0<E<1 (3.b)
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There is no doubt that along the interval [0,£] this problem is well posed and admits a unique

solution, which can be obtained through an implicit process. The solutions obtained and the
nonlocal boundary condition at the point & are used to generate the solution through an
explicit process along the interval [£, 1] as illustrated in example (1) case |

The second sub problem is the fractional order BVP

—u @O +u®) =), 0<t<ll<a<2 (4.8)
u(0)=r;, u(l)=r, (4.b)
The third sub problem is the fractional NBVP, [12, 13]
—u @@ +u® =), 0<t<ll<a<2 (5.9)
u(0)=r,, u(f)=r, 0<E<1 (5.b)

1.1 Fractional Calculus, [11, 14]
There are several definitions of fractional derivatives, we are interested in the Caputo and
Griinwald-Letnikov definitions and on Griinwald-Letnikov discretization approach.

Caputo Fractional Derivatives

The Caputo fractional derivative is defined as

Dgu(t) = . _rt 4" u(x) (t— )™ = !dr. (6)

Mm-o)¥a dr®
where, m — 1 < a < m and m= [«] + 1 with [«] denotes the integer part of c .
Griunwald-Letnikov fractional derivative

The Grunwald-Letnikov fractional derivative of a function w(t), t € [a, b] is defined as

- . 1 (et} (7)
D u(t) = lim,, ;=% m( 1)kk;—+:+1}u(t— kAt) , & > 0

It is a generalization of the classical derivatives. It is proved that the series in this definition is

absolutely and uniformally convergent for each o = 0
Shifted Grunwald-Letnikov Form

To increase the order of the accuracy and to introduce stable numerical schemes a shifted

form of the Griinwald-Letnikov fractional derivative is introduced as

o (x+1) (8)
DEcu(t) = limy o= % [Tﬁf]( 1)kk§| *:m u(t— (k — 1)At)
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The Grinwald-Letnikov (G-L) weights are defined as

e Tlet1) -
g = (-1 kiT(a—k+1)  La=o8s = 0. ®)

& (e—1)

Thus,gg =1,gi=—a<0,g3 = =0,1<a <2

It can be proved that the G-L weights satisfy
gf=(1-22)gf, k=123,.. (10)

gy >=gg =--=>gr; lim =0 ;

n —oa gﬂ
1.2 The Finite Difference Method, [2, 11, 14, 15]
In the finite difference method, the continuous domain [0, 1] is superimposed by a set of

discrete points Py = {t;.t,, .ty } = {t;}'Z,, known as the finite difference grid as shown

in figure (1)
1 2 N-1 N
- @ . . *—-- - —— - . . o -
t_tr t1 t: ta t t\-l N
e -
0 1

Figure 1 the grid imposed on the interval [0, 1]

t,=0+ih, i=01,..,N, with grid spacing h = —

It is natural to use the notation u(t;) = u; , the central difference approximation for the

classical first order derivative u'(t;)==*-=*+0(h?), the central difference

approximation for the classical second order derivative u(t;) = %+ 0(h?*) and

the Shifted Griinwald-Letnikov formula D u(t;) = :—E T etu_ .y, 1<a <2, forthe

approximation of the fractional order derivatives, where the G-L weights are

ot 1)
gf = (—1)*———

k!T(e—k+1) °

It is generally accepted that every differential equation can be approximated by a
corresponding finite difference scheme by replacing the derivative terms by their
corresponding finite difference approximation at each grid point. Accordingly, equation (1.b)

can be written in the discrete form
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Bt 4 f(t,u, M) =0, =1, N -1 (12)

Accordingly, a system of algebraic equations is obtained the solution of the algebraic system
gives approximation to the solution of the given boundary value problem.
Thus, the classical Dirichlet second order differential equation

—u'(t)+u(t)=£(t), 0<t<1 (12.8)

u(0)=r,, u(l)=r,, (12.b)
is approximated by the algebraic system,
—u;_y + (24hH)y —u,y, =W i=1,2,--,N -1 (13)

It is well known that the finite difference scheme must pass through some tests of
consistency, stability and convergence in order to give reliable results, was presented in [1,
2]. Another type of problems appears due to the nature of the associated boundary condition.
It is well known that Derichlet linear boundary value problems without first order derivative
term is well posed and the associated linear system can be solved efficiently. the finite

difference equation (13) is written in matrix form as

2+h -1 0 0 0 0 Uy b7y =y
~1 2+h® -1 0 0 0 o LS
0 -1 2+h* -1 0 0 i b,
0 0 -1 2+hF -1 0 2 Wi h, (14)
-~ 2+ h’ : * 1 2
H o T o . ug s
0 0 0 0 : ST B (Y By
0 0 0 0 0 0 -1 2+h* / b2y — 1
-IE‘ L'I '\-\_\E,|_--'

The coefficient square matrix 4, is of order (N — 1) x (N — 1), the unknown vector u and
the right-hand side F are two (N — 1) columns vectors, the coefficient matrix, A = (a;;) is
strictly diagonally dominant, positive definite and tridiagonal.

2. Material and Methods

In nonlocal two-point BVP some of the boundary conditions are given within the overall

domain as described in (1.c) and illustrated in figure (2).
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0 & 1

Figure 2 a nonlocal boundary condition at the point £ or the grid point ;.

The grid space h is chosen such that the point £ is a grid point (the case of non-grid point will
be considered later in a subsequent work); thus we have a classical two-point BVP over the
interval [0.E]. The given BVP is approximated by a corresponding finite difference scheme of

the form.
Wj— g —I0j+Uj2q
'h:

Wjzqg—Uj-q

+ F(t_i-.u,i. =

):n,j= 1,2,-,i—1, (15)
Accordingly, a reduced system of algebraic equations is obtained, the solution of the
algebraic system gives approximation to the solution of the given boundary value problem
over the interval [0,£].
Our treatment depends on solving the problem over the interval [0,£] as a typical standard
BVP and use the difference scheme as a marching technique to generate the solution outside
the interval [0,£]. Therefore, we introduce an explicit treatment over the interval [£ ,1].
2.1 The Implicit-Explicit treatment
The implicit track: In the implicit track an algebraic system of (i-1) equations is solved and
the values g .1ty .-+, 1, are obtained.
The explicit track: In the explicit track a rearrangement of the finite difference scheme is
considered at each grid point in the interval [£ ,1], at the points t; . t;oqy . ", ty_;.

e =H(tw, B_oe wg), j=ii+ 1, N—1, (16)
Accordingly, the values ;4 ,1;., ., 1, are determined sequentially with the same
accuracy of the finite difference scheme and we will illustrate this track in the numerical
examples.
2.2 Finite Difference Approximations of Fractional Order BVP
The fractional order analogy of the differential equation (3.a) is written in the form

—u* () +u(t) =f(t),0<t<1l,1<a<?2 (17)
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Where the fractional derivatives are understood in the Caputo sense and the boundary

conditions as given in (1.b).
Finite Difference Approximations of Fractional Derivatives, as in the integer case the
fractional order derivatives can be approximated by formulas which contain only function
values at specific positions.
uses the shifted Grunwald approximation formula (8), we get

— ¥l efy o 4+ h%,=h%, i=1,..,N—1 (18)
Equation (18) represents a linear system corresponding to the fractional order case, which can

be written in matrix form as

F g1l + 'h.l _g-...l u_ |:|. |:|. |:|. PR PR "11"{1 B i‘"-| »
s  —sth g o o 0 U h*f.
-2 BT - - o . o bt
—g; —g; - —g'+h* - ] ] :* _ s (19)
- B —E: —B: —Eg +h* - 1] "y hf;
§ —&¢ -1 - -5 s th - . : -
_gi.l : _5,': Uy g iy fh 1
=B 4 “E . —E -5 -8  —B —E'+hY by —

i

The coefficient matrix A is of order (N — 1) x (N — 1),
3. Error Estimates

In order to estimate the accuracy of the obtained solution define the global error estimate
and local error estimate as follows
1.U = [U,,U,, ..., U,]T denotes the approximate solution generated by some FD scheme with
no round-off errors and u = [u(t, ), u(t,), ..., u(t,)] is the exact solution at the grid
points t,.t,, ..., t,, then the global error vector is defined as E = U — u.
2. The local truncation error refers to the difference between the original differential equation
and its FD approximation at a grid point.

T. = Lywi(t,) — Lw(i),i=1,..,N,

where w is a smooth function on 1.
It is interesting to note that increasing the nonlocal points to get closer to the local point (a)

give better approximate solution, approaching the exact solution.
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4. Numerical Examples

To illustrate the theoretical results described above two simple numerical examples are
considered. The first is the fractional order differential equation with low degree polynomial
solution in which all the three cases described (the integer case a = 2, with nonlocal
boundary — the fractional order case 1 << a < 2, and the fractional order with nonlocal
boundary condition) different step size h for the grid are considered and different values of
the fractional order a. The second example to illustrate that the treatment works well even
when the solution is not polynomial, exponential behavior is considered and the error in all
cases is within the proved theoretical attitudes (proportional to k). The second example is
restricted to the integer case to guarantee h* accuracy.

Example (1) Consider the following differential equation

ri4)

—ut() +d4u=——= () +4t?, 0<t<1, 1<as2 (20)

Subject to the boundary condition

u(0) = 0, and the nonlocal boundary conditions u(f )=£%*0<i=1

it can be proved that the exact solution is u(t) = t*

this example is reduced to the standard classical case when a =2 and § = 1, the negative
sign in the left-hand side to guarantee the positive definite of the differential operator as well
as the coefficient matrix of the discretized system described in equation (13)

case |

The classical second order BVP with nonlocal boundary condition, &« = 2 and § = 0.8

the first track gives the finite deference approximation

¢ 2.04 -1 0 0 0 0 0y U /—0.00596"
-1 204 -1 0 0 0 0 U, 0.01168
0 -1 204 -1 0 0 0 Uz —0.01692
0 0 -1 204 -1 0 0 uy | = | —0.02144 |, (21)
0 0 0 -1 204 -1 0 (| ¥ —0.025
0 0 0 0 -1 204 -1 Ug —0.02736
0 0 0 0 0 -1 204 U " 0.48372 7

It is well known that this tridiagonal system has a unique solution as given in table 1 below.

The unknowns ug and w4, are determined by an explicit proses through the use of finite
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difference scheme at the points 5 to obtain 14 (the second track) and then at 14 to obtain

ST

i Exact App.

g 0 0

@l 0.001 0.001

g2 | 0008 | 0.008 »
0.3 0.027 0.027 1.2 ——  Exact

1.0 o Impilict Treatment
O 0064 0.064 08 o Explicite Treatment
g5 0.125 0.125 osh » Boundary conditions

04

A 0.216 0.216

02

7 0.343 0.343

0.2 0.4 0.8 0.8 1.0

e 0.512 0.512

e 0.729 0.729 )
Figure 3: « = 2,h = 0.1

1.0 1 1

Table 1 the results of applying

the implicit-explicit treatment

case Il

The fractional order BVP with classical boundary conditions, a = 1.9, £ = 1.0 and, a = 1.8,
£ =1.0 (h=0.1, h =0.02).

¢ 135036 -1 o o o o o o o 1y
—0.B55 195036 = | o o o o o o u;
—0.0285 —.B55 195038 -1 o o o o o Uz
—0.007838 —0.02B5 —0.B55 195036 =1 o o o o u,
—0.003292 —0.007838 —0.0285 —0.B55 1.95036 -1 o o o Uz
—0.001701 —0.003292 —0.007838 —0.02B5 —{.B55 1.95036 —1 o o g
—=0.0009%96 —0.001701 -—0.003292 -—0.007838 -—0.0285 —0.B55 195036 -1 o s
—0.000635 —0.0009%96 —0.001701 -—0.003252 -—0.007838 —0.02B5 —0.B55 1.95036 -1 Uy

‘—0.0004304 -—0.000635 -—0.0009%96 -—0.001701 -—0.003292 -—0.007838 -—0.0285 —0.B55 195036 ¢ W

f(—0.00568312
—011BE71
—0.017B382
—.0231213

= | —0.0273786
—0.0302743
—.0314833
—0.0306871

0972229
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t; Exact App.
0 0 14,
0.001 | 0.00224214 12[
0.008 0.0100561 1.0} —— Exact
0.064 0.0668738
0.125 0.127951
0.216 0.218823
0343 | 0.345484 1w
0.512 0.51392
0.729 0.730104 Figure4: « =19,h = 0.1
1 1

Table 2: the results of exact

and approximation solutions

1of ___  Exact
@ approximate
» Boundary conditions

0.4 08 0.8

Figure 5: when c«c = 1.8, h = 0.1

14
120
1.0F —— Exact

@ approximate
[X:38
« Boundary conditions
0.6 [
04l

0.2

1 I s
0.2 04 0.6 0.8

L
1.0

Figure 6: when c = 1.9, h = 0.02
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u
14

12+

1.0 —— Exact

@ approximate
[E: ]S

» Boundary conditions
06 [

04-

02F

0.2 04 0.8 0.8 1.0

Figure 7: when o = 1.8, h = 0.02
case Il
The fractional order BVP with nonlocal boundary condition, ¢ = 1.9, £ = 0.8 and, «« = 1.8,
£ =10.8 (h=0.1, h=0.02).

1.93036 -1 0 0 0 0 0 by
—0.835 193036 =il 0 0 0 0 Uz
—0.0285 —0.833 1.93036 —il, 0 0 0 Uz
—0.0078375 —0.0285 —0.855 155036 -1 0 0 U | =
—0.0032918 -—-0.007837 —0.0285 —0.855 195038 -1 0 Ug
—0.0017007 -—0.003292 -—-0.007838 -—0.0235 —0.835 195036 -1 Ug
—0.0009951 —0.001701 —0.003292 -—-0.0076838 -—0.0Z35 —0.835 1.9503a Uz

—0.0056831

—0.0118871

—0.0178382

—0.0231213

—0.0273786

—0.0302743

0.430517
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Table 3 the results of applying
the impilict-explicite treatment

0.8
0.6
04

0.2F

Exact App.

0 0
0.001 | 0.00206328
0.008 | 0.00970725
0.027 | 0.0290556
0.064 | 0.0661485
0.125 0.126999
0.216 0.217604
0.343 0.343947
0.512 0.512
0.729 0.72772

1 0.997049

» Boundary conditions

—— Exact
® Impilict Treatment
o Explicite Treatment

1

1

1

0.

0.

0.

0.

A

2+

Exact
# Impilict Treatment
# Explicite Treatment

ok
a8+
. « Boundary conditions
4
2

1 I L 1
02 04 06 08 1.0

Figure 8: whenc«c = 1.9 h = 0.1

02

04

0.6 o8

Figure 9: when o = 1.8, h = 0.02

14
12F
L —— Exact
1op o Impilict Treatment
naf » Explicite Treatment
- [ « Boundary conditions
naf
o2k
‘ - | 1 1 1 1 !
0.2 04 0.6 08 10

Figure 10: when c«c = 1.8, h = 0.1
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—— Exact

o Impilict Treatment
(X8 * Explicite Treatment
» Boundary conditions

0.2 04 0.6 08 1.0

Figure 11: when o = 1.9, h = 0.02

Example (2) Consider the following differential equation

2 ria)
ria—m)

—u''(t) +4u(t) = — (£)37% — 0.5(£)> %, 5_o(—t) +8t3 4277, 0<t<1 (22)

with nonlocal boundary condition, u(t ) = 2£® 4+ 0.5¢ ™%, a =2 and £ = 0.8

t; Exact App.
0.5 0.5
0.454419 | 0.454428 “
0.425365 0.42538 25 ——  Exact
@ Impilict Treatment
ﬂ.42 44':'9 ﬂ42 442? zop ® Explicite Treatment
1.5 @ Boundary conditions

0.46316 0.463178

0.553265| 0.553281

0.706406 | 0.706418

L L L L L
0.2 04 0.6 0.8 1.0

0.934293 0.9343
Figure 12: whencc = 2, h = 0.1

1.24866 1.24866

1.66128 1.66128

2.18394 2.18392

Table 4 the results of applying
the impilict-explicite treatment



o

University of Benghazi olkiy dxaly
Faculty of Education Almarj 44 asall — dgyill iyl2
Global Libyan Journa/ ISSN 2518-5845

Global Libyan Journal dgallell Ao lll Alsall

2022 | yosla [ omardly @Ln.ll\.—;bxll

5.Discussion

The two-point boundary value problems are considered in many publications theoretically or
numerically, [1, 2]. The shooting combined with Runge-Kutta techniques and the finite
difference methods are standard numerical methods for solving BVP’s, [1, 2,15]. The finite
difference method is known as global method while the shooting technique depends on
solving initial value problem through a marching prosses. Recently, fractional order boundary
value problems with nonlocal boundary conditions appears in many theoretical works, [9,
10]. The problem of nonlocal boundary value problems even in the standard second order
case appeared in many engineering and physical applications, [5, 6, 7]. Although, the finite
difference method is considered as one of the simplest and straightforward methods that can
treat linear BVP’s, the large size of associated linear algebraic system is a problem in itself
especially in the fractional order (lower triangular part of the coefficient matrix is full as in
[14, 15]. It is interesting to note that the computational work required in solving algebraic
system with elimination techniques is proportional to n®, [2] where n is the size of the
coefficient matrix thus reducing the size of the system is the most effective part (reducing the

#=1512 as in case h

size from n= 10 to n = 8 is equivalent to reduce n® = 1000 to n
=0.1and reducing the size from n =50 to n = 40 s equivalent to reduce n® = 125000 to
n® = 64000 as in case h =0.02 in the numerical examples).

The finite difference method is classified as global method in the sense that it requires

solution of algebraic systems related to the overall domain.
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6. Conclusion

The finite difference is an efficient method for solving BVP of fractional order as in the case
of the classical second order differential equation, [1,15]. The algebraic system for fractional
order is structured system with fixed values along the diagonals with o + h® value along the

main diagonal and (-1) along the supper diagonal and gf:, , along the K™ sub-diagonal.

The finite difference method works efficiently for problems with nonlocal boundary
conditions the step size h must be decreased as the fractional order decrease due to the error

term contains the factor h=.

A finite difference treatment for linear nonlocal boundary value problems can be used as
global method over the bounded domain defined by the first boundary condition (at t = 0) to

the first nonlocal boundary and a marching technique over the rest of the domain.

The computational work is decreased considerably in the Impilict-Explicite treatment
introduced due to the decrease in the dimension of the algebraic system in the implicit track
and the low computational costs in the explicit track, it is just function evaluation.

The use of the shifted Grinwald for the fractional order derivatives makes the integer case
special case, [14] also the algebraic systems tends to the one obtained in the standard integer

case as the order o tends to 2.
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