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Numerical Solutions of Non-Local Problem for fractional order differential equations 

Summary: 

The paper focuses on the study of problem- related to the linear second order 

boundary value problem (BVP). Three generalization styles are discussed. In the first, the 

second order BVP with non-local condition of the Dirichlet type is studied. In the second, 

the fractional order BVP is considered. In the third, the fractional order BVP with non-local 

condition is treated. The finite difference representation of the BVP is employed to reduce 

the problem into a system of algebraic equations, in addition, the implicit- explicit treatment 

to the nonlocal problems is introduced. In the implicit- explicit treatment the computational 

work is reduced considerably. 

Keywords: BVP, Nonlocal conditions, fractional order, finite difference, Implicit -Explicit 

treatment. 

 المعادلات التفاضلية غير المحلية من الرتب الكسريةألة الحلول العددية لمس
 هويدا سالم منصور

 الملخص:
أساليب للتعميم. في الاسلوب الأول  ثلاثةويناقش البحث  الثانيةمن الرتبة الخطية يركز البحث على دراسة المسألة الحدية  

بالشروط غير المحلية من النوع ديرشليت، وفي الثاني تم دراسة المسألة من الرتبة  تبطةالمر الثانية  الرتبةلة الحدية من أتم دراسة المس
بالشروط غير  المرتبطةبالشروط الحدية من نوع ديرشليت، وفي الثالث تم دراسة المسألة الحدية من الرتبة الكسرية  المرتبطةالكسرية 

  .         المحلية
. كما تم تقديم أسلوب الزحف التكراري المنتهيةطريقة الفروق  باستخداممن المعادلات الجبرية وتم تحويل المسألة الحدية إلي نظام 

 الصريح عند حل المسألة الحدية غير محلية والذي ترتب عليه تقليل حجم الحسابات بطريقة ملموسة.
ة، الفروق المحدودة، المعالجة الضمنية ، الرتبة الكسري المحليةغير  ، الشروط (BVP)لة القيمة الحديةأمس :المفتاحية الكلمات
 الصريحة.

 

 



 

 
 

Abstract 

The computational costs of the numerical solvability of the nonlocal two-point Dirichlet 

boundary value problem (NBVP) is investigated and reduced. The finite difference treatment 

of the BVP is used as implicit technique within the smallest available subdomain. A reduced 

consistent system of algebraic equations corresponding to a well-behaved standard BVP is 

generated within the smallest domain, . A reduction of the computational work is 

introduced through reducing the size of the algebraic system. A marching explicit approach is 

reemployed to generate the solution in , the complement of the interval with 

respect to the overall domain. Application of the technique is illustrated through second order 

BVP’s as well as a corresponding fractional order counterpart. Caputo fractional derivatives 

with their Grünwald approximation is considered. Properties of the discretized algebraic 

system are established for different values of the fractional order. Numerical experiments 

confirming the applicability of the treatment are introduced. 

1. Introduction 

A typical Dirichlet second order BVP can be written in the form, [1, 2, 3, 4] 

      , 

 ,  , 
(1.a) 

We consider the category of BVP which is linear in its highest order term (such problems 

sometimes are known as quasilinear BVP). Accordingly, (1.a) can be written in the form 

, 

 ,  , 
(1.b) 

The existence and uniqueness of solutions to nonlocal two-point Dirichlet boundary value 

problem have been investigated by many authors, among them [5, 6]. Nonlocal boundary 

value problem appeared in many fields of science and engineering have been investigated by 

many authors, among them [7, 8, 9, 10].  Nonlocal conditions appear when the boundary data 

are not a valuable. In nonlocal Dirichlet boundary value problems (NBVP’s), the value of the 

unknown solution is given within the interval under consideration at a point , with  

 , not at the end points of the interval. 

 



 

 
 

The given boundary conditions in (1.a, b) are replaced by the conditions 

 ,  ,      (1.c) 

In general, nonlocal two-point Dirichlet boundary value problem includes a classical two-

point Dirichlet boundary value problem defined on a small subdomain . 

Although, the finite difference is considered as the oldest numerical technique used in the 

approximation of differential equations it is still the most applicable method due its 

simplicity. The philosophy of the finite difference method is the replacement of the 

continuous domain by a discrete set of grid points as in figure (1) and the replacement of the 

derivatives appears in the differential equation by a corresponding difference representation 

at the grid points. Accordingly, a set of algebraic relations are defined at the grid points. 

Finite difference treatment for linear boundary value problems requires solution of structured 

large linear systems of algebraic equations.  

Our main objective is to introduce the solution of (1.b) subject to the nonlocal boundary 

condition (1.c) at low computational costs and moreover generalize this treatment to cover 

the fractional order cases, was appeared in [11]. This objective can be achieved through 

splitting the problem into two tracks. In the first track the included two-point Dirichlet 

boundary value problem defined on   is solved through an implicit process by solving a 

reduced algebraic system. In the second track the differential equation (1.a) is considered 

over the domain   and a reformulation of the finite difference scheme is introduced in 

an explicit form and the required initial data are taken from the first track.      

There is no loss of generality to take the interval  as the interval .  

Thus, our target can be achieved through the treatment of a simple fractional order nonlocal 

Dirichlet boundary value problem (NBVP) of the form  

     ,   (2.a) 

 ,  ,  (2.b) 

The general outcome can be seen through the treatment of three simple problems. 

The first sub problem is the nonlocal problem 

      (3.a) 

 ,  ,  (3.b) 



 

 
 

There is no doubt that along the interval  this problem is well posed and admits a unique 

solution, which can be obtained through an implicit process. The solutions obtained and the 

nonlocal boundary condition at the point   are used to generate the solution through an 

explicit process along the interval  as illustrated in example (1) case I 

The second sub problem is the fractional order BVP 

     ,  (4.a) 

 ,   (4.b) 

The third sub problem is the fractional NBVP, [12, 13] 

     ,  (5.a) 

 ,  ,  (5.b) 

1.1 Fractional Calculus, [11, 14] 

There are several definitions of fractional derivatives, we are interested in the Caputo and 

Grünwald-Letnikov definitions and on Grünwald-Letnikov discretization approach.     

Caputo Fractional Derivatives 

The Caputo fractional derivative is defined as  

 (6) 

where,   and m=  with  denotes the integer part of  . 

Grünwald-Letnikov fractional derivative 

The Grünwald-Letnikov fractional derivative of a function ,   is defined as  

 ,  
(7) 

It is a generalization of the classical derivatives. It is proved that the series in this definition is 

absolutely and uniformally convergent for each    

Shifted Grünwald-Letnikov Form 

To increase the order of the accuracy and to introduce stable numerical schemes a shifted 

form of the Grünwald-Letnikov fractional derivative is introduced as  

 
(8) 

 



 

 
 

The Grünwald-Letnikov (G-L) weights are defined as  

 ,  (9) 

Thus, ,  , ,  

 It can be proved that the G-L weights satisfy  

 ,  (10) 

  ;   ;  

1.2 The Finite Difference Method, [2, 11, 14, 15] 

In the finite difference method, the continuous domain [0, 1] is superimposed by a set of 

discrete points , known as the finite difference grid as shown 

in figure (1)  

 

Figure 1 the grid imposed on the interval [0, 1] 

, with grid spacing   

It is natural to use the notation  , the central difference approximation for the 

classical first order derivative , the central difference 

approximation for the classical second order derivative  and 

the Shifted Grünwald-Letnikov formula ,   , for the 

approximation of the fractional order derivatives, where the G-L weights are 

 . 

It is generally accepted that every differential equation can be approximated by a 

corresponding finite difference scheme by replacing the derivative terms by their 

corresponding finite difference approximation at each grid point. Accordingly, equation (1.b) 

can be written in the discrete form  



 

 
 

,      i  (11) 

Accordingly, a system of algebraic equations is obtained the solution of the algebraic system 

gives approximation to the solution of the given boundary value problem.  

Thus, the classical Dirichlet second order differential equation 

      (12.a) 

 ,  , (12.b) 

is approximated by the algebraic system, 

 ,  (13) 

It is well known that the finite difference scheme must pass through some tests of 

consistency, stability and convergence in order to give reliable results, was presented in [1, 

2]. Another type of problems appears due to the nature of the associated boundary condition. 

It is well known that Derichlet linear boundary value problems without first order derivative 

term is well posed and the associated linear system can be solved efficiently. the finite 

difference equation (13) is written in matrix form as  

 

 (14) 

The coefficient square matrix , is of order  , the unknown vector  and 

the right-hand side  are two columns vectors, the coefficient matrix,  is 

strictly diagonally dominant, positive definite and tridiagonal. 

2. Material and Methods 

In nonlocal two-point BVP some of the boundary conditions are given within the overall 

domain as described in (1.c) and illustrated in figure (2).   



 

 
 

 

Figure 2 a nonlocal boundary condition at the point  or the grid point . 

The grid space  is chosen such that the point   is a grid point (the case of non-grid point will 

be considered later in a subsequent work); thus we have a classical two-point BVP over the 

interval . The given BVP is approximated by a corresponding finite difference scheme of 

the form. 

, . (15) 

                                                                   

Accordingly, a reduced system of algebraic equations is obtained, the solution of the 

algebraic system gives approximation to the solution of the given boundary value problem 

over the interval .  

Our treatment depends on solving the problem over the interval  as a typical standard 

BVP and use the difference scheme as a marching technique to generate the solution outside 

the interval . Therefore, we introduce an explicit treatment over the interval . 

2.1 The Implicit-Explicit treatment 

The implicit track: In the implicit track an algebraic system of (i-1) equations is solved and 

the values  are obtained.    

The explicit track: In the explicit track a rearrangement of the finite difference scheme is 

considered at each grid point in the interval , at the points . 

, . (16) 

 Accordingly, the values  are determined sequentially with the same 

accuracy of the finite difference scheme and we will illustrate this track in the numerical 

examples.  

2.2 Finite Difference Approximations of Fractional Order BVP 

The fractional order analogy of the differential equation (3.a) is written in the form 

,  ,  (17) 



 

 
 

Where the fractional derivatives are understood in the Caputo sense and the boundary 

conditions as given in (1.b). 

Finite Difference Approximations of Fractional Derivatives, as in the integer case the 

fractional order derivatives can be approximated by formulas which contain only function 

values at specific positions. 

uses the shifted Grünwald approximation formula (8), we get 

 ,   (18) 

Equation (18) represents a linear system corresponding to the fractional order case, which can 

be written in matrix form as 

 

 

(19) 

The coefficient matrix A is of order .  

3. Error Estimates 

    In order to estimate the accuracy of the obtained solution define the global error estimate 

and local error estimate as follows 

1.  denotes the approximate solution generated by some FD scheme with 

no round-off errors and  is the exact solution at the grid 

points  , then the global error vector is defined as E = U − u. 

2. The local truncation error refers to the difference between the original differential equation 

and its FD approximation at a grid point.  

, 

where w is a smooth function on I. 

It is interesting to note that increasing the nonlocal points to get closer to the local point (a) 

give better approximate solution, approaching the exact solution. 



 

 
 

4. Numerical Examples 

To illustrate the theoretical results described above two simple numerical examples are 

considered. The first is the fractional order differential equation with low degree polynomial 

solution in which all the three cases described (the integer case , with nonlocal 

boundary – the fractional order case , and the fractional order with nonlocal 

boundary condition) different step size h for the grid are considered and different values of 

the fractional order . The second example to illustrate that the treatment works well even 

when the solution is not polynomial, exponential behavior is considered and the error in all 

cases is within the proved theoretical attitudes (proportional to ). The second example is 

restricted to the integer case to guarantee  accuracy. 

Example (1) Consider the following differential equation 

 ,   ,   (20) 

Subject to the boundary condition  

, and the nonlocal boundary conditions     ;  

it can be proved that the exact solution is   ,  

this example is reduced to the standard classical case when  and , the negative 

sign in the left-hand side to guarantee the positive definite of the differential operator as well 

as the coefficient matrix of the discretized system described in equation (13)  

case I  

The classical second order BVP with nonlocal boundary condition,  and  

the first track gives the finite deference approximation 

, (21) 

                           

It is well known that this tridiagonal system has a unique solution as given in table 1 below. 

The unknowns   and  are determined by an explicit proses through the use of finite 



 

 
 

difference scheme at the points  to obtain   (the second track) and then at  to obtain 

 

 Exact App. 

   

 0.001  

 0.008  

 0.027  

 0.064  

 0.125  

   

   

   

   

 1 1 

Table 1 the results of applying     

the implicit-explicit treatment 

 

 

 

 

 

       Figure 3:  

case II  

The fractional order BVP with classical boundary conditions, ,  and, , 

 (h= 0.1, h =0.02). 

 

 

 

 



 

 
 

 

 Exact App. 

  0 

 0.001 0.00224214 

 0.008 0.0100561 

 0.027 0.0295831 

 0.064 0.0668738 

 0.125 0.127951 

  0.218823 

  0.345484 

  0.51392 

  0.730104 

 1 1 

Table 2: the results of exact 

and approximation solutions 

 

 

 

 

        

              Figure 4:  

 

    Figure 5: when ,  

 

    Figure 6: when ,  



 

 
 

 

                                             Figure 7: when ,  

case III  

The fractional order BVP with nonlocal boundary condition, ,  and, , 

 (h= 0.1, h =0.02). 

 

 

 

 

 

 

 

 



 

 
 

 

 Exact App. 

   

 0.001  

 0.008  

 0.027  

 0.064  

 0.125  

   

   

  0.512 

   

 1  

Table 3 the results of applying 

the impilict-explicite treatment 

 

 

 

 

          Figure 8: when ,  

 

 

       Figure 9: when ,  

 

 

     Figure 10: when ,  

 

 



 

 
 

 

Figure 11: when ,  

Example (2) Consider the following differential equation 

 ,   (22) 

with nonlocal boundary condition, ,  and  

 

 Exact App. 

   

   

   

   

   

   

   

   

   

   

   

Table 4 the results of applying 

the impilict-explicite treatment 

 

 

 

 

 

 

 

Figure 12: when ,  



 

 
 

5.Discussion 

The two-point boundary value problems are considered in many publications theoretically or 

numerically, [1, 2]. The shooting combined with Runge-Kutta techniques and the finite 

difference methods are standard numerical methods for solving BVP’s, [1, 2,15]. The finite 

difference method is known as global method while the shooting technique depends on 

solving initial value problem through a marching prosses. Recently, fractional order boundary 

value problems with nonlocal boundary conditions appears in many theoretical works, [9, 

10]. The problem of nonlocal boundary value problems even in the standard second order 

case appeared in many engineering and physical applications, [5, 6, 7]. Although, the finite 

difference method is considered as one of the simplest and straightforward methods that can 

treat linear BVP’s, the large size of associated linear algebraic system is a problem in itself 

especially in the fractional order (lower triangular part of the coefficient matrix is full as in 

[14, 15]. It is interesting to note that the computational work required in solving algebraic 

system with elimination techniques is proportional to , [2] where  is the size of the 

coefficient matrix thus reducing the size of the system is the most effective part (reducing the 

size from  to   is equivalent to reduce  to  as in case h 

=0.1and reducing the size from  to   is equivalent to reduce  to 

 as in case h =0.02 in the numerical examples). 

The finite difference method is classified as global method in the sense that it requires 

solution of algebraic systems related to the overall domain. 

 

 

 

 

 

 

 

 

 

 



 

 
 

6. Conclusion  

The finite difference is an efficient method for solving BVP of fractional order as in the case 

of the classical second order differential equation, [1,15]. The algebraic system for fractional 

order is structured system with fixed values along the diagonals with  value along the 

main diagonal and (-1) along the supper diagonal and  along the k
th

 sub-diagonal.  

The finite difference method works efficiently for problems with nonlocal boundary 

conditions the step size h must be decreased as the fractional order decrease due to the error 

term contains the factor .  

A finite difference treatment for linear nonlocal boundary value problems can be used as 

global method over the bounded domain defined by the first boundary condition (at ) to 

the first nonlocal boundary and a marching technique over the rest of the domain. 

The computational work is decreased considerably in the Impilict-Explicite treatment 

introduced due to the decrease in the dimension of the algebraic system in the implicit track 

and the low computational costs in the explicit track, it is just function evaluation.    

The use of the shifted Grünwald for the fractional order derivatives makes the integer case 

special case, [14] also the algebraic systems tends to the one obtained in the standard integer 

case as the order    tends to 2.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

References 

[1] Ascher, U. M.; Matheij, R.M. M. and Russell, R. D. 1995. Numerical Solution of 

Boundary Value Problems for Ordinary Differential Equations.                                                                                             

[2] Burden, R. L. and Faires, J. D. 2011. Numerical Analysis, 9
th

, Cengage Learning, In. 

[3] El-Arabawy, H.A. and Youssef, I.K. 2009. A symbolic algorithm for solving linear two-

point boundary value problems by modified picard technique, Mathematical and 

Computer Modelling. 49:344-351. 

[4] Youssef, I.K. and Ibrahim, R.A. 2013. Boundary value problem, Fredholm integral 

equations, SOR and KSOR methods, Life Science Journal. 10(2): 304-312. 

[5] Lin, Y. and Lin, J. 2010. A numerical Algorithm for Solving a class of Linear Nonlocal 

Boundary Value Problems, Applied Mathematics Letters. 23: 997-1002. 

[6]  Sapagovas, M.P. 2000. A Boundary Value Problem with a Nonlocal Condition for a 

System of Ordinary Differential Equations, Differential Equations. 36(7):  1078-1085. 

[7] 
Sapagovas, M.; Ciupaila, R. and Joksiene, Z. 2014. The Eigenvalue Problem for a one-

Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral 

Conditions. Lithuanian Mathematical Journal. 54(3): 345-355. 

[8] Zhong, X. and Huang, Q. 2014. Approximate Solution of Three-Point Boundary Value 

Problems for Second-Order Ordinary Differential Equation with Variable Coefficients. 

Applied Mathematics and Computation. 247:18-29.  

[9] Ahmad, B. and Nieto, J. J. 2009. Existence of Solution for Nonlocal Boundary Value 

Problems of Higher - Order Nonlinear Fractional Differential Equations. Abstract and 

Applied Analysis. doi:10.1155/2009/494720, 9. 

[10] Henderson, J. and Kunkel, C. J. 2008. Uniqueness of Solutions of Linear Nonlocal 

Boundary Value Problems. Applied Mathematics Letters. 21:1053–1056. 



 

 
 

[11] Podlubny, I. 1999. Fractional Differential Equations. Academic Press. 

[12] Benchohra, M.; Hamani, S. and Ntouyas, S.K. 2009. Boundary Value Problems for 

Differential Equations with Fractional order and Nonlocal Conditions. Nonlinear Analysis. 

71: 2391- 2396. 

[13] El-Sayed, A. M. A. and Hamed, W. A. 2016. On a Nonlocal (two point) Boundary Value 

Problem of a Nonlinear Functional Integro-Differential Equation of Arbitrary (fractional) 

Order. International Journal of Mathematical Analysis. 10(7): 329 –338. 

[14] Sousa, E. 2012. How to Approximate the Fractional Derivative of Order . 

International Journal of Bifurcation and Chaos. 22 (4). 

[15] Stynes, M. and Gracia, J. L. 2014. A finite Difference Method for a Two-Point Boundary 

Value Problem with a Caputo Fractional Derivative. IMA Journal of Numerical Analysis. 

1-24.  

[16] Doha, E. H.; Abd-Elhameed, W. M. and Youssri, Y. H. 2015. New Algorithms for Solving 

Third- and Fifth-Order Two-Point Boundary Value Problems Based on Nonsymmetric 

Generalized Jacobi Petrov–Galerkin Method. Journal of Advanced Research. 6: 673-686. 

[17] Doha, E. H.; Abd-Elhameed, W. M. and Youssri, Y. H. 2016. New Ultraspherical 

Wavelets Collocation Method for Solving 2nth-Order Initial and Boundary Value 

Problems. Journal of the Egyptian Mathematical Society. 24: 319-327. 

 

 


