The Hyperreals enlargement sets and its application on compact topology
DOI:
https://doi.org/10.37376/asj.vi6.5139الكلمات المفتاحية:
Hyperreal numbers، infinitesimal, ultrafilter,، enlargement set، nonstandard elements، halo، compact topology.الملخص
This paper presents a study of hyperreal numbers and their relations to real numbers. The hyperreals are a number system extension of the real number system. With this system, simpler and more intuitively natural definition (topological notions of special points and compactness), proofs (Heine-Borel theorem), and new concepts (limited, unlimited numbers, enlargement sets, and halos) of mathematical interest are offered.
التنزيلات
المراجع
References
Barhett, J.. (2018). Hyperreal numbers for infinite divergent series. The Blyth Institute.
Goldblat, R. (1998). Lectures on the Hyperreal. Springer
Gordon, E., Kusraer, A. & Kutatelodzo, S. (2002) Infinitesimal Analysis.
Habil, E., & Ghneim, A. (2015). Non-standard Topology on R. IUG Journal of Natural and Engineering Studies. (vol 23, No 2, pp 1-11).
Kanovei, V., & Shelah, S. (2003). A definable non-standard model of the reals.
Keisler, H. (2007). Foundations of Infinitesimal Calculus.
Krakoff, G. (2015). Hyperreal and Brief Introduction to non-standard analysis.
Masithoh, R., Guswanto, B., & Maryani, S. (2020). The Validity of the properties of real numbers set to hyperreal numbers set. Journal of physics: conference series.
Rayo, D. (2015). Introduction to Non-Standard Analysis .
Lindstrom, T. (1998). Nonstandard Analysis and its Applications. In (ed. N. Cutland). London Mathematical Society Student Texts, Vol 10, Cambridge University Press.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 مجلة المنارة العلمية
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.