The Hyperreals enlargement sets and its application on compact topology
DOI:
https://doi.org/10.37376/asj.vi6.5139Keywords:
Hyperreal numbers, infinitesimal, ultrafilter,, enlargement set, nonstandard elements, halo, compact topology.Abstract
This paper presents a study of hyperreal numbers and their relations to real numbers. The hyperreals are a number system extension of the real number system. With this system, simpler and more intuitively natural definition (topological notions of special points and compactness), proofs (Heine-Borel theorem), and new concepts (limited, unlimited numbers, enlargement sets, and halos) of mathematical interest are offered.
Downloads
References
References
Barhett, J.. (2018). Hyperreal numbers for infinite divergent series. The Blyth Institute.
Goldblat, R. (1998). Lectures on the Hyperreal. Springer
Gordon, E., Kusraer, A. & Kutatelodzo, S. (2002) Infinitesimal Analysis.
Habil, E., & Ghneim, A. (2015). Non-standard Topology on R. IUG Journal of Natural and Engineering Studies. (vol 23, No 2, pp 1-11).
Kanovei, V., & Shelah, S. (2003). A definable non-standard model of the reals.
Keisler, H. (2007). Foundations of Infinitesimal Calculus.
Krakoff, G. (2015). Hyperreal and Brief Introduction to non-standard analysis.
Masithoh, R., Guswanto, B., & Maryani, S. (2020). The Validity of the properties of real numbers set to hyperreal numbers set. Journal of physics: conference series.
Rayo, D. (2015). Introduction to Non-Standard Analysis .
Lindstrom, T. (1998). Nonstandard Analysis and its Applications. In (ed. N. Cutland). London Mathematical Society Student Texts, Vol 10, Cambridge University Press.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Almanara Scientific Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.