دور الذكاء الاصطناعي في التقويم و القياس اللغوى
DOI:
https://doi.org/10.37376/fesj.vi16.7106الكلمات المفتاحية:
artificial intelligence، language assessment، automated scoringالملخص
إن تقييم واخنبار إجادة اللغة أمر فائق الأهمية للتوظيف والتعليم. لقد ُستخدم تقييم اللغة منذ زمن طويل مُقيِّمين بشريين لتقييم وتقويم كفاءة وإجادة اللغة وفقًا لمعايير محددة مسبقًا. ومع ذلك، فإن طريقة التقييم اليدوية هذه بها بعض القيود، بما في ذلك الذاتية، والتباين بين المُقيِّمين، وقضايا قابلية التوسع. أدى التقدم السريع لتكنولوجيا الذكاء الاصطناعي إلى تحسينات كبيرة في تقييم اللغة، مما أدى إلى إنتاج طرق تقييم وقياس أكثر إبداعًا ودقة وفعالية. تغطي الدراسة الحالية مجموعة واسعة من الموضوعات، بما في ذلك التسجيل والتقييم الآلي، والفوائد والمزايا، والتحديات والاعتبارات، والاتجاهات المستقبلية. يمكن للذكاء الاصطناعي أن يساعد في تقييم اللغة في تحقيق مستويات غير مسبوقة من قابلية التوسع والنزاهة مع مراعاة الاعتبارات الأخلاقية. الهدف من هذه المقالة هو فهم تأثير الذكاء الاصطناعي على تقييم اللغة والتوجيه لمزيد من البحث والتطوير في هذا المجال الديناميكي.
التنزيلات
المراجع
Al-Abbas, H. U. A. I., Halim, H. H., & Nurjati, N. N. (2023). Harnessing the use of artificial intelligence in language assessment: A systematic comprehensive review. Tell-Us Journal, 9(3), 723-745.
Alsaadi, H. M. A. (2021). Dynamic Assessment in Language Learning: An Overview and the Impact of Using Social Media. English Language Teaching, 14(8), 73-82.
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278.
Cugurullo, F. (2020). Urban artificial intelligence: From automation to autonomy in the smart city. Frontiers in Sustainable Cities, 2, 38.
Durairajan, G. (2016). Assessing and testing learners’ language proficiency. Language and Language Teaching, 5(1), 52-56.
Fan, J., & Jin, Y. (2020). Standards for language assessment: Demystifying university-level English placement testing in China. Asia Pacific Journal of Education, 40(3), 386-400.
Gan, L., & Lam, R. (2022). A review on language assessment literacy: Trends, foci and contributions. Language Assessment Quarterly, 19(5), 503-525.
George, B., & Wooden, O. (2023). Managing the strategic transformation of higher education through artificial intelligence. Administrative Sciences, 13(9), 196.
González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied sciences, 11(12), 5467.
Hamon, R., Junklewitz, H., Sanchez, I., Malgieri, G., & De Hert, P. (2022). Bridging the gap between AI and explainability in the GDPR: towards trustworthiness-by-design in automated decision-making. IEEE Computational Intelligence Magazine, 17(1), 72-85.
Huang, F., & Sun, L. (2023). Examining the Roles of Technology in Sustaining Language Teaching and Learning. Sustainability, 15(24), 16664.
Huang, X., Zou, D., Cheng, G., Chen, X., & Xie, H. (2023). Trends, research issues and applications of artificial intelligence in language education. Educational Technology & Society, 26(1), 112-131.
Iskandarova, G. (2024). Current issues in language assessment and language assessment research and its implication. Baltic Journal of Legal and Social Sciences, (3), 228-231.
Jin, Y., & Zhang, L. J. (2021). The dimensions of foreign language classroom enjoyment and their effect on foreign language achievement. International Journal of Bilingual Education and Bilingualism.
Kaldaras, L., & Haudek, K. C. (2022). Validation of automated scoring for learning progression-aligned next generation science standards performance assessments. In Frontiers in Education (Vol. 7, p. 968289). Frontiers Media SA.
Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., et al. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424.
Lee, Y. W. (2015). Diagnosing diagnostic language assessment. Language Testing, 32(3), 299-316.
Mehri, E., & Amerian, M. (2015). Challenges to dynamic assessment in second language learning. Theory and Practice in Language Studies, 5(7), 1458.
Mizumoto, A., & Eguchi, M. (2023). Exploring the potential of using an AI language model for automated essay scoring. Research Methods in Applied Linguistics, 2(2), 100050.
Nardi, A., & Ranieri, M. (2019). Comparing paper‐based and electronic multiple‐choice examinations with personal devices: Impact on students' performance, self‐efficacy and satisfaction. British Journal of Educational Technology, 50(3), 1495-1506.
Poehner, M. E., & Wang, Z. (2021). Dynamic assessment and second language development. Language Teaching, 54(4), 472-490.
Qiao, H., & Zhao, A. (2023). Artificial intelligence-based language learning: illuminating the impact on speaking skills and self-regulation in Chinese EFL context. Frontiers in Psychology, 14, 1255594.
Quansah, F. (2018). Traditional or Performance Assessment: What is the Right Way in Assessing Leaners? Research on Humanities and Social Sciences; Vol 8, No 1 (2018); 21-24.
Ramesh, D., & Sanampudi, S. K. (2022). An automated essay scoring systems: a systematic literature review. Artificial Intelligence Review, 55(3), 2495-2527.
Rane, N. (2024). Enhancing the quality of teaching and learning through Gemini, ChatGPT, and similar generative Artificial Intelligence: Challenges, future prospects, and ethical considerations in education. TESOL and Technology Studies, 5(1), 1-6.
Rashidi, N., & Bahadori Nejad, Z. (2018). An investigation into the effect of dynamic assessment on the EFL learners’ process writing development. Sage Open, 8(2), 2158244018784643.
Reckase, M. D. (2017). A tale of two models: Sources of confusion in achievement testing. ETS Research Report Series, 2017(1), 1-15.
Sevcikova, B. L. (2018). Human versus Automated Essay Scoring: A Critical Review. Arab World English Journal, 9(2).
Sharma, S., Krishnamaraju, J. M. R., & Divakaran, P. (2024). Impact of Artificial Intelligence in English Language Teaching. Migration Letters, 21, 1606-1612.
Shi, G., Lippert, A. M., Shubeck, K., Fang, Y., Chen, S., Pavlik, P., ... & Graesser, A. C. (2018). Exploring an intelligent tutoring system as a conversation-based assessment tool for reading comprehension. Behaviormetrika, 45, 615-633.
Tabatabaei, S., & Bakhtiarvand, M. (2014). Application of Dynamic Assessment in Second and Foreign Language Teaching. International Journal for Teachers of English, 4(3), 1-14.
Van Moere, A., & Downey, R. (2016). 21. Technology and artificial intelligence in language assessment. Handbook of second language assessment, 341-358.
Winna, W., & Sabarun, S. (2023). The Language Assessment In Teaching-Learning English. DIAJAR: Jurnal Pendidikan dan Pembelajaran, 2(4), 413-419.
Xu, J., Jones, E., Laxton, V., & Galaczi, E. (2021). Assessing L2 English speaking using automated scoring technology: examining automarker reliability. Assessment in Education: Principles, Policy & Practice, 28(4), 411-436.
Yu, D. & Deng, L. (2015). Automatic Speech Recognition A Deep Learning Approach. London: Springer-Verlag London.
Zhai, C., & Wibowo, S. (2023). A systematic review on artificial intelligence dialogue systems for enhancing English as foreign language students’ interactional competence in the university. Computers and Education: Artificial Intelligence, 4, 100134.

التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 مجلة كلية التربية العلمية

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.